1
|
Rendon MA, So M. Zap the clap with DNA: a novel microbicide for preventing Neisseria gonorrhoeae infection. Antimicrob Agents Chemother 2024; 68:e0079424. [PMID: 39150247 PMCID: PMC11459949 DOI: 10.1128/aac.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Each year, Neisseria gonorrhoeae (Ngo) causes over 1.5 million new infections in the United States, and >87 million worldwide. The absence of a vaccine for preventing gonorrhea, the rapid emergence of multidrug-resistant and extremely drug-resistant Ngo strains, and the limited number of antibiotics available for treating gonorrhea underscore the importance of developing new modalities for addressing Ngo infection. Here, we describe DNA-based microbicides that kill Ngo but not commensals. Previously, we showed that Ngo is killed when it takes up differentially methylated DNA with homology to its genome. We exploited this Achilles heel to develop a new class of microbicides for preventing Ngo infection. These microbicides consist of DNA molecules with specific sequences and a methylation pattern different from Ngo DNA. These DNAs kill low-passage and antibiotic-resistant clinical isolates with high efficiency but leave commensals unharmed. Equally important, the DNAs are equally effective against Ngo whether they are in buffered media or personal lubricants. These findings illustrate the potential of this new class of practical, low-cost, self-administered DNA-based microbicides for preventing Ngo transmission during sexual intercourse.
Collapse
Affiliation(s)
- Maria A. Rendon
- Department of Immunobiology, the BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Magdalene So
- Department of Immunobiology, the BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Rhodes KA, Rendón MA, Ma MC, Agellon A, Johnson AC, So M. Type IV pilus retraction is required for Neisseria musculi colonization and persistence in a natural mouse model of infection. mBio 2024; 15:e0279223. [PMID: 38084997 PMCID: PMC10790696 DOI: 10.1128/mbio.02792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal Neisseria, N. musculi, in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal Neisseria with their human host due to the relatedness of these species.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - María A. Rendón
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew C.E. Johnson
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Magdalene So
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Rhodes KA, Ma MC, Rendón MA, So M. Neisseria genes required for persistence identified via in vivo screening of a transposon mutant library. PLoS Pathog 2022; 18:e1010497. [PMID: 35580146 PMCID: PMC9140248 DOI: 10.1371/journal.ppat.1010497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms used by human adapted commensal Neisseria to shape and maintain a niche in their host are poorly defined. These organisms are common members of the mucosal microbiota and share many putative host interaction factors with Neisseria meningitidis and Neisseria gonorrhoeae. Evaluating the role of these shared factors during host carriage may provide insight into bacterial mechanisms driving both commensalism and asymptomatic infection across the genus. We identified host interaction factors required for niche development and maintenance through in vivo screening of a transposon mutant library of Neisseria musculi, a commensal of wild-caught mice which persistently and asymptomatically colonizes the oral cavity and gut of CAST/EiJ and A/J mice. Approximately 500 candidate genes involved in long-term host interaction were identified. These included homologs of putative N. meningitidis and N. gonorrhoeae virulence factors which have been shown to modulate host interactions in vitro. Importantly, many candidate genes have no assigned function, illustrating how much remains to be learned about Neisseria persistence. Many genes of unknown function are conserved in human adapted Neisseria species; they are likely to provide a gateway for understanding the mechanisms allowing pathogenic and commensal Neisseria to establish and maintain a niche in their natural hosts. Validation of a subset of candidate genes confirmed a role for a polysaccharide capsule in N. musculi persistence but not colonization. Our findings highlight the potential utility of the Neisseria musculi-mouse model as a tool for studying the pathogenic Neisseria; our work represents a first step towards the identification of novel host interaction factors conserved across the genus. The Neisseria genus contains many genetically related commensals of animals and humans, and two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. The mechanisms allowing commensal Neisseria to maintain a niche in their host is little understood. To identify genes required for persistence, we screened a library of transposon mutants of Neisseria musculi, a commensal of wild-caught mice, in CAST/EiJ mice, which persistently and asymptomatically colonizes. Approximately 500 candidate host interaction genes were identified. A subset of these are homologs of N. meningitidis and N. gonorrhoeae genes known to modulate pathogen-host interactions in vitro. Many candidate genes have no known function, demonstrating how much remains to be learned about N. musculi niche maintenance. As many genes of unknown function are conserved in human adapted Neisseria, they provide a gateway for understanding Neisseria persistence mechanisms in general.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - María A. Rendón
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Magdalene So
- Immunobiology Department, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
4
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
5
|
Takahashi H, Dohmae N, Kim KS, Shimuta K, Ohnishi M, Yokoyama S, Yanagisawa T. Genetic incorporation of non-canonical amino acid photocrosslinkers in Neisseria meningitidis: New method provides insights into the physiological function of the function-unknown NMB1345 protein. PLoS One 2020; 15:e0237883. [PMID: 32866169 PMCID: PMC7458321 DOI: 10.1371/journal.pone.0237883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 02/01/2023] Open
Abstract
Although whole-genome sequencing has provided novel insights into Neisseria meningitidis, many open reading frames have only been annotated as hypothetical proteins with unknown biological functions. Our previous genetic analyses revealed that the hypothetical protein, NMB1345, plays a crucial role in meningococcal infection in human brain microvascular endothelial cells; however, NMB1345 has no homology to any identified protein in databases and its physiological function could not be elucidated using pre-existing methods. Among the many biological technologies to examine transient protein-protein interaction in vivo, one of the developed methods is genetic code expansion with non-canonical amino acids (ncAAs) utilizing a pyrrolysyl-tRNA synthetase/tRNAPyl pair from Methanosarcina species: However, this method has never been applied to assign function-unknown proteins in pathogenic bacteria. In the present study, we developed a new method to genetically incorporate ncAAs-encoded photocrosslinking probes into N. meningitidis by utilizing a pyrrolysyl-tRNA synthetase/tRNAPyl pair and elucidated the biological function(s) of the NMB1345 protein. The results revealed that the NMB1345 protein directly interacts with PilE, a major component of meningococcal pili, and further physicochemical and genetic analyses showed that the interaction between the NMB1345 protein and PilE was important for both functional pilus formation and meningococcal infectious ability in N. meningitidis. The present study using this new methodology for N. meningitidis provides novel insights into meningococcal pathogenesis by assigning the function of a hypothetical protein.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- National Institute of Infectious Diseases, Department of Bacteriology I, Shinjuku-ku, Japan
- * E-mail:
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ken Shimuta
- National Institute of Infectious Diseases, Department of Bacteriology I, Shinjuku-ku, Japan
| | - Makoto Ohnishi
- National Institute of Infectious Diseases, Department of Bacteriology I, Shinjuku-ku, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, Yokohama, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| | - Tatsuo Yanagisawa
- RIKEN Structural Biology Laboratory, Yokohama, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Japan
| |
Collapse
|
6
|
Prister LL, Yin S, Cahoon LA, Seifert HS. Altering the Neisseria gonorrhoeae pilE Guanine Quadruplex Loop Bases Affects Pilin Antigenic Variation. Biochemistry 2020; 59:1104-1112. [PMID: 32078293 DOI: 10.1021/acs.biochem.9b01038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neisseria gonorrhoeae possesses a programmed recombination system that allows the bacteria to alter the major subunit of the type IV pilus, pilin or PilE. An alternate DNA structure known as a guanine quadruplex (G4) is required for pilin antigenic variation (pilin Av). The G-C base pairs within the G4 motif are required for pilin Av, but simple mutation of the loop bases does not affect pilin Av. We show that more substantial changes to the loops, in both size and nucleotide composition, with the core guanines unchanged, decrease or abrogate pilin Av. We investigated why these loop changes might influence the efficiency of pilin Av. RecA is a recombinase required for pilin Av that can bind the pilE G4 in vitro. RecA binds different G4 structures with altered loops with varied affinities. However, changes in RecA binding affinities to the loop mutants do not absolutely correlate with the pilin Av phenotypes. Interestingly, the yeast RecA ortholog, Rad51, also binds the pilE G4 structure with a higher affinity than it binds single-stranded DNA, suggesting that RecA G4 binding is conserved in eukaryotic orthologs. The thermal stability the pilE G4 structure and its loop mutants showed that the parental G4 structure had the highest melting temperature, and the melting temperature of the loop mutants correlated with pilin Av phenotype. These results suggest that the folding kinetics and stability of G4 structures are important for the efficiency of pilin Av.
Collapse
Affiliation(s)
- Lauren L Prister
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Shaohui Yin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Laty A Cahoon
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
7
|
PacBio Amplicon Sequencing Method To Measure Pilin Antigenic Variation Frequencies of Neisseria gonorrhoeae. mSphere 2019; 4:4/5/e00562-19. [PMID: 31578246 PMCID: PMC6796969 DOI: 10.1128/msphere.00562-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene diversification is a common mechanism pathogens use to alter surface structures to aid in immune avoidance. Neisseria gonorrhoeae uses a gene conversion-based diversification system to alter the primary sequence of the gene encoding the major subunit of the pilus, pilE Antigenic variation occurs when one of the nonexpressed 19 silent copies donates part of its DNA sequence to pilE We have developed a method using Pacific Biosciences (PacBio) amplicon sequencing and custom software to determine pilin antigenic variation frequencies. The program analyzes 37 variable regions across the strain FA1090 1-81-S2 pilE gene and can be modified to determine sequence variation from other starting pilE sequences or other diversity generation systems. Using this method, we measured pilin antigenic variation frequencies for various derivatives of strain FA1090 and showed we can also analyze pilin antigenic variation frequencies during macrophage infection.IMPORTANCE Diversity generation systems are used by many unicellular organism to provide subpopulations of cell with different properties that are available when needed. We have developed a method using the PacBio DNA sequencing technology and a custom computer program to analyze the pilin antigenic variation system of the organism that is the sole cause of the sexually transmitted infection, gonorrhea.
Collapse
|
8
|
Abstract
Neisseria meningitidis is a harmless commensal bacterium finely adapted to humans. Unfortunately, under “privileged” conditions, it adopts a “devious” lifestyle leading to uncontrolled behavior characterized by the unleashing of molecular weapons causing potentially lethal disease such as sepsis and acute meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in
N. meningitidis separating commensal from invasive strains, molecular epidemiology and functional genomics studies suggest that carriage and invasive strains belong to genetically distinct populations characterized by an exclusive pathogenic potential. In the last few years, “omics” technologies have helped scientists to unwrap the framework drawn by
N. meningitidis during different stages of colonization and disease. However, this scenario is still incomplete and would benefit from the implementation of physiological tissue models for the reproduction of mucosal and systemic interactions
in vitro. These emerging technologies supported by recent advances in the world of stem cell biology hold the promise for a further understanding of
N. meningitidis pathogenesis.
Collapse
|
9
|
Hooda Y, Lai CCL, Judd A, Buckwalter CM, Shin HE, Gray-Owen SD, Moraes TF. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Nat Microbiol 2016; 1:16009. [DOI: 10.1038/nmicrobiol.2016.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 11/09/2022]
|
10
|
Wörmann ME, Horien CL, Johnson E, Liu G, Aho E, Tang CM, Exley RM. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms. MICROBIOLOGY-SGM 2016; 162:487-502. [PMID: 26813911 DOI: 10.1099/mic.0.000248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Corey L Horien
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ellen Aho
- Department of Biology, Concordia College, Moorhead, MN, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
11
|
Shah S, Heddle JG. Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Appl Microbiol Biotechnol 2014; 98:9545-60. [PMID: 25343976 DOI: 10.1007/s00253-014-6151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 02/01/2023]
Abstract
Pentapeptide repeats are a class of proteins characterized by the presence of multiple repeating sequences five amino acids in length. The sequences fold into a right-handed β-helix with a roughly square-shaped cross section. Pentapeptide repeat proteins include a number of examples which are thought to function as structural mimics of DNA and act to competitively bind to the type II topoisomerase DNA gyrase, an important antibacterial target. DNA gyrase-targeting pentapeptide repeat proteins can both inhibit DNA gyrase-a potentially useful therapeutic property-and contribute to resistance to quinolone antibacterials (by acting to prevent them forming a lethal complex with the DNA and enzyme). Pentapeptide repeat proteins are therefore of wide interest not only because of their unusual structure, function, and potential as an antibacterial target, but also because knowledge of their mechanism of action may lead to both a greater understanding of the details of DNA gyrase function as well as being a useful template for the design of new DNA gyrase inhibitors. However, many puzzling aspects as to how these DNA mimics function and indeed even their ability to act as DNA mimics itself remains open to question. This review summarizes the current state of knowledge regarding pentapeptide repeat proteins, focusing on those that are thought to mimic DNA, and speculates on potential structure-function relationships which may account for their differing specificities.
Collapse
Affiliation(s)
- Shama Shah
- Heddle Initiative Research Unit, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
12
|
Wang HC, Ho CH, Hsu KC, Yang JM, Wang AHJ. DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry 2014; 53:2865-74. [PMID: 24766129 DOI: 10.1021/bi5002689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Rendón MA, Hockenberry AM, McManus SA, So M. Sigma factor RpoN (σ54) regulates pilE transcription in commensal Neisseria elongata. Mol Microbiol 2013; 90:103-13. [PMID: 23899162 PMCID: PMC4474139 DOI: 10.1111/mmi.12350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2013] [Indexed: 01/29/2023]
Abstract
Human-adapted Neisseria includes two pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, and at least 13 species of commensals that colonize many of the same niches as the pathogens. The Type IV pilus plays an important role in the biology of pathogenic Neisseria. In these species, Sigma factor RpoD (σ(70)), Integration Host Factor, and repressors RegF and CrgA regulate transcription of pilE, the gene encoding the pilus structural subunit. The Type IV pilus is also a strictly conserved trait in commensal Neisseria. We present evidence that a different mechanism regulates pilE transcription in commensals. Using Neisseria elongata as a model, we show that Sigma factor RpoN (σ(54)), Integration Host Factor, and an activator we name Npa regulate pilE transcription. Taken in context with previous reports, our findings indicate pilE regulation switched from an RpoN- to an RpoD-dependent mechanism as pathogenic Neisseria diverged from commensals during evolution. Our findings have implications for the timing of Tfp expression and Tfp-mediated host cell interactions in these two groups of bacteria.
Collapse
Affiliation(s)
- María A. Rendón
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| | - Alyson M. Hockenberry
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| | - Steven A. McManus
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Magdalene So
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Abstract
Neisseria meningitidis is a worldwide cause of meningitis and septicemia leading at least to 50,000 deaths every year. Nevertheless, N. meningitidis is also a commensal bacterium that asymptomatically colonizes the epithelial cells of the nasopharynx of 10 to 30% of healthy individuals. Occasionally, N. meningitidis crosses the nasopharyngeal barrier and enters the bloodstream. During bacteremia, N. meningitidis may adhere to endothelial cells of brain vessels and invade meninges. To identify the genes required for meningococcal host colonization, we screened a signature-tagged transposon mutagenesis library using an innovative in vitro colonization model in order to identify mutants displaying decreased capacity to colonize human epithelial cells. Approximately 1,600 defined insertion mutants of invasive serogroup C strain NEM8013 were screened. Candidate mutants were tested individually for quantification of bacterial biomass with confocal microscope and COMSTAT software. Five mutants were demonstrated to exhibit significantly decreased colonization ability. The identified genes, including narP and estD, appeared to be involved in adaptation to hypoxic conditions and stress resistance. Interestingly, the genes fadD1, nnrS, and NMV_2034 (encoding a putative thioredoxin), prior to this study, had not been shown to be involved in colonization. Therefore, we provide here insights into the meningococcal functions necessary for the bacterium to adapt to growth on host cells.
Collapse
|
15
|
Del Tordello E, Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct Genomics 2013; 12:328-40. [PMID: 23723380 DOI: 10.1093/bfgp/elt018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is one of the major causes of septicemia and meningitis worldwide. Functional genomics approaches have been extensively applied to study how N. meningitidis adapts to grow and survive in different human niches encountered during the infection. DNA microarrays performed in in vitro and ex vivo conditions have revealed changes in the transcriptome profiles of N. meningitidis upon interaction with human cells and after incubation in human serum and blood. Mutagenesis studies allowed detecting mutants in genes crucial for N. meningitidis colonization and systemic infection. The analysis of N. meningitidis genomes has been also successful in the identification of vaccine candidates used to develop an effective protein-based vaccine. The application of all these approaches revealed the potential to identify new virulence factors and vaccine candidates and to assign functions to previously uncharacterized genes providing new insights in the biology and pathogenesis of N. meningitidis.
Collapse
|
16
|
Wang HC, Ko TP, Wu ML, Ku SC, Wu HJ, Wang AHJ. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor. Nucleic Acids Res 2012; 40:5718-30. [PMID: 22373915 PMCID: PMC3384305 DOI: 10.1093/nar/gks177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/14/2022] Open
Abstract
DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5'-TGTNAN(11)TNACA-3' recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge-charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
17
|
Davie S, Glennie L, Rowland K. Towards a meningitis free world--can we eliminate meningococcal meningitis?: contribution of the meningitis patient groups. Vaccine 2012; 30 Suppl 2:B98-B105. [PMID: 22607905 DOI: 10.1016/j.vaccine.2011.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 10/28/2022]
Abstract
Patient groups play a critical part in the fight against meningitis in all its forms. The UK has the world's three largest meningitis patient groups, which over the past 3 decades have worked tirelessly in the fight against meningitis. Within the UK, where the patient groups work to prevent or alleviate the suffering caused by meningitis and septicaemia, their work is in three areas: continued research; demonstrating burden; and awareness-raising and advocacy. The research relates to developing and improving vaccines, and to improving outcomes for forms of meningitis that are not vaccine preventable. Demonstrating burden - showing the real impact of meningitis from a human perspective - highlights the need for vaccines to prevent the disease. Lives are saved by raising awareness of signs and symptoms and of the need for fast action, whilst advocacy can bring about change to improve the quality of life of those affected by meningitis. Awareness raising and advocacy also have the wider benefit of creating a climate in which people recognise the need for vaccines to prevent this dreadful disease. In addition, the patient groups seek to influence the early introduction and uptake of vaccines as they are licensed and approved by the expert bodies, the UK body being the Joint Committee for Vaccination and Immunisation (JCVI). Each area of activity is explored, and examples given from each of the patient groups of work they have done or are doing in that area.
Collapse
Affiliation(s)
- Sue Davie
- Meningitis Trust, Fern House, Bath Road, Stroud, Gloucestershire GL5 3TJ, UK.
| | | | | |
Collapse
|
18
|
Mendum TA, Newcombe J, Mannan AA, Kierzek AM, McFadden J. Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol 2011; 12:R127. [PMID: 22208880 PMCID: PMC3334622 DOI: 10.1186/gb-2011-12-12-r127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/26/2011] [Accepted: 12/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria meningitidis is an important human commensal and pathogen that causes several thousand deaths each year, mostly in young children. How the pathogen replicates and causes disease in the host is largely unknown, particularly the role of metabolism in colonization and disease. Completed genome sequences are available for several strains but our understanding of how these data relate to phenotype remains limited. Results To investigate the metabolism of N. meningitidis we generated and then selected a representative Tn5 library on rich medium, a minimal defined medium and in human serum to identify genes essential for growth under these conditions. To relate these data to a systems-wide understanding of the pathogen's biology we constructed a genome-scale metabolic network: Nmb_iTM560. This model was able to distinguish essential and non-essential genes as predicted by the global mutagenesis. These essentiality data, the library and the Nmb_iTM560 model are powerful and widely applicable resources for the study of meningococcal metabolism and physiology. We demonstrate the utility of these resources by predicting and demonstrating metabolic requirements on minimal medium, such as a requirement for phosphoenolpyruvate carboxylase, and by describing the nutritional and biochemical status of N. meningitidis when grown in serum, including a requirement for both the synthesis and transport of amino acids. Conclusions This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight into the pathogen's metabolism both in vitro and during infection.
Collapse
Affiliation(s)
- Tom A Mendum
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | |
Collapse
|
19
|
Wong HEE, Li MS, Kroll JS, Hibberd ML, Langford PR. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica. PLoS One 2011; 6:e26130. [PMID: 22028815 PMCID: PMC3197596 DOI: 10.1371/journal.pone.0026130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.
Collapse
Affiliation(s)
- Hazel En En Wong
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Paul R. Langford
- Section of Paediatrics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Cahoon LA, Seifert HS. Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria. Mol Microbiol 2011; 81:1136-43. [PMID: 21812841 DOI: 10.1111/j.1365-2958.2011.07773.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Some pathogenic microbes utilize homologous recombination to generate antigenic variability in targets of immune surveillance. These specialized systems rely on the cellular recombination machinery to catalyse dedicated, high-frequency reactions that provide extensive diversity in the genes encoding surface antigens. A description of the specific mechanisms that allow unusually high rates of recombination without deleterious effects on the genome in the well-characterized pilin antigenic variation systems of Neisseria gonorrhoeae and Neisseria meningitidis is presented. We will also draw parallels to selected bacterial and eukaryotic antigenic variation systems, and suggest the most pressing unanswered questions related to understanding these important processes.
Collapse
Affiliation(s)
- Laty A Cahoon
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
21
|
Trivedi K, Tang CM, Exley RM. Mechanisms of meningococcal colonisation. Trends Microbiol 2011; 19:456-63. [PMID: 21816616 DOI: 10.1016/j.tim.2011.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/05/2023]
Abstract
Despite advances against infectious diseases over the past century, Neisseria meningitidis remains a major causative agent of meningitis and septicaemia worldwide. Its adaptation for survival in the human nasopharynx makes the meningococcus a highly successful commensal bacterium. Recent progress has been made in understanding the mechanisms that enable neisserial colonisation, in terms of the role of type IV pili, the impact of other adhesins, biofilm formation, nutrient acquisition and resistance to host immune defences. Refinements in cell-based and in vivo models will lead to improved understanding of the colonisation process, and hopefully to more effective vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Kaushali Trivedi
- Centre for Molecular Microbiology and Infection, Faculty of Medicine, Flowers Building, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
22
|
Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R. A novel epigenetic regulator associated with the hypervirulent
Neisseria meningitidis
clonal complex 41/44. FASEB J 2011; 25:3622-33. [DOI: 10.1096/fj.11-183590] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Jayde A. Gawthorne
- Institute for GlycomicsGriffith University Gold Coast Queensland Australia
| | | | | | | |
Collapse
|
23
|
Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells. Infect Immun 2011; 79:2241-9. [PMID: 21464080 DOI: 10.1128/iai.01354-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The tetraspanins are a superfamily of transmembrane proteins with diverse functions and can form extended microdomains within the plasma membrane in conjunction with partner proteins, which probably includes receptors for bacterial adhesins. Neisseria meningitidis, the causative agent of meningococcal disease, attaches to host nasopharyngeal epithelial cells via type IV pili and opacity (Opa) proteins. We examined the role of tetraspanin function in Neisseria meningitidis adherence to epithelial cells. Tetraspanins CD9, CD63, and CD151 were expressed by HEC-1-B and DETROIT 562 cells. Coincubation of cells with antibodies against all three tetraspanin molecules used individually or in combination, with recombinant tetraspanin extracellular domains (EC2), or with small interfering RNAs (siRNAs) significantly reduced adherence of Neisseria meningitidis. In contrast, recombinant CD81, a different tetraspanin, had no effect on meningococcal adherence. Antitetraspanin antibodies reduced the adherence to epithelial cells of Neisseria meningitidis strain derivatives expressing Opa and pili significantly more than isogenic strains lacking these determinants. Adherence to epithelial cells of strains of Staphylococcus aureus, Neisseria lactamica, Escherichia coli, and Streptococcus pneumoniae was also reduced by pretreatment of cells with tetraspanin antibodies and recombinant proteins. These data suggest that tetraspanins are required for optimal function of epithelial adhesion platforms containing specific receptors for Neisseria meningitidis and potentially for multiple species of bacteria.
Collapse
|
24
|
Human airway epithelial cell responses to Neisseria lactamica and purified porin via Toll-like receptor 2-dependent signaling. Infect Immun 2010; 78:5314-23. [PMID: 20937766 DOI: 10.1128/iai.00681-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin's surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Collapse
|
25
|
Transcellular passage of Neisseria meningitidis across a polarized respiratory epithelium. Infect Immun 2010; 78:3832-47. [PMID: 20584970 DOI: 10.1128/iai.01377-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neisseria meningitidis is a major cause of sepsis and meningitis but is also a common commensal, present in the nasopharynx of between 8 and 20% of healthy individuals. During carriage, the bacterium is found on the surface of the nasopharyngeal epithelium and in deeper tissues, while to develop disease the meningococcus must spread across the respiratory epithelium and enter the systemic circulation. Therefore, investigating the pathways by which N. meningitidis crosses the epithelial barrier is relevant for understanding carriage and disease but has been hindered by the lack of appropriate models. Here, we have established a physiologically relevant model of the upper respiratory epithelial cell barrier to investigate the mechanisms responsible for traversal of N. meningitidis. Calu-3 human respiratory epithelial cells were grown on permeable cell culture membranes to form polarized monolayers of cells joined by tight junctions. We show that the meningococcus crosses the epithelial cell barrier by a transcellular route; traversal of the layer did not disrupt its integrity, and bacteria were detected within the cells of the monolayer. We demonstrate that successful traversal of the epithelial cell barrier by N. meningitidis requires expression of its type 4 pili (Tfp) and capsule and is dependent on the host cell microtubule network. The Calu-3 model should be suitable for dissecting the pathogenesis of infections caused by other respiratory pathogens, as well as the meningococcus.
Collapse
|
26
|
Attia AS, Sedillo JL, Hoopman TC, Liu W, Liu L, Brautigam CA, Hansen EJ. Identification of a bacteriocin and its cognate immunity factor expressed by Moraxella catarrhalis. BMC Microbiol 2009; 9:207. [PMID: 19781080 PMCID: PMC2761928 DOI: 10.1186/1471-2180-9-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/25/2009] [Indexed: 12/23/2022] Open
Abstract
Background Bacteriocins are antimicrobial proteins and peptides ribosomally synthesized by some bacteria which can effect both intraspecies and interspecies killing. Results Moraxella catarrhalis strain E22 containing plasmid pLQ510 was shown to inhibit the growth of M. catarrhalis strain O35E. Two genes (mcbA and mcbB) in pLQ510 encoded proteins predicted to be involved in the secretion of a bacteriocin. Immediately downstream from these two genes, a very short ORF (mcbC) encoded a protein which had some homology to double-glycine bacteriocins produced by other bacteria. A second very short ORF (mcbI) immediately downstream from mcbC encoded a protein which had no significant similarity to other proteins in the databases. Cloning and expression of the mcbI gene in M. catarrhalis O35E indicated that this gene encoded the cognate immunity factor. Reverse transcriptase-PCR was used to show that the mcbA, mcbB, mcbC, and mcbI ORFs were transcriptionally linked. This four-gene cluster was subsequently shown to be present in the chromosome of several M. catarrhalis strains including O12E. Inactivation of the mcbA, mcbB, or mcbC ORFs in M. catarrhalis O12E eliminated the ability of this strain to inhibit the growth of M. catarrhalis O35E. In co-culture experiments involving a M. catarrhalis strain containing the mcbABCI locus and one which lacked this locus, the former strain became the predominant member of the culture after overnight growth in broth. Conclusion This is the first description of a bacteriocin and its cognate immunity factor produced by M. catarrhalis. The killing activity of the McbC protein raises the possibility that it might serve to lyse other M. catarrhalis strains that lack the mcbABCI locus, thereby making their DNA available for lateral gene transfer.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
O'Dwyer CA, Li MS, Langford PR, Kroll JS. Meningococcal biofilm growth on an abiotic surface - a model for epithelial colonization? MICROBIOLOGY-SGM 2009; 155:1940-1952. [PMID: 19383679 DOI: 10.1099/mic.0.026559-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis colonizes the human nasopharynx asymptomatically, often for prolonged periods, but occasionally invades from this site to cause life-threatening infection. In the nasopharynx aggregated organisms are closely attached to the epithelial surface, in a state in which the expression of components of the bacterial envelope differs significantly from that found in organisms multiplying exponentially in liquid phase culture or in the blood. We and others have hypothesized that here they are in the biofilm state, and to explore this we have investigated biofilm formation by the serogroup B strain MC58 on an abiotic surface, in a sorbarod system. Transcriptional changes were analysed, focusing on alteration in gene expression relevant to polysaccharide capsulation, lipooligosaccharide and outer-membrane protein synthesis - all phenotypes of importance in epithelial colonization. We report downregulation of genes controlling capsulation and the production of core oligosaccharide, and upregulation of genes encoding a range of outer-membrane components, reflecting phenotypic changes that have been established to occur in the colonizing state. A limited comparison with organisms recovered from an extended period of co-cultivation with epithelial cells suggests that this model system may better mirror natural colonization than do short-term meningococcal/epithelial cell co-cultivation systems. Modelling prolonged meningococcal colonization with a sorbarod system offers insight into gene expression during this important, but experimentally relatively inaccessible, phase of human infection.
Collapse
Affiliation(s)
- Clíona A O'Dwyer
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - Ming-Shi Li
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - J Simon Kroll
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|