1
|
Ginibre N, Legrand L, Bientz V, Ogier JC, Lanois A, Pages S, Brillard J. Diverse Roles for a Conserved DNA-Methyltransferase in the Entomopathogenic Bacterium Xenorhabdus. Int J Mol Sci 2022; 23:ijms231911981. [PMID: 36233296 PMCID: PMC9570324 DOI: 10.3390/ijms231911981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
In bacteria, DNA-methyltransferase are responsible for DNA methylation of specific motifs in the genome. This methylation usually occurs at a very high rate. In the present study, we studied the MTases encoding genes found in the entomopathogenic bacteria Xenorhabdus. Only one persistent MTase was identified in the various species of this genus. This MTase, also broadly conserved in numerous Gram-negative bacteria, is called Dam: DNA-adenine MTase. Methylome analysis confirmed that the GATC motifs recognized by Dam were methylated at a rate of >99% in the studied strains. The observed enrichment of unmethylated motifs in putative promoter regions of the X. nematophila F1 strain suggests the possibility of epigenetic regulations. The overexpression of the Dam MTase responsible for additional motifs to be methylated was associated with impairment of two major phenotypes: motility, caused by a downregulation of flagellar genes, and hemolysis. However, our results suggest that dam overexpression did not modify the virulence properties of X. nematophila. This study increases the knowledge on the diverse roles played by MTases in bacteria.
Collapse
Affiliation(s)
- Nadège Ginibre
- DGIMI, INRAE, Université de Montpellier, 34090 Montpellier, France
| | - Ludovic Legrand
- LIPME, Université de Toulouse, INRAE, CNRS, 31320 Castanet-Tolosan, France
| | - Victoria Bientz
- DGIMI, INRAE, Université de Montpellier, 34090 Montpellier, France
| | | | - Anne Lanois
- DGIMI, INRAE, Université de Montpellier, 34090 Montpellier, France
| | - Sylvie Pages
- DGIMI, INRAE, Université de Montpellier, 34090 Montpellier, France
| | - Julien Brillard
- DGIMI, INRAE, Université de Montpellier, 34090 Montpellier, France
- Correspondence: ; Tel.: +33-467144711
| |
Collapse
|
2
|
Payelleville A, Blackburn D, Lanois A, Pagès S, Cambon MC, Ginibre N, Clarke DJ, Givaudan A, Brillard J. Role of the Photorhabdus Dam methyltransferase during interactions with its invertebrate hosts. PLoS One 2019; 14:e0212655. [PMID: 31596856 PMCID: PMC6785176 DOI: 10.1371/journal.pone.0212655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methylation during symbiosis are scarce. The aim of this study was to determine the role of Dam DNA methylation in P. luminescens during the whole bacterial life cycle including during symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting an additional copy of the dam gene under the control of a constitutive promoter in the chromosome of P. luminescens and then achieved association between this recombinant strain and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in the insect. No difference in the amount of emerging IJs from the cadaver was observed between the two strains. Compared to the nematode in symbiosis with the control strain, a significant increase in LT50 was observed during insect infestation with the nematode associated with the dam overexpressing strain. These results suggest that during the life cycle of P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacteriophora, but it contributes to the pathogenicity of the nemato-bacterial complex.
Collapse
Affiliation(s)
| | - Dana Blackburn
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Anne Lanois
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
| | - Sylvie Pagès
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
| | - Marine C. Cambon
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
- Évolution et Diversité Biologique, CNRS, UPS Université Paul Sabatier, Toulouse, France
| | | | - David J. Clarke
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
3
|
Jung-Schroers V, Jung A, Ryll M, Bauer J, Teitge F, Steinhagen D. Diagnostic methods for identifying different Aeromonas species and examining their pathogenicity factors, their correlation to cytotoxicity and adherence to fish mucus. JOURNAL OF FISH DISEASES 2019; 42:189-219. [PMID: 30521094 DOI: 10.1111/jfd.12917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Aeromonas spp. are ubiquitous in the aquatic environment, acting as facultative or obligate pathogens for fish. Identifying Aeromonas spp. is important for pathogenesis and prognosis in diagnostic cases but can be difficult because of their close relationship. Forty-four already characterized isolates of Aeromonas spp. were analysed by 16S rRNA gene sequencing, by gyrase B sequencing, by analysing their fatty acid profiles, by biochemical reactions and by MALDI-TOF MS. To determine their pathogenicity, cytotoxicity, adhesion to mucus and the expression of 12 virulence factors were tested. The susceptibility of the isolates towards 13 different antibiotics was determined. MALDI-TOF MS was found to be an acceptable identification method for Aeromonas spp. Although the method does not detect all species correctly, it is time-effective and entails relatively low costs and no other methods achieved better results. A high prevalence of virulence-related gene fragments was detected in almost all examined Aeromonas spp., especially in A. hydrophila and A. salmonicida, and most isolates exhibited a cytotoxic effect. Single isolates of A. hydrophila and A. salmonicida showed multiple resistance to antibiotics. These results might indicate the potentially pathogenic capacity of Aeromonas spp., suggesting a risk for aquatic animals and even humans, given their ubiquitous nature.
Collapse
Affiliation(s)
- Verena Jung-Schroers
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| | - Martin Ryll
- Clinic for Poultry, University of Veterinary Medicine, Hannover, Germany
| | - Julia Bauer
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
4
|
Payelleville A, Legrand L, Ogier JC, Roques C, Roulet A, Bouchez O, Mouammine A, Givaudan A, Brillard J. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated Adenines. Sci Rep 2018; 8:12091. [PMID: 30108278 PMCID: PMC6092372 DOI: 10.1038/s41598-018-30620-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of methylation (>94%) were identified. The methylome was strikingly stable over course of growth, but also in a subpopulation responsible for a critical step in the bacterium's lifecycle: successful survival and proliferation in insects. The rare unmethylated GATC motifs were preferentially located in putative promoter regions, and most of them were methylated after Dam methyltransferase overexpression, suggesting that DNA methylation is involved in gene regulation. Our findings bring key insight into bacterial methylomes and encourage further research to decipher the role of loci protected from DNA methylation in gene regulation.
Collapse
Affiliation(s)
| | - Ludovic Legrand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Céline Roques
- GeT-PlaGe, INRA, US 1426, Genotoul, Castanet-Tolosan, France
| | - Alain Roulet
- GeT-PlaGe, INRA, US 1426, Genotoul, Castanet-Tolosan, France
| | - Olivier Bouchez
- GeT-PlaGe, INRA, US 1426, Genotoul, Castanet-Tolosan, France
| | - Annabelle Mouammine
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH1015, Switzerland
| | | | | |
Collapse
|
5
|
Payelleville A, Lanois A, Gislard M, Dubois E, Roche D, Cruveiller S, Givaudan A, Brillard J. DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility and Virulence. Front Microbiol 2017; 8:1671. [PMID: 28919886 PMCID: PMC5585154 DOI: 10.3389/fmicb.2017.01671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the dam ortholog identified in the entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of an Escherichia coli dam mutant showed the restoration of the DNA methylation state of the parental strain. Overexpression of dam in P. luminescens did not impair growth ability in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant decrease in motility was observed in the dam-overexpressing strain. A transcriptome analysis revealed the differential expression of 208 genes between the two strains. In particular, the downregulation of flagellar genes was observed in the dam-overexpressing strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed a delayed virulence compared to that of the control strain after injection in larvae of the lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during P. luminescens insect infection.
Collapse
Affiliation(s)
- Amaury Payelleville
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Anne Lanois
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Marie Gislard
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - David Roche
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Stéphane Cruveiller
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Alain Givaudan
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Julien Brillard
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| |
Collapse
|
6
|
Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol 2016; 7:1337. [PMID: 27610107 PMCID: PMC4997093 DOI: 10.3389/fmicb.2016.01337] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
The ubiquitous "jack-of-all-trades," Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed.
Collapse
Affiliation(s)
| | - Maria J Figueras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, Institut d'Investigació Sanitària Pere Virgili, Universidad Rovira i Virgili, Reus Spain
| | - Donald McGarey
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| |
Collapse
|
7
|
Dziewit L, Radlinska M. Two novel temperate bacteriophages co-existing in Aeromonas sp. ARM81 - characterization of their genomes, proteomes and DNA methyltransferases. J Gen Virol 2016; 97:2008-2022. [PMID: 27184451 DOI: 10.1099/jgv.0.000504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aeromonas species are causative agents of a wide spectrum of diseases in animals and humans. Although these bacteria are commonly found in various environments, little is known about their phages. Thus far, only one temperate Aeromonas phage has been characterized. Whole-genome sequencing of an Aeromonas sp. strain ARM81 revealed the presence of two prophage clusters. One of them is integrated into the chromosome and the other was maintained as an extrachromosomal, linear plasmid-like prophage encoding a protelomerase. Both prophages were artificially and spontaneously inducible. We separately isolated both phages and compared their genomes with other known viruses. The novel phages show no similarity to the previously characterized Aeromonas phages and might represent new evolutionary lineages of viruses infecting Aeromonadaceae. Apart from the comparative genomic analyses of these phages, complemented with their structural and molecular characterization, a functional analysis of four DNA methyltransferases encoded by these viruses was conducted. One of the investigated N6-adenine-modifying enzymes shares sequence specificity with a Dam-like methyltransferase of its bacterial host, while another one is non-specific, as it catalyzes adenine methylation in various sequence contexts. The presented results shed new light on the diversity of Aeromonas temperate phages.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Monika Radlinska
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
8
|
Abstract
Plague has been a scourge of mankind for centuries, and outbreaks continue to the present day. The virulence mechanisms employed by the etiological agent Yersinia pestis are reviewed in the context of the available prophylactic and therapeutic strategies for plague. Although antibiotics are available, resistance is emerging in this dangerous pathogen. Therapeutics used in the clinic are discussed and innovative approaches to the design and development of new therapeutic compounds are reviewed. Currently there is no licensed vaccine available for prevention of plague in the USA or western Europe, although both live attenuated strains and killed whole-cell extracts have been used historically. Live strains are still approved for human use in some parts of the world, such as the former Soviet Union, but poor safety profiles render them unacceptable to many countries. The development of safe, effective next-generation vaccines, including the recombinant subunit vaccine currently used in clinical trials is discussed.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | | |
Collapse
|
9
|
Jahid IK, Lee NY, Kim A, Ha SD. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J Food Prot 2013; 76:239-47. [PMID: 23433371 DOI: 10.4315/0362-028x.jfp-12-321] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.
Collapse
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Ansung, Kyunggido 456-756, South Korea
| | | | | | | |
Collapse
|
10
|
McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PCF. Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol 2013; 168:172-88. [PMID: 22889062 PMCID: PMC3570013 DOI: 10.1111/j.1476-5381.2012.02134.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 07/04/2012] [Accepted: 07/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple antibiotic resistant strains of plague are emerging, driving a need for the development of novel antibiotics effective against Yersinia pestis. DNA adenine methylation regulates numerous fundamental processes in bacteria and alteration of DNA adenine methlytransferase (Dam) expression is attenuating for several pathogens, including Y. pestis. The lack of a functionally similar enzyme in humans makes Dam a suitable target for development of novel therapeutics for plague. EXPERIMENTAL APPROACH Compounds were evaluated for their ability to inhibit Dam activity in a high-throughput screening assay. DNA was isolated from Yersinia grown in the presence of lead compounds and restricted to determine the effect of inhibitors on DNA methylation. Transcriptional analysis was undertaken to determine the effect of an active inhibitor on virulence-associated phenotypes. KEY RESULTS We have identified a series of aryl stibonic acids which inhibit Dam in vitro. The most active, 4-stibonobenzenesulfonic acid, exhibited a competitive mode of inhibition with respect to DNA and a K(i) of 6.46 nM. One compound was found to inhibit DNA methylation in cultured Y. pestis. The effects of this inhibition on the physiology of the cell were widespread, and included altered expression of known virulence traits, including iron acquisition and Type III secretion. CONCLUSIONS AND IMPLICATIONS We have identified a novel class of potent Dam inhibitors. Treatment of bacterial cell cultures with these inhibitors resulted in a decrease in DNA methylation. Expression of virulence factors was affected, suggesting these inhibitors may attenuate bacterial infectivity and function as antibiotics.
Collapse
Affiliation(s)
- J C McKelvie
- School of Chemistry, University of Southampton, UK
| | | | | | | | | | | |
Collapse
|
11
|
Erova TE, Kosykh VG, Sha J, Chopra AK. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA). Gene 2012; 498:280-7. [PMID: 22391092 DOI: 10.1016/j.gene.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/29/2012] [Accepted: 02/16/2012] [Indexed: 01/16/2023]
Abstract
Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
12
|
Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl Environ Microbiol 2010; 76:2313-25. [PMID: 20154106 DOI: 10.1128/aem.02535-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A total of 227 isolates of Aeromonas obtained from different geographical locations in the United States and different parts of the world, including 28 reference strains, were analyzed to determine the presence of various virulence factors. These isolates were also fingerprinted using biochemical identification and pulse-field gel electrophoresis (PFGE). Of these 227 isolates, 199 that were collected from water and clinical samples belonged to three major groups or complexes, namely, the A. hydrophila group, the A. caviae-A. media group, and the A. veronii-A. sobria group, based on biochemical profiles, and they had various pulsotypes. When virulence factor activities were examined, Aeromonas isolates obtained from clinical sources had higher cytotoxic activities than isolates obtained from water sources for all three Aeromonas species groups. Likewise, the production of quorum-sensing signaling molecules, such as N-acyl homoserine lactone, was greater in clinical isolates than in isolates from water for the A. caviae-A. media and A. hydrophila groups. Based on colony blot DNA hybridization, the heat-labile cytotonic enterotoxin gene and the DNA adenosine methyltransferase gene were more prevalent in clinical isolates than in water isolates for all three Aeromonas groups. Using colony blot DNA hybridization and PFGE, we obtained three sets of water and clinical isolates that had the same virulence signature and had indistinguishable PFGE patterns. In addition, all of these isolates belonged to the A. caviae-A. media group. The findings of the present study provide the first suggestive evidence of successful colonization and infection by particular strains of certain Aeromonas species after transmission from water to humans.
Collapse
|
13
|
Khajanchi BK, Sha J, Kozlova EV, Erova TE, Suarez G, Sierra JC, Popov VL, Horneman AJ, Chopra AK. N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. MICROBIOLOGY (READING, ENGLAND) 2009; 155:3518-3531. [PMID: 19729404 PMCID: PMC2888131 DOI: 10.1099/mic.0.031575-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 11/18/2022]
Abstract
In this study, we delineated the role of N-acylhomoserine lactone(s) (AHLs)-mediated quorum sensing (QS) in the virulence of diarrhoeal isolate SSU of Aeromonas hydrophila by generating a double knockout Delta ahyRI mutant. Protease production was substantially reduced in the Delta ahyRI mutant when compared with that in the wild-type (WT) strain. Importantly, based on Western blot analysis, the Delta ahyRI mutant was unable to secrete type VI secretion system (T6SS)-associated effectors, namely haemolysin coregulated protein and the valine-glycine repeat family of proteins, while significant levels of these effectors were detected in the culture supernatant of the WT A. hydrophila. In contrast, the production and translocation of the type III secretion system (T3SS) effector AexU in human colonic epithelial cells were not affected when the ahyRI genes were deleted. Solid surface-associated biofilm formation was significantly reduced in the Delta ahyRI mutant when compared with that in the WT strain, as determined by a crystal violet staining assay. Scanning electron microscopic observations revealed that the Delta ahyRI mutant was also defective in the formation of structured biofilm, as it was less filamentous and produced a distinct exopolysaccharide on its surface when compared with the structured biofilm produced by the WT strain. These effects of AhyRI could be complemented either by expressing the ahyRI genes in trans or by the exogeneous addition of AHLs to the Delta ahyRI/ahyR(+) complemented strain. In a mouse lethality experiment, 50 % attenuation was observed when we deleted the ahyRI genes from the parental strain of A. hydrophila. Together, our data suggest that AHL-mediated QS modulates the virulence of A. hydrophila SSU by regulating the T6SS, metalloprotease production and biofilm formation.
Collapse
Affiliation(s)
- Bijay K. Khajanchi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Elena V. Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Tatiana E. Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Giovanni Suarez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Johanna C. Sierra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Amy J. Horneman
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|
14
|
Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 2009; 33:488-503. [PMID: 19175412 PMCID: PMC2941194 DOI: 10.1111/j.1574-6976.2008.00159.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The DNA adenine methyltransferase (Dam methylase) of Gammaproteobacteria and the cell cycle-regulated methyltransferase (CcrM) methylase of Alphaproteobacteria catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as a methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of independent evolutionary origin. Each may have evolved from an ancestral restriction-modification system that lost its restriction component, leaving an 'orphan' methylase devoted solely to epigenetic genome modification. The formation of 6-methyladenine reduces the thermodynamic stability of DNA and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties can affect DNA-protein interactions. Well-known examples include binding of the replication initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years, Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse and have only partially been understood. Especially intriguing is the evidence that Dam methylation regulates virulence genes in Escherichia coli, Salmonella, and Yersinia at the posttranscriptional level.
Collapse
Affiliation(s)
- Martin G. Marinus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, 364 Plantation Street, Worcester, Massachusetts 01605
| | - Josep Casadesus
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Seville 41080, Spain
| |
Collapse
|
15
|
Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. J Bacteriol 2009; 191:3095-107. [PMID: 19270100 DOI: 10.1128/jb.00005-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we demonstrated that the surface-expressed enolase from diarrheal isolate SSU of Aeromonas hydrophila bound to human plasminogen and facilitated the latter's tissue-type plasminogen activator-mediated activation to plasmin. The bacterial surface-bound plasmin was more resistant to the action of its specific physiological inhibitor, the antiprotease alpha(2)-antiplasmin. We found that immunization of mice with purified recombinant enolase significantly protected the animals against a lethal challenge dose of wild-type (WT) A. hydrophila. Minimal histological changes were noted in organs from mice immunized with enolase and then challenged with WT bacteria compared to severe pathological changes found in the infected and nonimmunized group of animals. This correlated with the smaller bacterial load of WT bacteria in the livers and spleens of enolase-immunized mice than that found in the nonimmunized controls. We also showed that the enolase gene could potentially be important for the viability of A. hydrophila SSU as we could delete the chromosomal copy of the enolase gene only when another copy of the targeted gene was supplied in trans. By site-directed mutagenesis, we altered five lysine residues located at positions 343, 394, 420, 427, and 430 of enolase in A. hydrophila SSU; the mutated forms of enolase were hyperexpressed in Escherichia coli, and the proteins were purified. Our results indicated that lysine residues at positions 420 and 427 of enolase were crucial in plasminogen-binding activity. We also identified a stretch of amino acid residues ((252)FYDAEKKEY(260)) in the A. hydrophila SSU enolase involved in plasminogen binding. To our knowledge, this is the first report of the direct involvement of surface-expressed enolase in the pathogenesis of A. hydrophila SSU infections and of any gram-negative bacteria in general.
Collapse
|
16
|
Kozlova EV, Popov VL, Sha J, Foltz SM, Erova TE, Agar SL, Horneman AJ, Chopra AK. Mutation in the S-ribosylhomocysteinase (luxS) gene involved in quorum sensing affects biofilm formation and virulence in a clinical isolate of Aeromonas hydrophila. Microb Pathog 2008; 45:343-54. [PMID: 18930130 DOI: 10.1016/j.micpath.2008.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 08/16/2008] [Accepted: 08/20/2008] [Indexed: 01/08/2023]
Abstract
A diarrheal isolate SSU of Aeromonas hydrophila produces a cytotoxic enterotoxin (Act) with cytotoxic, enterotoxic, and hemolytic activities. Our laboratory has characterized from the above Aeromonas strain, in addition to Act, the type 3- and T6-secretion systems and their effectors, as well as the genes shown to modulate the production of AI-1-like autoinducers, N-acylhomoserine lactones (AHLs) involved in quorum sensing (QS). In this study, we demonstrated the presence of an S-ribosylhomocysteinase (LuxS)-based autoinducer (AI)-2 QS system in A. hydrophila SSU and its contribution to bacterial virulence. The luxS isogenic mutant of A. hydrophila, which we prepared by marker exchange mutagenesis, showed an alteration in the dynamics and architecture of the biofilm formation, a decrease in the motility of the bacterium, and an enhanced virulence in the septicemic mouse model. Moreover, these effects of the mutation could be complemented. Enhanced production of the biofilm exopolysaccharide and filaments in the mutant strain were presumably the major causes of the observed phenotype. Our earlier studies indicated that the wild-type A. hydrophila with overproduction of DNA adenine methyltransferase (Dam) had significantly reduced motility, greater hemolytic activity associated with Act, and an enhanced ability to produce AI-1 lactones. Furthermore, such a Dam-overproducing strain was not lethal to mice. On the contrary, the luxS mutant with Dam overproduction showed an increased motility and had no effect on lactone production. In addition, the Dam-overproducing luxS mutant strain was not altered in its ability to induce lethality in a mouse model of infection when compared to the parental strain which overproduced Dam. We suggested that an altered gene expression in the luxS mutant of A. hydrophila SSU, as it related to biofilm formation and virulence, might be linked with the interruption of the bacterial metabolic pathway, specifically of methionine synthesis.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sierra JC, Suarez G, Sha J, Foltz SM, Popov VL, Galindo CL, Garner HR, Chopra AK. Biological characterization of a new type III secretion system effector from a clinical isolate of Aeromonas hydrophila-part II. Microb Pathog 2007; 43:147-60. [PMID: 17582731 DOI: 10.1016/j.micpath.2007.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We recently identified a novel type III secretion system (T3SS) effector, AexU, from a diarrheal isolate SSU of Aeromonas hydrophila, and demonstrated that mice infected with the DeltaaexU mutant were significantly protected from mortality. Although the NH(2)-terminal domain of this toxin exhibits homology to AexT of A. salmonicida, a fish pathogen, and ExoT/S of Pseudomonas aeruginosa, the COOH-terminal domain of AexU is unique, with no homology to any known proteins in the NCBI database. In this study, we purified the full-length AexU and its NH(2)-terminal (amino acid residues 1-231) and COOH-terminal (amino acid residues 232-512) domains after expression of their corresponding genes in Escherichia coli as histidine-tag fusion proteins using the bacteriophage T7 RNA polymerase/promoter-based pET-30a vector system. The full-length and NH(2)- and COOH-terminal domains of AexU exhibited ADP-ribosyltransferase activity, with the former two exhibiting much higher activity than the latter. These different forms of AexU were also successfully expressed and produced in the HeLa Tet-Off cell system using a pBI-EGFP vector, as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot analysis, and intracellular staining of the toxin using flow cytometric analysis. Production of AexU in HeLa cells resulted in possible actin reorganization and cell rounding, as determined by phalloidin staining and confocal microscopy. Based on electron microscopy, the toxin also caused chromatin condensation, which is indicative of apoptosis. Apoptosis of HeLa cells expressing and producing AexU was confirmed by 7-amino actinomycin D (7-AAD) and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] assays, by detection of cytoplasmic histone-associated DNA fragments, and by activation of caspases 3 and 9. These effects were much more pronounced in host cells that expressed and produced the full-length or NH(2)-terminal domain of AexU, compared to those that expressed and produced the COOH-terminal domain or the vector alone. This study represents the first characterization of this novel T3SS effector.
Collapse
Affiliation(s)
- Johanna C Sierra
- Department of Microbiology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | | | | | |
Collapse
|