1
|
Christodoulou M, Papagiannis D. Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development. Vaccines (Basel) 2025; 13:151. [PMID: 40006698 PMCID: PMC11861857 DOI: 10.3390/vaccines13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Q fever is a zoonotic disease caused by the obligate intracellular bacterium Coxiella burnetii that presents significant challenges for global public health control. Current prevention relies primarily on the whole-cell vaccine "Q-VAX", which despite its effectiveness, faces important limitations including pre-screening requirements and reactogenicity issues in previously sensitized individuals. This comprehensive review examines the complex interplay between pathogen characteristics, host immune responses, and vaccine development strategies. We analyze recent advances in understanding C. burnetii's molecular pathogenesis and host-pathogen interactions that have informed vaccine design. The evolution of vaccine approaches is evaluated, from traditional whole-cell preparations to modern subunit, DNA, and multi-epitope designs. Particular attention is given to innovative technologies, including reverse vaccinology and immunoinformatics, that have enabled the identification of novel antigenic targets. Recent clinical data demonstrating the safety and immunogenicity of next-generation vaccine candidates are presented, alongside manufacturing and implementation considerations. While significant progress has been made in overcoming the limitations of first-generation vaccines, challenges remain in optimizing immunogenicity while ensuring safety across diverse populations. This review provides a critical analysis of current evidence and future directions in Q fever vaccine development, highlighting promising strategies for achieving more effective and broadly applicable vaccines.
Collapse
Affiliation(s)
| | - Dimitrios Papagiannis
- Public Health & Adults Immunization Laboratory, Department of Nursing, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
2
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. Infect Immun 2024; 92:e0005324. [PMID: 38837340 PMCID: PMC11238558 DOI: 10.1128/iai.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Schulze-Luehrmann J, Liebler-Tenorio E, Felipe-López A, Lührmann A. Cell death induction facilitates egress of Coxiella burnetii from infected host cells at late stages of infection. Mol Microbiol 2024; 121:513-528. [PMID: 38115201 DOI: 10.1111/mmi.15210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Intracellular bacteria have evolved mechanisms to invade host cells, establish an intracellular niche that allows survival and replication, produce progeny, and exit the host cell after completion of the replication cycle to infect new target cells. Bacteria exit their host cell by (i) initiation of apoptosis, (ii) lytic cell death, and (iii) exocytosis. While bacterial egress is essential for bacterial spreading and, thus, pathogenesis, we currently lack information about egress mechanisms for the obligate intracellular pathogen C. burnetii, the causative agent of the zoonosis Q fever. Here, we demonstrate that C. burnetii inhibits host cell apoptosis early during infection, but induces and/or increases apoptosis at later stages of infection. Only at later stages of infection did we observe C. burnetii egress, which depends on previously established large bacteria-filled vacuoles and a functional intrinsic apoptotic cascade. The released bacteria are not enclosed by a host cell membrane and can infect and replicate in new target cells. In summary, our data argue that C. burnetii egress in a non-synchronous way at late stages of infection. Apoptosis-induction is important for C. burnetii egress, but other pathways most likely contribute.
Collapse
Affiliation(s)
- Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Alfonso Felipe-López
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578698. [PMID: 38352389 PMCID: PMC10862817 DOI: 10.1101/2024.02.02.578698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Coxiella burnetii is an obligate intracellular bacteria which causes the global zoonotic disease Q Fever. Treatment options for infection are limited, and development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected TNFα/CHX-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- BMDMs to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Bauer BU, Knittler MR, Andrack J, Berens C, Campe A, Christiansen B, Fasemore AM, Fischer SF, Ganter M, Körner S, Makert GR, Matthiesen S, Mertens-Scholz K, Rinkel S, Runge M, Schulze-Luehrmann J, Ulbert S, Winter F, Frangoulidis D, Lührmann A. Interdisciplinary studies on Coxiella burnetii: From molecular to cellular, to host, to one health research. Int J Med Microbiol 2023; 313:151590. [PMID: 38056089 DOI: 10.1016/j.ijmm.2023.151590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The Q-GAPS (Q fever GermAn interdisciplinary Program for reSearch) consortium was launched in 2017 as a German consortium of more than 20 scientists with exceptional expertise, competence, and substantial knowledge in the field of the Q fever pathogen Coxiella (C.) burnetii. C. burnetii exemplifies as a zoonotic pathogen the challenges of zoonotic disease control and prophylaxis in human, animal, and environmental settings in a One Health approach. An interdisciplinary approach to studying the pathogen is essential to address unresolved questions about the epidemiology, immunology, pathogenesis, surveillance, and control of C. burnetii. In more than five years, Q-GAPS has provided new insights into pathogenicity and interaction with host defense mechanisms. The consortium has also investigated vaccine efficacy and application in animal reservoirs and identified expanded phenotypic and genotypic characteristics of C. burnetii and their epidemiological significance. In addition, conceptual principles for controlling, surveilling, and preventing zoonotic Q fever infections were developed and prepared for specific target groups. All findings have been continuously integrated into a Web-based, interactive, freely accessible knowledge and information platform (www.q-gaps.de), which also contains Q fever guidelines to support public health institutions in controlling and preventing Q fever. In this review, we will summarize our results and show an example of how an interdisciplinary consortium provides knowledge and better tools to control a zoonotic pathogen at the national level.
Collapse
Affiliation(s)
- Benjamin U Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Jennifer Andrack
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bahne Christiansen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Akinyemi M Fasemore
- Bundeswehr Institute of Microbiology, Munich, Germany; University of Würzburg, Würzburg, Germany; ZB MED - Information Centre for Life Science, Cologne, Germany
| | - Silke F Fischer
- Landesgesundheitsamt Baden-Württemberg, Ministerium für Soziales, Gesundheit und Integration, Stuttgart, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophia Körner
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany; Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Svea Matthiesen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Katja Mertens-Scholz
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Sven Rinkel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| | - Jan Schulze-Luehrmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Fenja Winter
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, Munich, Germany; Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information, Munich, Germany
| | - Anja Lührmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| |
Collapse
|
6
|
Yadav A, Brewer MN, Elshahed MS, Shaw EI. Comparative transcriptomics and genomics from continuous axenic media growth identifies Coxiella burnetii intracellular survival strategies. Pathog Dis 2023; 81:ftad009. [PMID: 37193663 PMCID: PMC10237335 DOI: 10.1093/femspd/ftad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023] Open
Abstract
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a 'reverse evolution' approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Melissa N Brewer
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Biological Sciences, Southeastern Oklahoma State University, 74078 Durant, OK, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
| | - Edward I Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University,, 74078 Stillwater, OK, United States
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 74078 Moultrie, GA, United States
| |
Collapse
|
7
|
Yek KQ, Stojanovski D, Newton HJ. Interaction between host cell mitochondria and Coxiella burnetii. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
9
|
Sobotta K, Bonkowski K, Heydel C, Henning K, Menge C. Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells. Pathogens 2022; 11:pathogens11121422. [PMID: 36558755 PMCID: PMC9786247 DOI: 10.3390/pathogens11121422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the high prevalence of C. burnetii in dairy herds and continuous shedding via milk by chronically infected cows, bovine milk is not recognized as a relevant source of human Q fever. We hypothesized that the bovine mammary gland epithelial cell line PS represents a suitable in vitro model for the identification of C. burnetii-strain-specific virulence properties that may account for this discrepancy. Fifteen C. burnetii strains were selected to represent different host species and multiple loci variable number of tandem repeat analysis (MLVA) genotypes (I, II, III and IV). The replication efficiencies of all strains were similar, even though strains of the MLVA-genotype II replicated significantly better than genotype I strains, and bovine and ovine isolates replicated better than caprine ones. Bovine milk isolates replicated with similar efficiencies to isolates from other bovine organs. One sheep isolate (Cb30/14, MLVA type I, isolated from fetal membranes) induced a remarkable up-regulation of IL-1β and TNF-α, whereas prototypic strains and bovine milk isolates tended to suppress pro-inflammatory responses. While infection with strain Nine Mile I rendered the cells partially refractory to re-stimulation with E. coli lipopolysaccharide, Cb30/14 exerted a selective suppressive effect which was restricted to IL-6 and TNF-α and spared IL-1β. PS cells support the replication of different strains of C. burnetii and respond in a strain-specific manner, but isolates from bovine milk did not display a common pattern, which distinguishes them from strains identified as a public health concern.
Collapse
Affiliation(s)
- Katharina Sobotta
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Katharina Bonkowski
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Carsten Heydel
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University (JLU), Frankfurter Strasse 85-89, 35392 Giessen, Germany
| | - Klaus Henning
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
10
|
Abstract
Ubiquitination is a posttranslational modification that regulates a multitude of cellular functions. Pathogens, such as bacteria and viruses, have evolved sophisticated mechanisms that evade or counteract ubiquitin-dependent host responses, or even exploit the ubiquitin system to their own advantage. This is largely done by numerous pathogen virulence factors that encode E3 ligases and deubiquitinases, which are often used as weapons in pathogen-host cell interactions. Moreover, upon pathogen attack, host cellular signaling networks undergo major ubiquitin-dependent changes to protect the host cell, including coordination of innate immunity, remodeling of cellular organelles, reorganization of the cytoskeleton, and reprogramming of metabolic pathways to restrict growth of the pathogen. Here we provide mechanistic insights into ubiquitin regulation of host-pathogen interactions and how it affects bacterial and viral pathogenesis and the organization and response of the host cell.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
11
|
Cordsmeier A, Rinkel S, Jeninga M, Schulze-Luehrmann J, Ölke M, Schmid B, Hasler D, Meister G, Häcker G, Petter M, Beare PA, Lührmann A. The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription. PLoS Pathog 2022; 18:e1010266. [PMID: 35134097 PMCID: PMC8824381 DOI: 10.1371/journal.ppat.1010266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection. For intracellular replication, Coxiella burnetii depends on a functional type IV secretion system, which is utilized to inject ~150 virulence factors, so called effector proteins, into the host cell cytosol. Activities have only been established for few of them. These effector proteins interfere with vesicular trafficking, autophagy, lipid metabolism, apoptosis, and transcription by binding and manipulating the activity of host cell proteins. Here, we report that the C. burnetii T4SS effector protein AnkG (CBU0781, Q83DF6) binds to the host cell DExD box helicase 21 (DDX21) as well as to several host cell RNAs, including the small regulatory 7SK RNA, which is an important regulator of the positive elongation factor b (pTEFb). AnkG interferes with the function of the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, leading to significant changes in host cell transcription and ensuring host cell survival. AnkG activity is essential for efficient intracellular replication of C. burnetii and its ability to inhibit apoptosis. In summary, we identified a novel process by which a bacterial effector protein manipulates the host cell for its own benefit.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Rinkel
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam Jeninga
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Schmid
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
12
|
Osbron CA, Goodman AG. To die or not to die: Programmed cell death responses and their interactions with Coxiella burnetii infection. Mol Microbiol 2022; 117:717-736. [PMID: 35020241 PMCID: PMC9018580 DOI: 10.1111/mmi.14878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
Abstract
Coxiella burnetii is a Gram-negative, obligate intracellular, macrophage-tropic bacterium and the causative agent of the zoonotic disease Q fever. The epidemiology of Q fever is associated with the presence of infected animals; sheep, goats, cattle, and humans primarily become infected by inhalation of contaminated aerosols. In humans, the acute phase of the disease is characterized primarily by influenza-like symptoms, and approximately 3-5% of the infected individuals develop chronic infection. C. burnetii infection activates many types of immune responses, and the bacteria's genome encodes for numerous effector proteins that interact with host immune signaling mechanisms. Here, we will discuss two forms of programmed cell death, apoptosis and pyroptosis. Apoptosis is a form of non-inflammatory cell death that leads to phagocytosis of small membrane-bound bodies. Conversely, pyroptosis results in lytic cell death accompanied by the release of proinflammatory cytokines. Both apoptosis and pyroptosis have been implicated in the clearance of intracellular bacterial pathogens, including C. burnetii. Finally, we will discuss the role of autophagy, the degradation of unwanted cellular components, during C. burnetii infection. Together, the review of these forms of programmed cell death will open new research questions aimed at combating this highly infectious pathogen for which treatment options are limited.
Collapse
Affiliation(s)
- Chelsea A Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164.,Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164
| |
Collapse
|
13
|
Loterio RK, Zamboni DS, Newton HJ. Keeping the host alive - lessons from obligate intracellular bacterial pathogens. Pathog Dis 2021; 79:6424899. [PMID: 34755855 DOI: 10.1093/femspd/ftab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 01/20/2023] Open
Abstract
Mammals have evolved sophisticated host cell death signaling pathways as an important immune mechanism to recognize and eliminate cell intruders before they establish their replicative niche. However, intracellular bacterial pathogens that have co-evolved with their host have developed a multitude of tactics to counteract this defense strategy to facilitate their survival and replication. This requires manipulation of pro-death and pro-survival host signaling pathways during infection. Obligate intracellular bacterial pathogens are organisms that absolutely require an eukaryotic host to survive and replicate, and therefore they have developed virulence factors to prevent diverse forms of host cell death and conserve their replicative niche. This review encapsulates our current understanding of these host-pathogen interactions by exploring the most relevant findings of Anaplasma spp., Chlamydia spp., Rickettsia spp. and Coxiella burnetii modulating host cell death pathways. A detailed comprehension of the molecular mechanisms through which these obligate intracellular pathogens manipulate regulated host cell death will not only increase the current understanding of these difficult-to-study pathogens but also provide insights into new tools to study regulated cell death and the development of new therapeutic approaches to control infection.
Collapse
Affiliation(s)
- Robson Kriiger Loterio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| |
Collapse
|
14
|
Sireci G, Badami GD, Di Liberto D, Blanda V, Grippi F, Di Paola L, Guercio A, de la Fuente J, Torina A. Recent Advances on the Innate Immune Response to Coxiella burnetii. Front Cell Infect Microbiol 2021; 11:754455. [PMID: 34796128 PMCID: PMC8593175 DOI: 10.3389/fcimb.2021.754455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium and the causative agent of a worldwide zoonosis known as Q fever. The pathogen invades monocytes and macrophages, replicating within acidic phagolysosomes and evading host defenses through different immune evasion strategies that are mainly associated with the structure of its lipopolysaccharide. The main transmission routes are aerosols and ingestion of fomites from infected animals. The innate immune system provides the first host defense against the microorganism, and it is crucial to direct the infection towards a self-limiting respiratory disease or the chronic form. This review reports the advances in understanding the mechanisms of innate immunity acting during C. burnetii infection and the strategies that pathogen put in place to infect the host cells and to modify the expression of specific host cell genes in order to subvert cellular processes. The mechanisms through which different cell types with different genetic backgrounds are differently susceptible to C. burnetii intracellular growth are discussed. The subsets of cytokines induced following C. burnetii infection as well as the pathogen influence on an inflammasome-mediated response are also described. Finally, we discuss the use of animal experimental systems for studying the innate immune response against C. burnetii and discovering novel methods for prevention and treatment of disease in humans and livestock.
Collapse
Affiliation(s)
- Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Francesca Grippi
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Laura Di Paola
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - José de la Fuente
- SaBio Health and Biotechnology, Instituto de Investigación en Recursos Cinegéticos, IREC -Spanish National Research Council CSIC - University of Castilla-La Mancha UCLM - Regional Government of Castilla-La Mancha JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | | |
Collapse
|
15
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
16
|
Schäfer W, Schmidt T, Cordsmeier A, Borges V, Beare PA, Pechstein J, Schulze-Luehrmann J, Holzinger J, Wagner N, Berens C, Heydel C, Gomes JP, Lührmann A. The anti-apoptotic Coxiella burnetii effector protein AnkG is a strain specific virulence factor. Sci Rep 2020; 10:15396. [PMID: 32958854 PMCID: PMC7506536 DOI: 10.1038/s41598-020-72340-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
The ability to inhibit host cell apoptosis is important for the intracellular replication of the obligate intracellular pathogen Coxiella burnetii, as it allows the completion of the lengthy bacterial replication cycle. Effector proteins injected into the host cell by the C. burnetii type IVB secretion system (T4BSS) are required for the inhibition of host cell apoptosis. AnkG is one of these anti-apoptotic effector proteins. The inhibitory effect of AnkG requires its nuclear localization, which depends on p32-dependent intracellular trafficking and importin-α1-mediated nuclear entry of AnkG. Here, we compared the sequences of ankG from 37 C. burnetii isolates and classified them in three groups based on the predicted protein size. The comparison of the three different groups allowed us to identify the first 28 amino acids as essential and sufficient for the anti-apoptotic activity of AnkG. Importantly, only the full-length protein from the first group is a bona fide effector protein injected into host cells during infection and has anti-apoptotic activity. Finally, using the Galleria mellonella infection model, we observed that AnkG from the first group has the ability to attenuate pathology during in vivo infection, as it allows survival of the larvae despite bacterial replication.
Collapse
Affiliation(s)
- Walter Schäfer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Teresa Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Arne Cordsmeier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julian Pechstein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Jonas Holzinger
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Nicole Wagner
- Institut für Molekulare Pathogenese, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Christian Berens
- Institut für Molekulare Pathogenese, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Carsten Heydel
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus Liebig Universität Gießen, Frankfurter Straße 85-89, 35392, Gießen, Germany
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany.
| |
Collapse
|
17
|
Burette M, Allombert J, Lambou K, Maarifi G, Nisole S, Di Russo Case E, Blanchet FP, Hassen-Khodja C, Cabantous S, Samuel J, Martinez E, Bonazzi M. Modulation of innate immune signaling by a Coxiella burnetii eukaryotic-like effector protein. Proc Natl Acad Sci U S A 2020; 117:13708-13718. [PMID: 32482853 PMCID: PMC7306807 DOI: 10.1073/pnas.1914892117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen.
Collapse
Affiliation(s)
- Melanie Burette
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Karine Lambou
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Elizabeth Di Russo Case
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Cedric Hassen-Khodja
- Montpellier Ressources Imagerie (MRI), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 34293 Montpellier, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse, INSERM, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - James Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France;
| |
Collapse
|
18
|
FitzGerald ES, Luz NF, Jamieson AM. Competitive Cell Death Interactions in Pulmonary Infection: Host Modulation Versus Pathogen Manipulation. Front Immunol 2020; 11:814. [PMID: 32508813 PMCID: PMC7248393 DOI: 10.3389/fimmu.2020.00814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of pulmonary infection, both hosts and pathogens have evolved a multitude of mechanisms to regulate the process of host cell death. The host aims to rapidly induce an inflammatory response at the site of infection, promote pathogen clearance, quickly resolve inflammation, and return to tissue homeostasis. The appropriate modulation of cell death in respiratory epithelial cells and pulmonary immune cells is central in the execution of all these processes. Cell death can be either inflammatory or anti-inflammatory depending on regulated cell death (RCD) modality triggered and the infection context. In addition, diverse bacterial pathogens have evolved many means to manipulate host cell death to increase bacterial survival and spread. The multitude of ways that hosts and bacteria engage in a molecular tug of war to modulate cell death dynamics during infection emphasizes its relevance in host responses and pathogen virulence at the host pathogen interface. This narrative review outlines several current lines of research characterizing bacterial pathogen manipulation of host cell death pathways in the lung. We postulate that understanding these interactions and the dynamics of intracellular and extracellular bacteria RCD manipulation, may lead to novel therapeutic approaches for the treatment of intractable respiratory infections.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
19
|
Dragan AL, Voth DE. Coxiella burnetii: international pathogen of mystery. Microbes Infect 2020; 22:100-110. [PMID: 31574310 PMCID: PMC7101257 DOI: 10.1016/j.micinf.2019.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Coxiella burnetii is an intracellular bacterium that causes acute and chronic Q fever. This unique pathogen has been historically challenging to study due to obstacles in genetically manipulating the organism and the inability of small animal models to fully mimic human Q fever. Here, we review the current state of C. burnetii research, highlighting new approaches that allow the mechanistic study of infection in disease relevant settings.
Collapse
Affiliation(s)
- Amanda L Dragan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
20
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|
21
|
Cordsmeier A, Wagner N, Lührmann A, Berens C. Defying Death - How Coxiella burnetii Copes with Intentional Host Cell Suicide. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:619-628. [PMID: 31866777 PMCID: PMC6913804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The obligate intracellular pathogen Coxiella burnetii is the causative agent of the worldwide zoonotic disease Q fever. This Gram-negative bacterium infects macrophages where it establishes a replicative niche in an acidic and phagolysosome-like vacuole. Establishing and maintaining the niche requires a functional type IV secretion system (T4SS) which translocates multiple effector proteins into the host cell. These effector proteins act by manipulating diverse cellular processes allowing the bacterium to establish an infection and complete its complex biphasic developmental cycle. The lengthy nature of this life cycle suggests that C. burnetii has to successfully deal with cellular defense processes. Cell death is one mechanism infected cells frequently utilize to control or to at least minimize the impact of an infection. To date, four effector proteins have been identified in C. burnetii, which interfere with the induction of cell death. Three, AnkG, CaeA, and CaeB, affect intrinsic apoptosis, CaeA additionally extrinsic apoptosis. The proteins target different steps of the apoptotic pathway and are not conserved among isolates suggesting redundancy as an important feature of cell death inhibition. The fourth effector protein, IcaA, interferes with the non-canonical pathway of pyroptosis, an important inflammatory cell death pathway for controlling infectious disease. Autophagy is relevant for the C. burnetii life-cycle, but to which extent autophagic cell death is a factor in bacterial survival and proliferation is still not clear. To convincingly understand how bacterial manipulation of autophagy affects cell death either directly or indirectly will require further experiments. Collectively, C. burnetii modulates the extrinsic and intrinsic apoptotic pathways and non-canonical pyroptosis to inhibit host cell death, thereby providing a stable, intracellular niche for the course of the pathogen's infectious cycle.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Wagner
- Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Jena, Germany,To whom all correspondence should be addressed: Christian Berens, Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany; Tel: +49-3641-804-2500, Fax: +49-3641-804-2482, E-mail:
| |
Collapse
|
22
|
Dependency of Coxiella burnetii Type 4B Secretion on the Chaperone IcmS. J Bacteriol 2019; 201:JB.00431-19. [PMID: 31501284 DOI: 10.1128/jb.00431-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophage parasitism by Coxiella burnetii, the cause of human Q fever, requires the translocation of proteins with effector functions directly into the host cell cytosol via a Dot/Icm type 4B secretion system (T4BSS). Secretion by the analogous Legionella pneumophila T4BSS involves signal sequences within the C-terminal and internal domains of effector proteins. The cytoplasmic chaperone pair IcmSW promotes secretion and binds internal sites distinct from signal sequences. In the present study, we investigated requirements of C. burnetii IcmS for host cell parasitism and effector translocation. A C. burnetii icmS deletion mutant (ΔicmS) exhibited impaired replication in Vero epithelial cells, deficient formation of the Coxiella-containing vacuole, and aberrant T4BSS secretion. Three secretion phenotypes were identified from a screen of 50 Dot/Icm substrates: IcmS dependent (secreted by only wild-type bacteria), IcmS independent (secreted by both wild-type and ΔicmS bacteria), or IcmS inhibited (secreted by only ΔicmS bacteria). Secretion was assessed for N-terminal or C-terminal truncated forms of CBU0794 and CBU1525. IcmS-inhibited secretion of CBU1525 required a C-terminal secretion signal whereas IcmS-dependent secretion of CBU0794 was directed by C-terminal and internal signals. Interchange of the C-terminal 50 amino acids of CBU0794 and CBU1525 revealed that sites within the C terminus regulate IcmS dependency. Glutathione S-transferase-tagged IcmSW bound internal sequences of IcmS-dependent and -inhibited substrates. Thus, the growth defect of the C. burnetii ΔicmS strain is associated with a loss of T4BSS chaperone activity that both positively and negatively regulates effector translocation.IMPORTANCE The intracellular pathogen Coxiella burnetii employs a type 4B secretion system (T4BSS) that promotes growth by translocating effectors of eukaryotic pathways into host cells. T4BSS regulation modeled in Legionella pneumophila indicates IcmS facilitates effector translocation. Here, we characterized type 4B secretion by a Coxiella ΔicmS mutant that exhibits intracellular growth defects. T4BSS substrates demonstrated increased, equivalent, or decreased secretion by the ΔicmS mutant relative to wild-type Coxiella Similar to the Legionella T4BSS, IcmS dependency in Coxiella was determined by C-terminal and/or internal secretion signals. However, IcmS inhibited secretion of some effectors by Coxiella that were previously shown to be translocated by Legionella Thus, Coxiella has a unique IcmS regulatory mechanism that both positively and negatively regulates T4BSS export.
Collapse
|
23
|
Lee WY. "Hairiness" is a Facsimile of Reorganized Cytoskeletons: A Cytopathic Effect of Coxiella burnetii. Yonsei Med J 2019; 60:890-897. [PMID: 31538423 PMCID: PMC6753337 DOI: 10.3349/ymj.2019.60.10.890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
In 1993, I reported that Coxiella burnetii transforms human B cells into hairy cells (cbHCs), the first hairy cell reported outside of hairy cell leukemia (HCL). Over last few decades, advances in molecular biology have provided evidence supporting that C. burnetii induces hairiness and inhibits the apoptosis of host cells. The present review summarizes new information in support of cbHC. C. burnetii was shown to induce reorganization of the cytoskeleton and to inhibit apoptosis in host cells. Peritoneal B1a cells were found to be permissive for virulent C. burnetii Nine Mile phase I (NMI) strains in mice. C. burnetii severely impaired E-cad expression in circulating cells of Q fever patients. B-cell non-Hodgkin lymphoma was linked to C. burnetii. Mutation of BRAF V600E was pronounced in HCL, but "hairiness" was not linked to the mutation. Risk factors shared among coxiellosis and HCL in humans and animals were reported in patients with Q-fever. Accordingly, I propose that C. burnetii induces reorganization of the cytoskeleton and inhibits apoptosis as cytopathic effects that are not target cell specific. The observed hairiness in cbHC appears to be a fixed image of dynamic nature, and hairy cells in HCL are distinct among lymphoid cells in circulation. As the cytoskeleton plays key roles in maintaining cell structural integrity in health and disease, the pathophysiology of similar cytopathic effects should be addressed in other diseases, such as myopathies, B-cell dyscrasias, and autoimmune syndromes.
Collapse
Affiliation(s)
- Won Young Lee
- Emeritus Professor, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Behar SM, Briken V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Curr Opin Immunol 2019; 60:103-110. [PMID: 31228759 DOI: 10.1016/j.coi.2019.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Regulated cell death via apoptosis not only is important for organismal homeostasis but also serves as an innate defense mechanism. The engulfment of apoptotic infected cells, a process known as efferocytosis, is a common pathway for the destruction of many intracellular bacteria. Some pathogens take advantage of efferocytosis to prevent activation of macrophages and thereby facilitate their dissemination. Conversely, many obligate intracellular bacterial pathogens and some facultative-intracellular bacteria inhibit apoptosis, preventing efferocytosis, and evading innate host defenses. The molecular mechanism of bacterial effectors includes secreted proteins that bind to and inhibit apoptosis cell signaling pathways. We provide an overview of the known bacterial effectors, their host cell targets and their importance for the virulence of human pathogens.
Collapse
Affiliation(s)
- Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
25
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Orientia tsutsugamushi Modulates Endoplasmic Reticulum-Associated Degradation To Benefit Its Growth. Infect Immun 2017; 86:IAI.00596-17. [PMID: 29109174 DOI: 10.1128/iai.00596-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/26/2017] [Indexed: 01/11/2023] Open
Abstract
Orientia tsutsugamushi, an obligate intracellular bacterium that is auxotrophic for the aromatic amino acids and histidine, causes scrub typhus, a potentially deadly infection that threatens 1 billion people. O. tsutsugamushi growth is minimal during the first 24 to 48 h of infection but its growth becomes logarithmic thereafter. How the pathogen modulates cellular functions to support its growth is poorly understood. The unfolded protein response (UPR) is a cytoprotective pathway that relieves endoplasmic reticulum (ER) stress by promoting ER-associated degradation (ERAD) of misfolded proteins. Here, we show that O. tsutsugamushi invokes the UPR in the first 48 h and benefits from ER stress in an amino acid-dependent manner. O. tsutsugamushi also impedes ERAD during this time period. By 72 h, ER stress is alleviated and ERAD proceeds unhindered. Sustained inhibition of ERAD using RNA interference results in an O. tsutsugamushi growth defect at 72 h that can be rescued by amino acid supplementation. Thus, O. tsutsugamushi temporally stalls ERAD until ERAD-derived amino acids are needed to support its growth. The O. tsutsugamushi effector Ank4 is linked to this phenomenon. Ank4 interacts with Bat3, a eukaryotic chaperone that is essential for ERAD, and is transiently expressed by O. tsutsugamushi during the infection period when it inhibits ERAD. Ectopically expressed Ank4 blocks ERAD to phenocopy O. tsutsugamushi infection. Our data reveal a novel mechanism by which an obligate intracellular bacterial pathogen modulates ERAD to satisfy its nutritional virulence requirements.
Collapse
|
27
|
Wallqvist A, Wang H, Zavaljevski N, Memišević V, Kwon K, Pieper R, Rajagopala SV, Reifman J. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions. PLoS One 2017; 12:e0188071. [PMID: 29176882 PMCID: PMC5703456 DOI: 10.1371/journal.pone.0188071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Collapse
Affiliation(s)
- Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Hao Wang
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome. J Virol 2017; 91:JVI.01385-17. [PMID: 28904196 DOI: 10.1128/jvi.01385-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1-procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions.IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as downstream procaspase-3 cleavage in several cell types and under multiple conditions. M1 is the first poxviral protein reported to associate with and prevent the function of the apoptosome, giving a more detailed picture of the threats VACV encounters during infection. Dysregulation of apoptosis is associated with several human diseases. One potential treatment of apoptosis-related diseases is through the use of designed ANK repeat proteins (DARPins), similar to M1, as caspase inhibitors. Thus, the study of the novel antiapoptosis effects of M1 via apoptosome association will be helpful for understanding how to control apoptosis using either natural or synthetic molecules.
Collapse
|
29
|
Pechstein J, Schulze-Luehrmann J, Lührmann A. Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments. Int J Med Microbiol 2017; 308:77-83. [PMID: 28935173 DOI: 10.1016/j.ijmm.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 10/25/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular and airborne pathogen which can cause the zoonotic disease Q fever. After inhalation of contaminated aerosols alveolar macrophages are taking up C. burnetii into a phagosome. This phagosome matures to a very large vacuole called the C. burnetii-containing vacuole (CCV). Host endogenous and bacterial driven processes lead to the biogenesis of this unusual compartment, which resembles partially a phagolysosome. However, there are several important differences to the classical phagolysosome, which are crucial for the ability of C. burnetii to replicate intracellularly and depend on a functional type IV secretion system (T4SS). The T4SS delivers effector proteins into the host cell cytoplasm to redirect intracellular processes, leading to the establishment of a microenvironment allowing bacterial replication. This article summarizes the current knowledge of the microenvironment permissive for C. burnetii replication.
Collapse
Affiliation(s)
- Julian Pechstein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany.
| |
Collapse
|
30
|
Friedrich A, Pechstein J, Berens C, Lührmann A. Modulation of host cell apoptotic pathways by intracellular pathogens. Curr Opin Microbiol 2017; 35:88-99. [DOI: 10.1016/j.mib.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/03/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
|
31
|
Lührmann A, Newton HJ, Bonazzi M. Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis. Curr Top Microbiol Immunol 2017. [PMID: 29536362 DOI: 10.1007/978-3-319-75241-9_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which manifests in severe outbreaks and is associated with important health and economic burden. Moreover, C. burnetii belongs to the list of class B bioterrorism organisms, as it is an airborne and highly infective pathogen with remarkable resistance to environmental stresses. Detailed study of the host-pathogen interaction during C. burnetii infection has been hampered due to the obligate intracellular nature of this pathogen. However, the development of an axenic culture medium, together with the implementation of bioinformatics tools and high-content screening approaches, have significantly progressed C. burnetii research in the last decade. This has facilitated identification of the Dot/Icm type IV secretion system (T4SS) as an essential virulence factor. T4SS is used to deliver an arsenal of effector proteins into the cytoplasm of the host cell. These effectors mediate the survival of the host cell and the development of very large replicative compartments called Coxiella-containing vacuoles (CCVs). Biogenesis of the CCV relies on T4SS-dependent re-routing of numerous intracellular trafficking pathways to deliver membranes and nutrients that are essential for bacterial replication. This review aims to illustrate the key milestones that have contributed to ascribe C. burnetii as a model organism for the study of host/pathogen interactions as well as presenting an up-to-date description of our knowledge of the cell biology of C. burnetii infections.
Collapse
Affiliation(s)
- Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany.
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Matteo Bonazzi
- Institut de Recherche En Infectiologie de Montpellier (IRIM), CNRS, UMR9004, Université de Montpellier, Montpellier, France.
| |
Collapse
|
32
|
Fielden LF, Kang Y, Newton HJ, Stojanovski D. Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria. Cell Tissue Res 2016; 367:141-154. [PMID: 27515462 DOI: 10.1007/s00441-016-2475-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Manipulation of host cell function by bacterial pathogens is paramount for successful invasion and creation of a niche conducive to bacterial replication. Mitochondria play a role in many important cellular processes including energy production, cellular calcium homeostasis, lipid metabolism, haeme biosynthesis, immune signalling and apoptosis. The sophisticated integration of host cell processes by the mitochondrion have seen it emerge as a key target during bacterial infection of human host cells. This review highlights the targeting and interaction of this dynamic organelle by intravacuolar bacterial pathogens and the way that the modulation of mitochondrial function might contribute to pathogenesis.
Collapse
Affiliation(s)
- Laura F Fielden
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yilin Kang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3000, Australia.
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
33
|
Schäfer W, Eckart RA, Schmid B, Cagköylü H, Hof K, Muller YA, Amin B, Lührmann A. Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-α1. Cell Microbiol 2016; 19. [PMID: 27328359 DOI: 10.1111/cmi.12634] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022]
Abstract
The obligate intracellular bacterium Coxiella burnetii causes the zoonotic disease Q-fever. Coxiella pathogenesis depends on a functional type IV secretion system (T4SS). The T4SS effector AnkG inhibits pathogen-induced host cell apoptosis, which is believed to be important for the establishment of a persistent infection. However, the mode of action of AnkG is not fully understood. We have previously demonstrated that binding of AnkG to p32 is crucial for migration of AnkG into the nucleus and that nuclear localization of AnkG is essential for its anti-apoptotic activity. Here, we compared the activity of AnkG from the C. burnetii strains Nine Mile and Dugway. Although there is only a single amino acid exchange at residue 11, we observed a difference in anti-apoptotic activity and nuclear migration. Mutation of amino acid 11 to glutamic acid, threonine or valine results in AnkG mutants that had lost the anti-apoptotic activity and the ability to migrate into the nucleus. We identified Importin-α1 to bind to AnkG, but not to the mutants and concluded that binding of AnkG to p32 and Importin-α1 is essential for migration into the nucleus. Also during Coxiella infection binding of AnkG to p32 and Importin-α1 is crucial for nuclear localization of AnkG.
Collapse
Affiliation(s)
- Walter Schäfer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| | - Rita A Eckart
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| | - Benedikt Schmid
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052, Erlangen, Germany
| | - Hasret Cagköylü
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| | - Kerstin Hof
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052, Erlangen, Germany
| | - Yves A Muller
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052, Erlangen, Germany
| | - Bushra Amin
- Lehrstuhl für Biochemie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| |
Collapse
|
34
|
Larson CL, Martinez E, Beare PA, Jeffrey B, Heinzen RA, Bonazzi M. Right on Q: genetics begin to unravel Coxiella burnetii host cell interactions. Future Microbiol 2016; 11:919-39. [PMID: 27418426 DOI: 10.2217/fmb-2016-0044] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Invasion of macrophages and replication within an acidic and degradative phagolysosome-like vacuole are essential for disease pathogenesis by Coxiella burnetii, the bacterial agent of human Q fever. Previous experimental constraints imposed by the obligate intracellular nature of Coxiella limited knowledge of pathogen strategies that promote infection. Fortunately, new genetic tools facilitated by axenic culture now allow allelic exchange and transposon mutagenesis approaches for virulence gene discovery. Phenotypic screens have illuminated the critical importance of Coxiella's type 4B secretion system in host cell subversion and discovered genes encoding translocated effector proteins that manipulate critical infection events. Here, we highlight the cellular microbiology and genetics of Coxiella and how recent technical advances now make Coxiella a model organism to study macrophage parasitism.
Collapse
Affiliation(s)
- Charles L Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Eric Martinez
- CNRS, FRE3698, CPBS, 1919 Route de Mende, 34293 Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Brendan Jeffrey
- Bioinformatics & Computational Biosciences Branch, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Matteo Bonazzi
- CNRS, FRE3698, CPBS, 1919 Route de Mende, 34293 Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
36
|
Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response. Infect Immun 2016; 84:1722-1734. [PMID: 27021246 DOI: 10.1128/iai.01208-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains.
Collapse
|
37
|
Raghavan R. A repeat motif on a Coxiella effector protein facilitates apoptosis inhibition. Virulence 2016; 7:369-71. [PMID: 26949987 DOI: 10.1080/21505594.2016.1156834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Rahul Raghavan
- a Department of Biology and Center for Life in Extreme Environments , Portland State University , Portland , OR , USA
| |
Collapse
|
38
|
Robinson KS, Aw R. The Commonalities in Bacterial Effector Inhibition of Apoptosis. Trends Microbiol 2016; 24:665-680. [PMID: 27117049 DOI: 10.1016/j.tim.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/13/2016] [Accepted: 04/01/2016] [Indexed: 02/09/2023]
Abstract
Antiapoptotic pathways of the host cell play integral roles in bacterial pathogenesis, with inhibition of those pathways resulting in halted disease pathology. Certain pathogens have developed elegant mechanisms to modulate the fate of the host cell, many of which target novel pathways that are poorly understood in the context of the cell biology. Bacterial pathogenesis research not only promotes the understanding of the role of antiapoptotic pathways in bacterial infection, but has a broader context in understanding the epitome of human disease, that is, developing the understanding of tumorigenic or inflammatory pathways. Here we review host antiapoptotic signalling pathways manipulated by translocated bacterial effectors that propagate the disease state, drawing common parallels and showing the novel differences.
Collapse
Affiliation(s)
- Keith S Robinson
- Department of Life Science, Imperial College London, London, UK.
| | - Rochelle Aw
- Department of Life Science, Imperial College London, London, UK
| |
Collapse
|
39
|
Primary Role for Toll-Like Receptor-Driven Tumor Necrosis Factor Rather than Cytosolic Immune Detection in Restricting Coxiella burnetii Phase II Replication within Mouse Macrophages. Infect Immun 2016; 84:998-1015. [PMID: 26787725 DOI: 10.1128/iai.01536-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii replicates within permissive host cells by employing a Dot/Icm type IV secretion system (T4SS) to translocate effector proteins that direct the formation of a parasitophorous vacuole. C57BL/6 mouse macrophages restrict the intracellular replication of the C. burnetii. Nine Mile phase II (NMII) strain. However, eliminating Toll-like receptor 2 (TLR2) permits bacterial replication, indicating that the restriction of bacterial replication is immune mediated. Here, we examined whether additional innate immune pathways are employed by C57BL/6 macrophages to sense and restrict NMII replication. In addition to the known role of TLR2 in detecting and restricting NMII infection, we found that TLR4 also contributes to cytokine responses but is not required to restrict bacterial replication. Furthermore, the TLR signaling adaptors MyD88 and Trif are required for cytokine responses and restricting bacterial replication. The C. burnetii NMII T4SS translocates bacterial products into C57BL/6 macrophages. However, there was little evidence of cytosolic immune sensing of NMII, as there was a lack of inflammasome activation, T4SS-dependent cytokine responses, and robust type I interferon (IFN) production, and these pathways were not required to restrict bacterial replication. Instead, endogenous tumor necrosis factor (TNF) produced upon TLR sensing of C. burnetii NMII was required to control bacterial replication. Therefore, our findings indicate a primary role for TNF produced upon immune detection of C. burnetii NMII by TLRs, rather than cytosolic PRRs, in enabling C57BL/6 macrophages to restrict bacterial replication.
Collapse
|
40
|
Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes JP, Lührmann A. The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence 2016; 7:400-12. [PMID: 26760129 DOI: 10.1080/21505594.2016.1139280] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
ABSRTACT Coxiella burnetii is an obligate intracellular bacterium that causes Query (Q) fever, a zoonotic disease. It requires a functional type IV secretion system (T4SS) which translocate bacterial effector proteins into the host cell cytoplasm and thereby facilitates bacterial replication. To date, more than 130 effector proteins have been identified, but their functions remain largely unknown. Recently, we demonstrated that one of these proteins, CaeA (CBU1524) localized to the host cell nucleus and inhibited intrinsic apoptosis of HEK293 or CHO cells. In the present study we addressed the question whether CaeA also affects the extrinsic apoptosis pathway. Ectopic expression of CaeA reduced extrinsic apoptosis and prevented the cleavage of the executioner caspase 7, but did not impair the activation of initiator caspase 9. CaeA expression resulted in an up-regulation of survivin (an inhibitor of activated caspases), which, however, was not causal for the anti-apoptotic effect of CaeA. Comparing the sequence of CaeA from 25 different C. burnetii isolates we identified an EK (glutamic acid/ lysine) repetition motif as a site of high genetic variability. The EK motif of CaeA was essential for the anti-apoptotic activity of CaeA. From these data, we conclude that the C. burnetii effector protein CaeA interferes with the intrinsic and extrinsic apoptosis pathway. The process requires the EK repetition motif of CaeA, but is independent of the upregulated expression of survivin.
Collapse
Affiliation(s)
- Stephanie Bisle
- a Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Leonie Klingenbeck
- a Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Vítor Borges
- b Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health , Lisbon , Portugal
| | - Katharina Sobotta
- c Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis , Jena , Germany
| | - Jan Schulze-Luehrmann
- a Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg , Erlangen , Germany
| | - Christian Menge
- c Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis , Jena , Germany
| | - Carsten Heydel
- d Institut für Hygiene und Infektionskrankheiten der Tiere, Justus Liebig Universität Gießen , Gießen , Germany
| | - João Paulo Gomes
- b Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health , Lisbon , Portugal
| | - Anja Lührmann
- a Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
41
|
Labra Á, Arredondo-Zelada O, Flores-Herrera P, Marshall SH, Gómez FA. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Pathog 2015; 92:11-18. [PMID: 26706346 DOI: 10.1016/j.micpath.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis.
Collapse
Affiliation(s)
- Álvaro Labra
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Oscar Arredondo-Zelada
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Patricio Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| | - Sergio H Marshall
- Laboratorio de Patógenos Acuícolas, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile; Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Fernando A Gómez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile.
| |
Collapse
|
42
|
Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect 2015; 17:766-71. [PMID: 26327296 DOI: 10.1016/j.micinf.2015.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 01/07/2023]
Abstract
Coxiella burnetii utilizes a Type IV Secretion System (T4SS) to modify host endomembrane transport systems to form a unique lysosome-derived niche called the Coxiella-containing vacuole (CCV). Although the CCV has lysosomal properties, this organelle displays distinct characteristics such as homotypic fusion and a cholesterol enriched limiting membrane, in addition to robustly interacting with autophagosomes. This review describes recent advances in understanding CCV biogenesis and the mechanisms C. burnetii employs to maintain this unique compartment.
Collapse
|
43
|
Berens C, Bisle S, Klingenbeck L, Lührmann A. Applying an Inducible Expression System to Study Interference of Bacterial Virulence Factors with Intracellular Signaling. J Vis Exp 2015:e52903. [PMID: 26168006 DOI: 10.3791/52903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The technique presented here allows one to analyze at which step a target protein, or alternatively a small molecule, interacts with the components of a signaling pathway. The method is based, on the one hand, on the inducible expression of a specific protein to initiate a signaling event at a defined and predetermined step in the selected signaling cascade. Concomitant expression, on the other hand, of the gene of interest then allows the investigator to evaluate if the activity of the expressed target protein is located upstream or downstream of the initiated signaling event, depending on the readout of the signaling pathway that is obtained. Here, the apoptotic cascade was selected as a defined signaling pathway to demonstrate protocol functionality. Pathogenic bacteria, such as Coxiella burnetii, translocate effector proteins that interfere with host cell death induction in the host cell to ensure bacterial survival in the cell and to promote their dissemination in the organism. The C. burnetii effector protein CaeB effectively inhibits host cell death after induction of apoptosis with UV-light or with staurosporine. To narrow down at which step CaeB interferes with the propagation of the apoptotic signal, selected proteins with well-characterized pro-apoptotic activity were expressed transiently in a doxycycline-inducible manner. If CaeB acts upstream of these proteins, apoptosis will proceed unhindered. If CaeB acts downstream, cell death will be inhibited. The test proteins selected were Bax, which acts at the level of the mitochondria, and caspase 3, which is the major executioner protease. CaeB interferes with cell death induced by Bax expression, but not by caspase 3 expression. CaeB, thus, interacts with the apoptotic cascade between these two proteins.
Collapse
Affiliation(s)
- Christian Berens
- Department Biologie, Friedrich-Alexander-Universität; Institut für Molekulare Pathogenese, Friedrich-Loeffler-Institut
| | - Stephanie Bisle
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen
| | - Leonie Klingenbeck
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen;
| |
Collapse
|
44
|
Roloff GA, Henry MF. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria. Mol Biol Cell 2015; 26:2885-94. [PMID: 26108620 PMCID: PMC4571327 DOI: 10.1091/mbc.e15-04-0222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Expression of genes encoded by the mitochondrial genome is dependent on gene-specific translational activators. Mam33, the yeast homologue of p32/gC1qR/C1QBP/HABP1, promotes the translation of Cox1, a core catalytic subunit of respiratory chain complex IV. Three mitochondrial DNA–encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1.
Collapse
Affiliation(s)
- Gabrielle A Roloff
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| | - Michael F Henry
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, and Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
45
|
Moffatt JH, Newton P, Newton HJ. Coxiella burnetii: turning hostility into a home. Cell Microbiol 2015; 17:621-31. [PMID: 25728389 DOI: 10.1111/cmi.12432] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
Abstract
Coxiella burnetii, the causative agent of the human disease Q fever, is a unique intracellular bacterial pathogen. Coxiella replicates to high numbers within a pathogen-derived lysosome-like vacuole, thriving within a low pH, highly proteolytic and oxidative environment. In 2009, researchers developed means to axenically culture Coxiella paving the way for the development of tools to genetically manipulate the organism. These advances have revolutionized our capacity to examine the pathogenesis of Coxiella. In recent years, targeted and random mutant strains have been used to demonstrate that the Dot/Icm type IV secretion system is essential for intracellular replication of Coxiella. Current research is focused towards understanding the unique cohort of over 130 effector proteins that are translocated into the host cell. Mutagenesis screens have been employed to identify effectors that play important roles for the biogenesis of the Coxiella-containing vacuole and intracellular replication of Coxiella. A surprisingly high number of effector mutants demonstrate significant intracellular growth defects, and future studies on the molecular function of these effectors will provide great insight into the pathogenesis of Coxiella. Already, this expanse of new data implicates many eukaryotic processes that are targeted by the arsenal of Coxiella effectors including autophagy, apoptosis and vesicular trafficking.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Vic., Australia
| | | | | |
Collapse
|