1
|
Cooper KG, Chong A, Starr T, Finn CE, Steele-Mortimer O. Predictable, Tunable Protein Production in Salmonella for Studying Host-Pathogen Interactions. Front Cell Infect Microbiol 2017; 7:475. [PMID: 29201859 PMCID: PMC5696353 DOI: 10.3389/fcimb.2017.00475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
Here we describe the use of synthetic genetic elements to improve the predictability and tunability of episomal protein production in Salmonella. We used a multi-pronged approach, in which a series of variable-strength synthetic promoters were combined with a synthetic transcriptional terminator, and plasmid copy number variation. This yielded a series of plasmids that drive uniform production of fluorescent and endogenous proteins, over a wide dynamic range. We describe several examples where this system is used to fine-tune constitutive expression in Salmonella, providing an efficient means to titrate out toxic effects of protein production.
Collapse
Affiliation(s)
- Kendal G Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
2
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
3
|
Hur J, Kim CS, Eo SK, Park SY, Lee JH. Salmonella ghosts expressing enterotoxigenic Escherichia coli k88ab, k88ac, k99, and fasa fimbrial antigens induce robust immune responses in a mouse model. Vet Q 2015; 35:125-32. [PMID: 25853619 DOI: 10.1080/01652176.2015.1029598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Bacterial ghosts can be developed as safe and effective vaccines against bacterial infectious disease such as enterotoxigenic Escherichia coli (ETEC)-induced diarrhea in neonatal piglets. OBJECTIVE Immune responses against a Salmonella ghost expressing ETEC K88ab, K88ac, K99, and FasA antigens with various adjuvants and inoculation routes were evaluated in mice. ANIMALS AND METHODS A ghost cell expressing K88ab, K88ac, K99, and FasA fimbrial antigens of ETEC on the envelope of △asd Salmonella typhimurium was constructed as a candidate vaccine against ETEC infection. To optimize the immunization strategy, 6-week-old female BALB/c mice were inoculated with the ghost and various adjuvants, and the immune responses against the individual fimbrial antigens were measured. Blood samples from caudal vein to evaluate serum IgG concentrations and fecal samples to evaluate mucosal IgA concentrations were collected up to 14 weeks post-prime immunization. RESULTS All groups with single, double, and triple inoculations of the ghost showed higher humoral and mucosal immune responses than the control group. In particular, the groups with intramuscular double and triple inoculations showed significantly higher immune responses. In addition, oral inoculation with a combination of the ghost and MONTANIDE IMS 1113 (MI1113) resulted in high and prolonged induction of intestinal IgA levels. CONCLUSION These results indicated that both systemic and mucosal immunity against ETEC fimbrial antigens expressed by the ghost are induced by intramuscular booster inoculation with the ghost, and that addition of M1113 to the ghost was found to result in prominent induction of mucosal immunity through oral inoculation.
Collapse
Affiliation(s)
- Jin Hur
- a Department of Bioactive Material Sciences and Department of Veterinary Public Health, College of Veterinary Medicine , Chonbuk National University , South Korea
| | | | | | | | | |
Collapse
|
4
|
Hur J, Lee JH. A new enterotoxigenic Escherichia coli vaccine candidate constructed using a Salmonella ghost delivery system: Comparative evaluation with a commercial vaccine for neonatal piglet colibacillosis. Vet Immunol Immunopathol 2015; 164:101-9. [DOI: 10.1016/j.vetimm.2015.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
|
5
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
6
|
Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model. Vaccine 2014; 32:5057-64. [DOI: 10.1016/j.vaccine.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/05/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022]
|
7
|
Hur J, Lee JH. Protection against neonatal Escherichia coli diarrhea by vaccination of sows with a novel multivalent vaccine candidate expressing E. coli adhesins associated with neonatal pig colibacillosis. Res Vet Sci 2013; 94:198-204. [DOI: 10.1016/j.rvsc.2012.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022]
|
8
|
Zheng SY, Yu B, Zhang K, Chen M, Hua YH, Yuan S, Watt RM, Zheng BJ, Yuen KY, Huang JD. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines. BMC Immunol 2012; 13:54. [PMID: 23013063 PMCID: PMC3503649 DOI: 10.1186/1471-2172-13-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. Result To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Conclusion Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus insoluble forms of the protein antigens. If an antigen, such as EGFP, is soluble and expressed at high levels, a low-copy plasmid-cytoplasmic expression strategy is recommended; since it provokes the highest B cell responses and also induces good T cell responses. If a T cell response is preferred, a eukaryotic expression plasmid or a chromosome-based, cytoplasmic-expression strategy is more effective. For insoluble antigens such as HA, an outer membrane expression strategy is recommended.
Collapse
Affiliation(s)
- Song-yue Zheng
- Department of Biochemistry, the University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jeon BW, Jawale CV, Kim SH, Lee JH. Attenuated Salmonella Gallinarum secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for oral vaccination against fowl typhoid. Vet Immunol Immunopathol 2012; 150:149-60. [PMID: 23083937 DOI: 10.1016/j.vetimm.2012.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 12/29/2022]
Abstract
In our previous study, we constructed a vaccine candidate (JOL916) for fowl typhoid (FT). A live adjuvant Salmonella Gallinarum (SG) strain was generated in the present study to facilitate efficacious oral vaccination with this vaccine. The Escherichia coli eltB gene secreting heat-labile enterotoxin B subunit (LTB) was cloned into an Asd(+) plasmid pJHL65. This was transformed into a Δlon ΔcpxR Δasd SG strain and the resulting strain was designated JOL1229. Secretion of LTB from JOL1229 was confirmed with an immunoblot assay. To determine the optimal dose of the strain, 50 six-week-old female chickens were divided into five groups (Groups A-E, n=10 per group) and orally inoculated with various doses of JOL1229 and JOL916. In Group B (consisting of four parts JOL916 and one part JOL1229), significant cell-mediated immune responses, plasma IgG levels and intestinal secretary IgA levels were induced after inoculation with both strains. On challenge with the wild-type strain, significant reductions in mortality were observed in the group. In addition, after inoculation the LTB strain was not recovered in feces samples, and resulted in no, or very mild, gross lesions in the liver and spleen. Both CD4(+) and CD8(+) T-cells were significantly increased in peripheral blood samples from the chickens immunized with the LTB strain. Expression of the interleukin-6 (IL-6) gene in splenocytes was induced in the chickens immunized with the LTB strain. These results suggest that oral immunization with the LTB-adjuvant strain, in particular with the four parts JOL916 and one part JOL1229 mixture, increased the immune response and provided efficient protection against FT in chickens.
Collapse
Affiliation(s)
- Byung Woo Jeon
- College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Hur J, Stein BD, Lee JH. A vaccine candidate for post-weaning diarrhea in swine constructed with a live attenuated Salmonella delivering Escherichia coli K88ab, K88ac, FedA, and FedF fimbrial antigens and its immune responses in a murine model. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2012; 76:186-94. [PMID: 23277697 PMCID: PMC3384281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/26/2011] [Indexed: 06/01/2023]
Abstract
In order to construct a novel vaccine candidate for preventing post-weaning diarrhea in swine, the individual genes for Escherichia coli K88ab, K88ac, FedA, and FedF fimbriae were inserted into a secretion plasmid pBP244 containing asd, lepB, secA, and secB. These were transformed into Salmonella Typhimurium Δlon ΔcpxR Δasd. Secretion of the individual recombinant fimbrial antigens was confirmed by immunoblot analysis. Groups 1 and 2 mice received a single oral dose of the vaccine mixture and S. Typhimurium carrying pBP244 only as a control, respectively. In groups 3 and 4, mice were primed and boosted with the vaccine mixture and S. Typhimurium carrying pBP244 only as a control, respectively. In general, all immunized mice had significantly increased serum immunoglobulin (Ig)G (P < 0.05) and intestinal secretory IgA against the individual fimbrial antigens compared with those mice in the control group. In the IgG2a and IgG1 titer assay, only IgG2a titer was increased in group 1, while both IgG2a and IgG1 titers were increased in group 3. Furthermore, the vaccine strains were not detected in the excreted feces of any immunized mice. Thus, the vaccine candidate can be highly immunogenic and be safe to the environment.
Collapse
Affiliation(s)
- Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea (Hur, Lee); Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA (Stein)
| | - Barry D. Stein
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea (Hur, Lee); Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA (Stein)
| | - John Hwa Lee
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Republic of Korea (Hur, Lee); Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA (Stein)
| |
Collapse
|
11
|
Hur J, Lee JH. Comparative evaluation of a vaccine candidate expressing enterotoxigenic Escherichia coli (ETEC) adhesins for colibacillosis with a commercial vaccine using a pig model. Vaccine 2012; 30:3829-33. [PMID: 22507658 DOI: 10.1016/j.vaccine.2012.03.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/14/2012] [Accepted: 03/31/2012] [Indexed: 11/29/2022]
Abstract
In this study, a comparative evaluation of a novel live vaccine candidate expressing enterotoxigenic Escherichia coli (ETEC) fimbriae and a commercial ETEC vaccine was carried out in suckling to weaned piglets. The E. coli K88ab, K88ac, K99, FasA and F41 fimbrial genes were individually inserted into an expression/secretion plasmid, pBP244. These plasmids were subsequently transfected into attenuated Salmonella, which were used as the vaccine candidate. Eighteen pregnant sows and 107 of their piglets were used in this comparative study. All the vaccinated groups of sows and piglets exhibited significantly increased antibody levels relative to specific antigens when compared with those in the unimmunized control. The experimental piglets with the vaccine candidate did not experience diarrhea following challenge with the virulent ETEC strains. However, diarrhea was observed in 36.8% of the piglets in the group immunized with the commercial vaccine and in 50% of the control group after challenge with the ETEC strains. These findings indicate that immunization of sows with the candidate vaccine can effectively protect their young pigs against colibacillosis.
Collapse
Affiliation(s)
- Jin Hur
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, South Korea
| | | |
Collapse
|
12
|
Breau C, Cameron DW, Desjardins M, Lee BC. Oral immunization using HgbA in a recombinant chancroid vaccine delivered by attenuated Salmonella typhimurium SL3261 in the temperature-dependent rabbit model. J Immunol Methods 2012; 375:232-42. [DOI: 10.1016/j.jim.2011.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 01/17/2023]
|
13
|
Bogema DR, Scott NE, Padula MP, Tacchi JL, Raymond BBA, Jenkins C, Cordwell SJ, Minion FC, Walker MJ, Djordjevic SP. Sequence TTKF ↓ QE defines the site of proteolytic cleavage in Mhp683 protein, a novel glycosaminoglycan and cilium adhesin of Mycoplasma hyopneumoniae. J Biol Chem 2011; 286:41217-41229. [PMID: 21969369 DOI: 10.1074/jbc.m111.226084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma hyopneumoniae colonizes the ciliated respiratory epithelium of swine, disrupting mucociliary function and inducing chronic inflammation. P97 and P102 family members are major surface proteins of M. hyopneumoniae and play key roles in colonizing cilia via interactions with glycosaminoglycans and mucin. The p102 paralog, mhp683, and homologs in strains from different geographic origins encode a 135-kDa pre-protein (P135) that is cleaved into three fragments identified here as P45(683), P48(683), and P50(683). A peptide sequence (TTKF↓QE) was identified surrounding both cleavage sites in Mhp683. N-terminal sequences of P48(683) and P50(683), determined by Edman degradation and mass spectrometry, confirmed cleavage after the phenylalanine residue. A similar proteolytic cleavage site was identified by mass spectrometry in another paralog of the P97/P102 family. Trypsin digestion and surface biotinylation studies showed that P45(683), P48(683), and P50(683) reside on the M. hyopneumoniae cell surface. Binding assays of recombinant proteins F1(683)-F5(683), spanning Mhp683, showed saturable and dose-dependent binding to biotinylated heparin that was inhibited by unlabeled heparin, fucoidan, and mucin. F1(683)-F5(683) also bound porcine epithelial cilia, and antisera to F2(683) and F5(683) significantly inhibited cilium binding by M. hyopneumoniae cells. These data suggest that P45(683), P48(683), and P50(683) each display cilium- and proteoglycan-binding sites. Mhp683 is the first characterized glycosaminoglycan-binding member of the P102 family.
Collapse
Affiliation(s)
- Daniel R Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Nichollas E Scott
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Matthew P Padula
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Jessica L Tacchi
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia
| | - Stuart J Cordwell
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - F Chris Minion
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | - Mark J Walker
- School of Biological Sciences, University of Wollongong, Wollongong 2522, New South Wales, Australia; School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Steven P Djordjevic
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden 2567, New South Wales, Australia; The ithree Institute, University of Technology, Sydney 2007, New South Wales, Australia.
| |
Collapse
|
14
|
Zou HY, Liu XJ, Ma FY, Chen P, Zhou R, He QG. Attenuated Actinobacillus pleuropneumoniae as a bacterial vector for expression of Mycoplasma hyopneumoniae P36 gene. J Gene Med 2011; 13:221-9. [PMID: 21432947 DOI: 10.1002/jgm.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae are causative agents of porcine pneumonia. Over the last few years, attenuated A. pleuropneumoniae live vaccines have been shown to provide protection against A. pleuropneumoniae infection. We postulated that attenuated A. pleuropneumoniae could additionally be used as a vaccine vector for protection against M. hyopneumoniae. METHODS A mutant strain of A. pleuropneumoniae, SLW36, was constructed by replacing the urease structural gene of mutant strain SLW03 of A. pleuropneumoniae with the L-lactate dehydrogenase gene (p36) of M. hyopneumoniae by transconjugation and counter selection. The urease function and the growth kinetics of SLW36 were measured. Protein expression of P36 was analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and western blotting. The attenuated virulence and immunity of SLW36 were analyzed in a mouse model. RESULTS The mutant strain SLW36 was urease negative and four-fold less virulent than the parental strain SLW03. There were no differences in expression levels of p36 at different culture time-points and the foreign gene was stable after in vitro passage. Immunoglobulin G responses against p36 antigen and M. hyopneumoniae whole-cell antigen were detected. CONCLUSIONS The mutant strain SLW36 can induce antibody against p36 and M. hyopneumoniae. The mutant strain SLW36 has the potential to be used as a live vaccine for protection against A. pleuropneumoniae and M. hyopneumoniae. Studies in pigs are needed to confirm protective levels of antibodies and to check for rare side-effects of the vaccine.
Collapse
Affiliation(s)
- Hao-Yong Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
15
|
Enhancement of immune responses by an attenuated Salmonella enterica serovar Typhimurium strain secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for a live Salmonella vaccine candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:203-9. [PMID: 21159921 DOI: 10.1128/cvi.00407-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A plasmid harboring eltB, the gene encoding heat-labile enterotoxin (LTB), was constructed by insertion of eltB into an Asd(+) β-lactamase signal plasmid (pMMP65). This was introduced into the Δlon ΔcpxR Δasd Salmonella enterica serovar Typhimurium strain and designated the LTB adjuvant strain. LTB protein production and secretion from the strain were demonstrated with an immunoblot assay and enzyme-linked immunosorbent assay. The LTB strain was evaluated for enhancement of immunity and protection efficacy induced by a previously constructed live Salmonella vaccine candidate. In addition, immunization strategies using the LTB strain were optimized for effective salmonellosis protection. Seventy female BALB/c mice were divided into seven groups (A to G; n = 10 mice per group). Mice were primed at 6 weeks of age and boosted at 9 weeks of age. All mice were orally challenged with a virulent wild-type strain at week 3 postbooster. Serum IgG and IgA titers from mice immunized with the LTB strain alone or with a mixture of the LTB strain and the vaccine candidate were significantly increased. The secretory IgA titers from mice immunized with the LTB strain alone or with the mixture were at least 2.2 times greater than those of control mice. In addition, all group E mice (primed with the vaccine-LTB mixture and boosted with the vaccine candidate) were free of clinical signs of salmonellosis and survived a virulent challenge. In contrast, death due to the challenge was 100% in control mice, 80% in group A mice (single immunization with the vaccine candidate), 60% in group B mice (primed and boosted with the vaccine candidate), 40% in group C mice (single immunization with the LTB strain), 30% in group D mice (primed and boosted with the LTB strain), and 30% in group F mice (primed and boosted with the vaccine-LTB mixture). These results suggest that vaccination with the LTB strain, especially when added at the prime stage only, effectively enhances immune responses and protection against salmonellosis.
Collapse
|
16
|
Torres-Escobar A, Juárez-Rodríguez MD, Branger CG, Curtiss R. Evaluation of the humoral immune response in mice orally vaccinated with live recombinant attenuated Salmonella enterica delivering a secreted form of Yersinia pestis PsaA. Vaccine 2010; 28:5810-6. [PMID: 20600475 DOI: 10.1016/j.vaccine.2010.06.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 12/25/2022]
Abstract
Yersinia pestis PsaA is an adhesin that is synthesized inside macrophages. Here, we evaluated the immune profile of codon-optimized Y. pestis PsaA synthesized in a live recombinant attenuated Salmonella vaccine (RASV) strain chi9558. Oral immunization of BALB/c mice with chi9558(pYA3705) delivering a secreted form of PsaA, elicited a systemic PsaA-specific immunoglobulin G (IgG) response but offered limited protection against lethal challenge with the intranasally introduced Y. pestis CO92 strain. Our results suggest that appropriate fine-tuning of Y. pestis PsaA delivery by RASV could improve its protective role in curtailing plague colonization and infection.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Center for Infectious Disease and Vaccinology at the Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | |
Collapse
|
17
|
Changes of physiological and biochemical properties of Salmonella enterica serovar Typhimurium by deletion of cpxR and lon genes using allelic exchange method. J Microbiol Methods 2009; 79:314-20. [DOI: 10.1016/j.mimet.2009.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 01/06/2023]
|