1
|
Xu H, Lotfy P, Gelb S, Pragana A, Hehnly C, Byer LIJ, Shipley FB, Zawadzki ME, Cui J, Deng L, Taylor M, Webb M, Lidov HGW, Andermann ML, Chiu IM, Ordovas-Montanes J, Lehtinen MK. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 2024; 187:4946-4963.e17. [PMID: 39089253 PMCID: PMC11458255 DOI: 10.1016/j.cell.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Lotfy
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sivan Gelb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christine Hehnly
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lillian I J Byer
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Milo Taylor
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Mya Webb
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark L Andermann
- Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Xu H, Lotfy P, Gelb S, Pragana A, Hehnly C, Shipley FB, Zawadzki ME, Cui J, Deng L, Taylor M, Webb M, Lidov HGW, Andermann ML, Chiu IM, Ordovas-Montanes J, Lehtinen MK. A collaboration between immune cells and the choroid plexus epithelium in brain inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552298. [PMID: 37609192 PMCID: PMC10441321 DOI: 10.1101/2023.08.07.552298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use chronic two-photon imaging in awake mice and single-cell transcriptomics to demonstrate that in addition to these roles, the ChP is a complex immune organ that regulates brain inflammation. In a mouse meningitis model, neutrophils and monocytes accumulated in ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process, including the discovery of epithelial cells that transiently specialized to nurture immune cells, coordinate their recruitment, survival, and differentiation, and ultimately, control the opening/closing of the ChP brain barrier. Collectively, we provide a new conceptual understanding and comprehensive roadmap of neuroinflammation at the ChP brain barrier.
Collapse
|
3
|
Pětrošová H, Mikhael A, Culos S, Giraud-Gatineau A, Gomez AM, Sherman ME, Ernst RK, Cameron CE, Picardeau M, Goodlett DR. Lipid A structural diversity among members of the genus Leptospira. Front Microbiol 2023; 14:1181034. [PMID: 37303810 PMCID: PMC10248169 DOI: 10.3389/fmicb.2023.1181034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Lipid A is the hydrophobic component of bacterial lipopolysaccharide and an activator of the host immune system. Bacteria modify their lipid A structure to adapt to the surrounding environment and, in some cases, to evade recognition by host immune cells. In this study, lipid A structural diversity within the Leptospira genus was explored. The individual Leptospira species have dramatically different pathogenic potential that ranges from non-infectious to life-threatening disease (leptospirosis). Ten distinct lipid A profiles, denoted L1-L10, were discovered across 31 Leptospira reference species, laying a foundation for lipid A-based molecular typing. Tandem MS analysis revealed structural features of Leptospira membrane lipids that might alter recognition of its lipid A by the host innate immune receptors. Results of this study will aid development of strategies to improve diagnosis and surveillance of leptospirosis, as well as guide functional studies on Leptospira lipid A activity.
Collapse
Affiliation(s)
- Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, BC, Canada
| | - Abanoub Mikhael
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, BC, Canada
| | - Sophie Culos
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | - Alloysius M. Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Matthew E. Sherman
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biology of Spirochetes Unit, Paris, France
| | - David R. Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Balhuizen MD, Veldhuizen EJA, Haagsman HP. Outer Membrane Vesicle Induction and Isolation for Vaccine Development. Front Microbiol 2021; 12:629090. [PMID: 33613498 PMCID: PMC7889600 DOI: 10.3389/fmicb.2021.629090] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-negative bacteria release vesicular structures from their outer membrane, so called outer membrane vesicles (OMVs). OMVs have a variety of functions such as waste disposal, communication, and antigen or toxin delivery. These vesicles are the promising structures for vaccine development since OMVs carry many surface antigens that are identical to the bacterial surface. However, isolation is often difficult and results in low yields. Several methods to enhance OMV yield exist, but these do affect the resulting OMVs. In this review, our current knowledge about OMVs will be presented. Different methods to induce OMVs will be reviewed and their advantages and disadvantages will be discussed. The effects of the induction and isolation methods used in several immunological studies on OMVs will be compared. Finally, the challenges for OMV-based vaccine development will be examined and one example of a successful OMV-based vaccine will be presented.
Collapse
Affiliation(s)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
5
|
Aass HCD, Hellum M, Trøseid AMS, Brandtzaeg P, Berg JP, Øvstebø R, Henriksson CE. Whole-blood incubation with the Neisseria meningitidis lpxL1 mutant induces less pro-inflammatory cytokines than the wild type, and IL-10 reduces the MyD88-dependent cytokines. Innate Immun 2018; 24:101-111. [PMID: 29313733 PMCID: PMC6830899 DOI: 10.1177/1753425917749299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Levels of bacterial LPS, pro-inflammatory cytokines and IL-10 are related to the
severity of meningococcal septicaemia. Patients infected with a
Neisseria meninigitidis lpxL1 mutant
(Nm-mutant) with penta-acylated lipid A present with a milder
meningococcal disease than those infected with hexa-acylated Nm
wild type (Nm-wt). The aim was to compare the pro-inflammatory
responses after ex vivo incubation with the heat-inactivated
Nm-wt or the Nm-mutant in citrated whole
blood, and the modulating effects of IL-10. Concomitantly, we measured
intracellular IL-6, IL-8 and TNF-α to elucidate which cell types were
responsible for the pro-inflammatory responses. Incubation with
Nm-wt
(106/ml;107/ml;108/ml) resulted in a
dose-dependent increase of the MyD88-dependent pro-inflammatory cytokines
(IL-1β, IL-6, IL-8, TNF-α), which were mainly derived from monocytes. In
comparison, only 108/ml of the Nm-mutant
significantly increased the concentration of these cytokines. The
MyD88-independent cytokines (IP-10, RANTES) were evidently increased after
incubation with the Nm-wt but were unaffected by the
Nm-mutant. Co-incubation with IL-10 significantly reduced
the concentrations of the MyD88-dependent cytokines induced by both the
Nm-wt and the Nm-mutant, whereas the
MyD88-independent cytokines were almost unaffected. In summary, the
Nm-mutant is a weaker inducer of the
MyD88-dependent/independent cytokines than the Nm-wt in whole
blood, and IL-10 attenuates the Nm-stimulated increase in
MyD88-dependent pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hans Christian D Aass
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marit Hellum
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Petter Brandtzaeg
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,3 Department of Pediatrics, University of Oslo, Oslo, Norway
| | - Jens Petter Berg
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Carola Elisabeth Henriksson
- 1 Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
7
|
Dowling DJ, Sanders H, Cheng WK, Joshi S, Brightman S, Bergelson I, Pietrasanta C, van Haren SD, van Amsterdam S, Fernandez J, van den Dobbelsteen GPJM, Levy O. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation from Immunogenicity. Front Immunol 2016; 7:562. [PMID: 28008331 PMCID: PMC5143884 DOI: 10.3389/fimmu.2016.00562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/22/2016] [Indexed: 01/04/2023] Open
Abstract
Background Group B Neisseria meningitidis, an endotoxin-producing Gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB) disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs) or soluble lipopolysaccharide (LPS) represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific human in vitro culture systems. Methods OMVs from wild type- and inactivated lpxL1 gene mutant-N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell (DC) arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and prostaglandin E2 production, as well as cell surface activation markers (HLA-DR, CD86, and CCR7). OMV immunogenicity was assessed in mice. Results ΔlpxLI native OMVs (nOMVs) demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, and bacillus Calmette–Guérin) tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI nOMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization. Conclusion A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.
Collapse
Affiliation(s)
- David J Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Holly Sanders
- Janssen Vaccines and Prevention B.V. , Leiden , Netherlands
| | - Wing Ki Cheng
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Sweta Joshi
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Spencer Brightman
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Ilana Bergelson
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital , Boston, MA , USA
| | - Carlo Pietrasanta
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Simon D van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Precision Vaccine Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
9
|
Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells. Infect Immun 2014; 83:227-38. [PMID: 25348634 DOI: 10.1128/iai.02197-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones.
Collapse
|
10
|
Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. mBio 2014; 5:e01921-14. [PMID: 25271291 PMCID: PMC4196239 DOI: 10.1128/mbio.01921-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogenic and nonpathogenic species of bacteria and fungi release membrane vesicles (MV), containing proteins, polysaccharides, and lipids, into the extracellular milieu. Previously, we demonstrated that several mycobacterial species, including bacillus Calmette-Guerin (BCG) and Mycobacterium tuberculosis, release MV containing lipids and proteins that subvert host immune response in a Toll-like receptor 2 (TLR2)-dependent manner (R. Prados-Rosales et al., J. Clin. Invest. 121:1471–1483, 2011, doi:10.1172/JCI44261). In this work, we analyzed the vaccine potential of MV in a mouse model and compared the effects of immunization with MV to those of standard BCG vaccination. Immunization with MV from BCG or M. tuberculosis elicited a mixed humoral and cellular response directed to both membrane and cell wall components, such as lipoproteins. However, only vaccination with M. tuberculosis MV was able to protect as well as live BCG immunization. M. tuberculosis MV boosted BCG vaccine efficacy. In summary, MV are highly immunogenic without adjuvants and elicit immune responses comparable to those achieved with BCG in protection against M. tuberculosis. This work offers a new vaccine approach against tuberculosis using mycobacterial MV. Mycobacterium MV are a naturally released product combining immunogenic antigens in the context of a lipid structure. The fact that MV do not need adjuvants and elicit protection comparable to that elicited by the BCG vaccine encourages vaccine approaches that combine protein antigens and lipids. Consequently, mycobacterium MV establish a new type of vaccine formulation.
Collapse
|
11
|
du Plessis M, Wolter N, Crowther-Gibson P, Hamstra HJ, Schipper K, Moodley C, Cohen C, van de Beek D, van der Ley P, von Gottberg A, van der Ende A. Meningococcal serogroup Y lpxL1 variants from South Africa are associated with clonal complex 23 among young adults. J Infect 2014; 68:455-61. [DOI: 10.1016/j.jinf.2013.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/21/2013] [Accepted: 12/29/2013] [Indexed: 11/25/2022]
|
12
|
Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect Immun 2013; 82:184-92. [PMID: 24126526 DOI: 10.1128/iai.00890-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae causes gonorrhea, a sexually transmitted infection characterized by inflammation of the cervix or urethra. However, a significant subset of patients with N. gonorrhoeae remain asymptomatic, without evidence of localized inflammation. Inflammatory responses to N. gonorrhoeae are generated by host innate immune recognition of N. gonorrhoeae by several innate immune signaling pathways, including lipooligosaccharide (LOS) and other pathogen-derived molecules through activation of innate immune signaling systems, including toll-like receptor 4 (TLR4) and the interleukin-1β (IL-1β) processing complex known as the inflammasome. The lipooligosaccharide of N. gonorrhoeae has a hexa-acylated lipid A. N. gonorrhoeae strains that carry an inactivated msbB (also known as lpxL1) gene produce a penta-acylated lipid A and exhibit reduced biofilm formation, survival in epithelial cells, and induction of epithelial cell inflammatory signaling. We now show that msbB-deficient N. gonorrhoeae induces less inflammatory signaling in human monocytic cell lines and murine macrophages than the parent organism. The penta-acylated LOS exhibits reduced toll-like receptor 4 signaling but does not affect N. gonorrhoeae-mediated activation of the inflammasome. We demonstrate that N. gonorrhoeae msbB is dispensable for initiating and maintaining infection in a murine model of gonorrhea. Interestingly, infection with msbB-deficient N. gonorrhoeae is associated with less localized inflammation. Combined, these data suggest that TLR4-mediated recognition of N. gonorrhoeae LOS plays an important role in the pathogenesis of symptomatic gonorrhea infection and that alterations in lipid A biosynthesis may play a role in determining symptomatic and asymptomatic infections.
Collapse
|
13
|
Potmesil R, Beran O, Musilek M, Kriz P, Holub M. Different cytokine production and Toll-like receptor expression induced by heat-killed invasive and carrier strains of Neisseria meningitidis. APMIS 2013; 122:33-41. [PMID: 23489281 DOI: 10.1111/apm.12062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/03/2013] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis may cause severe invasive disease. The carriage state of the pathogen is common, and the reasons underlying why the infection becomes invasive are not fully understood. The aim of this study was to compare the differences between invasive and carrier strains in the activation of innate immunity. The monocyte expression of TLR2, TLR4, CD14, and HLA-DR, cytokine production, and the granulocyte oxidative burst were analyzed after in vitro stimulation by heat-killed invasive (n = 14) and carrier (n = 9) strains of N. meningitidis. The expression of the cell surface markers in monocytes, the oxidative burst, and cytokine concentrations were measured using flow cytometry. Carrier strains stimulated a higher production of inflammatory cytokines and oxidative burst in granulocytes than invasive strains (all p < 0.001), whereas invasive strains significantly up-regulated TLR2, TLR4 (p < 0.001), and CD14 (p < 0.01) expression on monocytes. Conversely, the monocyte expression of HLA-DR was higher after the stimulation by carrier strains (p < 0.05) in comparison to invasive strains. The LPS inhibitor polymyxin B abolished the differences between the strains. Our findings indicate different immunostimulatory potencies of invasive strains of N. meningitidis compared with carrier strains.
Collapse
Affiliation(s)
- Roman Potmesil
- Department of Infectious and Tropical Diseases, First Faculty of Medicine, Charles University in Prague and Na Bulovce Hospital, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
14
|
John CM, Liu M, Phillips NJ, Yang Z, Funk CR, Zimmerman LI, Griffiss JM, Stein DC, Jarvis GA. Lack of lipid A pyrophosphorylation and functional lptA reduces inflammation by Neisseria commensals. Infect Immun 2012; 80:4014-26. [PMID: 22949553 PMCID: PMC3486066 DOI: 10.1128/iai.00506-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
The interaction of the immune system with Neisseria commensals remains poorly understood. We have previously shown that phosphoethanolamine on the lipid A portion of lipooligosaccharide (LOS) plays an important role in Toll-like receptor 4 (TLR4) signaling. For pathogenic Neisseria, phosphoethanolamine is added to lipid A by the phosphoethanolamine transferase specific for lipid A, which is encoded by lptA. Here, we report that Southern hybridizations and bioinformatics analyses of genomic sequences from all eight commensal Neisseria species confirmed that lptA was absent in 15 of 17 strains examined but was present in N. lactamica. Mass spectrometry of lipid A and intact LOS revealed the lack of both pyrophosphorylation and phosphoethanolaminylation in lipid A of commensal species lacking lptA. Inflammatory signaling in human THP-1 monocytic cells was much greater with pathogenic than with commensal Neisseria strains that lacked lptA, and greater sensitivity to polymyxin B was consistent with the absence of phosphoethanolamine. Unlike the other commensals, whole bacteria of two N. lactamica commensal strains had low inflammatory potential, whereas their lipid A had high-level pyrophosphorylation and phosphoethanolaminylation and induced high-level inflammatory signaling, supporting previous studies indicating that this species uses mechanisms other than altering lipid A to support commensalism. A meningococcal lptA deletion mutant had reduced inflammatory potential, further illustrating the importance of lipid A pyrophosphorylation and phosphoethanolaminylation in the bioactivity of LOS. Overall, our results indicate that lack of pyrophosphorylation and phosphoethanolaminylation of lipid A contributes to the immune privilege of most commensal Neisseria strains by reducing the inflammatory potential of LOS.
Collapse
Affiliation(s)
- Constance M. John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Mingfeng Liu
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Laboratory Medicine
| | - Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Zhijie Yang
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Courtney R. Funk
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Lindsey I. Zimmerman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - J. McLeod Griffiss
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Laboratory Medicine
| | - Daniel C. Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Gary A. Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Laboratory Medicine
| |
Collapse
|
15
|
Ladhani SN, Lucidarme J, Newbold LS, Gray SJ, Carr AD, Findlow J, Ramsay ME, Kaczmarski EB, Borrow R. Invasive meningococcal capsular group Y disease, England and Wales, 2007-2009. Emerg Infect Dis 2012; 18:63-70. [PMID: 22261040 PMCID: PMC3310110 DOI: 10.3201/eid1801.110901] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increases may result from mutations that allow the organism to evade the immune system. Enhanced national surveillance for invasive meningococcal disease in England and Wales identified an increase in laboratory-confirmed capsular group Y (MenY) disease from 34 cases in 2007 to 44 in 2008 and 65 in 2009. For cases diagnosed in 2009, patient median age at disease onset was 60 years; 39% of patients had underlying medical conditions, and 19% died. MenY isolates causing invasive disease during 2007–2009 belonged mainly to 1 of 4 clonal complexes (cc), cc23 (56% of isolates), cc174 (21%), cc167 (11%), and cc22 (8%). The 2009 increase resulted primarily from sequence type 1655 (cc23) (22 cases in 2009, compared with 4 cases each in 2007 and 2008). cc23 was associated with lpxL1 mutations and meningitis in younger age groups (<25 years); cc174 was associated with nonmeningitis, particularly pneumonia, in older age groups (>65 years). The increase in MenY disease requires careful epidemiologic and molecular monitoring.
Collapse
Affiliation(s)
- Shamez N Ladhani
- Department, Health Protection Agency Colindale, 61 Colindale Ave, London NW9 5EQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ladhani SN, Flood JS, Ramsay ME, Campbell H, Gray SJ, Kaczmarski EB, Mallard RH, Guiver M, Newbold LS, Borrow R. Invasive meningococcal disease in England and Wales: Implications for the introduction of new vaccines. Vaccine 2012; 30:3710-6. [DOI: 10.1016/j.vaccine.2012.03.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 01/06/2023]
|
17
|
Halperin SA, Bettinger JA, Greenwood B, Harrison LH, Jelfs J, Ladhani SN, McIntyre P, Ramsay ME, Sáfadi MAP. The changing and dynamic epidemiology of meningococcal disease. Vaccine 2011; 30 Suppl 2:B26-36. [PMID: 22178525 DOI: 10.1016/j.vaccine.2011.12.032] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023]
Abstract
The epidemiology of invasive meningococcal disease continues to change rapidly, even in the three years since the first Meningococcal Exchange Meeting in 2008. Control of disease caused by serogroup C has been achieved in countries that have implemented meningococcal C or quadrivalent meningococcal ACWY conjugate vaccines. Initiation of mass immunization programs with meningococcal A conjugate vaccines across the meningitis belt of Africa may lead to the interruption of cyclical meningococcal epidemics. A meningococcal B vaccination program in New Zealand has led to a decreased incidence of high rates of endemic serogroup B disease. Increases in serogroup Y disease have been observed in certain Nordic countries which, if they persist, may require consideration of use of a multiple serogroup vaccine. The imminent availability of recombinant broadly protective serogroup B vaccines may provide the tools for further control of invasive meningococcal disease in areas where serogroup B disease predominates. Continued surveillance of meningococcal disease is essential; ongoing global efforts to improve the completeness of reporting are required.
Collapse
Affiliation(s)
- Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University, the IWK Health Centre, and Capital Health, Halifax, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Current World Literature. Curr Opin Neurol 2011; 24:300-7. [DOI: 10.1097/wco.0b013e328347b40e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|