1
|
Liu J, Zhou A, Liu Q, Gao Y, Xu S, Lu Y. Genomic Insights into Vector-Pathogen Adaptation in Haemaphysalis longicornis and Rhipicephalus microplus. Pathogens 2025; 14:306. [PMID: 40333071 PMCID: PMC12030188 DOI: 10.3390/pathogens14040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
As crucial vectors that transmit pathogens to humans and livestock, ticks pose substantial global health threats and economic burdens. We analyzed 328 tick genomes to explore the population's genetic structure and the adaptive evolution of H. longicornis and R. microplus, two tick species with distinct life cycle characteristics. We observed distinct genetic structures in H. longicornis and R. microplus. Gene flow estimation revealed a closer genetic connection in R. microplus than H. longicornis, which was facilitated by geographical proximity. Notably, we identified a set of candidate genes associated with possible adaptations. Specifically, the immune-related gene DUOX and the iron transport gene ACO1 showed significant signals of natural selection in R. microplus. Similarly, H. longicornis exhibited selection in pyridoxal-phosphate-dependent enzyme genes associated with heme synthesis. Moreover, we observed significant correlations between the abundance of pathogens, such as Rickettsia and Francisella, and specific tick genotypes, which highlights the role of R. microplus in maintaining these pathogens and its adaptations that influence immune responses and iron metabolism, suggesting potential coevolution between vectors and pathogens. Our study highlights the vital genes involved in tick blood feeding and immunity, and it provides insights into the coevolution of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - An Zhou
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| | - Qi Liu
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| |
Collapse
|
2
|
Narh Mensah DL, Wingfield BD, Coetzee MPA. Two distinct non-ribosomal peptide synthetase-independent siderophore synthetase gene clusters identified in Armillaria and other species in the Physalacriaceae. G3 (BETHESDA, MD.) 2023; 13:jkad205. [PMID: 37843963 PMCID: PMC10700112 DOI: 10.1093/g3journal/jkad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023]
Abstract
Siderophores are important for ferric iron solubilization, sequestration, transportation, and storage, especially under iron-limiting conditions such as aerobic conditions at high pH. Siderophores are mainly produced by non-ribosomal peptide synthetase-dependent siderophore pathway, non-ribosomal peptide synthetase-independent siderophore synthetase pathway, or the hybrid non-ribosomal peptide synthetases/non-ribosomal peptide synthetases-independent siderophore pathway. Outcompeting or inhibition of plant pathogens, alteration of host defense mechanisms, and alteration of plant-fungal interactions have been associated with fungal siderophores. To understand these mechanisms in fungi, studies have been conducted on siderophore biosynthesis by ascomycetes with limited focus on the basidiomycetes. Armillaria includes several species that are pathogens of woody plants and trees important to agriculture, horticulture, and forestry. The aim of this study was to investigate the presence of non-ribosomal peptide synthetases-independent siderophore synthetase gene cluster(s) in genomes of Armillaria species using a comparative genomics approach. Iron-dependent growth and siderophore biosynthesis in strains of selected Armillaria spp. were also evaluated in vitro. Two distinct non-ribosomal peptide synthetases-independent siderophore synthetase gene clusters were identified in all the genomes. All non-ribosomal peptide synthetases-independent siderophore synthetase genes identified putatively encode Type A' non-ribosomal peptide synthetases-independent siderophore synthetases, most of which have IucA_IucC and FhuF-like transporter domains at their N- and C-terminals, respectively. The effect of iron on culture growth varied among the strains studied. Bioassays using the CAS assay on selected Armillaria spp. revealed in vitro siderophore biosynthesis by all strains irrespective of added FeCl3 concentration. This study highlights some of the tools that Armillaria species allocate to iron homeostasis. The information generated from this study may in future aid in developing molecular based methods to control these phytopathogens.
Collapse
Affiliation(s)
- Deborah L Narh Mensah
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
- CSIR—Food Research Institute, Microbiology and Mushroom Research Division, P. O. Box, M20, Accra, Ghana
| | - Brenda D Wingfield
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Martin P A Coetzee
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
3
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
4
|
Iron-Modified Blood Culture Media Allow for the Rapid Diagnosis and Isolation of the Slow-Growing Pathogen Francisella tularensis. Microbiol Spectr 2022; 10:e0241522. [PMID: 36190401 PMCID: PMC9603284 DOI: 10.1128/spectrum.02415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The life-threatening disease tularemia is caused by Francisella tularensis, an intracellular Gram-negative bacterial pathogen. Due to the high mortality rates of the disease, as well as the low respiratory infectious dose, F. tularensis is categorized as a Tier 1 bioterror agent. The identification and isolation from clinical blood cultures of F. tularensis are complicated by its slow growth. Iron was shown to be one of the limiting nutrients required for F. tularensis metabolism and growth. Bacterial growth was shown to be restricted or enhanced in the absence or addition of iron. In this study, we tested the beneficial effect of enhanced iron concentrations on expediting F. tularensis blood culture diagnostics. Accordingly, bacterial growth rates in blood cultures with or without Fe2+ supplementation were evaluated. Growth quantification by direct CFU counts demonstrated significant improvement of growth rates of up to 6 orders of magnitude in Fe2+-supplemented media compared to the corresponding nonmodified cultures. Fe2+ supplementation significantly shortened incubation periods for successful diagnosis and isolation of F. tularensis by up to 92 h. This was achieved in a variety of blood culture types in spite of a low initial bacterial inoculum representative of low levels of bacteremia. These improvements were demonstrated with culture of either Francisella tularensis subsp. tularensis or subsp. holarctica in all examined commercial blood culture types routinely used in a clinical setup. Finally, essential downstream identification assays, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), immunofluorescence, or antibiotic susceptibility tests, were not affected in the presence of Fe2+. To conclude, supplementing blood cultures with Fe2+ enables a significant shortening of incubation times for F. tularensis diagnosis, without affecting subsequent identification or isolation assays. IMPORTANCE In this study, we evaluated bacterial growth rates of Francisella tularensis strains in iron (Fe)-enriched blood cultures as a means of improving and accelerating bacterial growth. The shortening of the culturing time should facilitate rapid pathogen detection and isolation, positively impacting clinical diagnosis and enabling prompt onset of efficient therapy.
Collapse
|
5
|
Cantlay S, Kaftanic C, Horzempa J. PdpC, a secreted effector protein of the type six secretion system, is required for erythrocyte invasion by Francisella tularensis LVS. Front Cell Infect Microbiol 2022; 12:979693. [PMID: 36237421 PMCID: PMC9552824 DOI: 10.3389/fcimb.2022.979693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Francisella tularensis is a gram negative, intracellular pathogen that is the causative agent of the potentially fatal disease, tularemia. During infection, F. tularensis is engulfed by and replicates within host macrophages. Additionally, this bacterium has also been shown to invade human erythrocytes and, in both cases, the Type Six Secretion System (T6SS) is required for these host-pathogen interaction. One T6SS effector protein, PdpC, is important for macrophage infection, playing a role in phagolysosomal escape and intracellular replication. To determine if PdpC also plays a role in erythrocyte invasion, we constructed a pdpC-null mutant in the live vaccine strain, F. tularensis LVS. We show that PdpC is required for invasion of human and sheep erythrocytes during in vitro assays and that reintroduction of a copy of pdpC, in trans, rescues this phenotype. The interaction with human erythrocytes was further characterized using double-immunofluorescence microscopy to show that PdpC is required for attachment of F. tularensis LVS to erythrocytes as well as invasion. To learn more about the role of PdpC in erythrocyte invasion we generated a strain of F. tularensis LVS expressing pdpC-emgfp. PdpC-EmGFP localizes as discrete foci in a subset of F. tularensis LVS cells grown in broth culture and accumulates in erythrocytes during invasion assays. Our results are the first example of a secreted effector protein of the T6SS shown to be involved in erythrocyte invasion and indicate that PdpC is secreted into erythrocytes during invasion.
Collapse
Affiliation(s)
| | | | - Joseph Horzempa
- Department of Biological Sciences, West Liberty University, West Liberty, WV, United States
| |
Collapse
|
6
|
Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to Francisella Virulence in Galleria mellonella Larvae. Infect Immun 2021; 89:e0057920. [PMID: 33875476 PMCID: PMC8208517 DOI: 10.1128/iai.00579-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis causes the deadly zoonotic disease tularemia in humans and is able to infect a broad range of organisms including arthropods, which are thought to play a major role in Francisella transmission. However, while mammalian in vitro and in vivo infection models are widely used to investigate Francisella pathogenicity, a detailed characterization of the major Francisella virulence factor, a noncanonical type VI secretion system (T6SS), in an arthropod in vivo infection model is missing. Here, we use Galleria mellonella larvae to analyze the role of the Francisella T6SS and its corresponding effectors in F. tularensis subsp. novicida virulence. We report that G. mellonella larvae killing depends on the functional T6SS and infectious dose. In contrast to other mammalian in vivo infection models, even one of the T6SS effectors PdpC, PdpD, or OpiA is sufficient to kill G. mellonella larvae, while sheath recycling by ClpB is dispensable. We further demonstrate that treatment by polyethylene glycol (PEG) activates Francisella T6SS in liquid culture and that this is independent of the response regulator PmrA. PEG-activated IglC secretion is dependent on T6SS structural component PdpB but independent of putative effectors PdpC, PdpD, AnmK, OpiB1, OpiB2, and OpiB3. The results of larvae infection and secretion assay suggest that AnmK, a putative T6SS component with unknown function, interferes with OpiA-mediated toxicity but not with general T6SS activity. We establish that the easy-to-use G. mellonella larvae infection model provides new insights into the function of T6SS and pathogenesis of Francisella.
Collapse
|
7
|
Li B, Deng X, Kim SH, Buhrow L, Tomchick DR, Phillips MA, Michael AJ. Alternative pathways utilize or circumvent putrescine for biosynthesis of putrescine-containing rhizoferrin. J Biol Chem 2020; 296:100146. [PMID: 33277357 PMCID: PMC7857480 DOI: 10.1074/jbc.ra120.016738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
The siderophore rhizoferrin (N1,N4-dicitrylputrescine) is produced in fungi and bacteria to scavenge iron. Putrescine-producing bacterium Ralstonia pickettii synthesizes rhizoferrin and encodes a single nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. From biosynthetic logic, we hypothesized that this single enzyme is sufficient for rhizoferrin biosynthesis. We confirmed this by expression of R. pickettii NIS synthetase in Escherichia coli, resulting in rhizoferrin production. This was further confirmed in vitro using the recombinant NIS synthetase, synthesizing rhizoferrin from putrescine and citrate. Heterologous expression of homologous lbtA from Legionella pneumophila, required for rhizoferrin biosynthesis in that species, produced siderophore activity in E. coli. Rhizoferrin is also synthesized by Francisella tularensis and Francisella novicida, but unlike R. pickettii or L. pneumophila, Francisella species lack putrescine biosynthetic pathways because of genomic decay. Francisella encodes a NIS synthetase FslA/FigA and an ornithine decarboxylase homolog FslC/FigC, required for rhizoferrin biosynthesis. Ornithine decarboxylase produces putrescine from ornithine, but we show here in vitro that FigA synthesizes N-citrylornithine, and FigC is an N-citrylornithine decarboxylase that together synthesize rhizoferrin without using putrescine. We co-expressed F. novicida figA and figC in E. coli and produced rhizoferrin. A 2.1 Å X-ray crystal structure of the FigC N-citrylornithine decarboxylase reveals how the larger substrate is accommodated and how active site residues have changed to recognize N-citrylornithine. FigC belongs to a new subfamily of alanine racemase-fold PLP-dependent decarboxylases that are not involved in polyamine biosynthesis. These data reveal a natural product biosynthetic workaround that evolved to bypass a missing precursor and re-establish it in the final structure.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoyi Deng
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sok Ho Kim
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Leann Buhrow
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Diana R Tomchick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks. Microorganisms 2020; 8:microorganisms8111639. [PMID: 33114018 PMCID: PMC7690693 DOI: 10.3390/microorganisms8111639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases.
Collapse
|
9
|
The Sensor Kinase QseC Regulates the Unlinked PmrA Response Regulator and Downstream Gene Expression in Francisella. J Bacteriol 2020; 202:JB.00321-20. [PMID: 32839173 DOI: 10.1128/jb.00321-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
The facultative intracellular bacterial pathogen Francisella tularensis is the causative agent of tularemia in humans and animals. Gram-negative bacteria utilize two-component regulatory systems (TCS) to sense and respond to their changing environment. No classical, tandemly arranged sensor kinase and response regulator TCS genes exist in the human virulent Francisella tularensis subsp. tularensis, but orphaned members are present. PmrA is an orphan response regulator responsible for intramacrophage growth and virulence; however, the regulation of PmrA activity is not understood. We and others have shown that PmrA represses the expression of priM, described to encode an antivirulence determinant. By screening a mutant library for increased priM promoter activity, we identified the sensor kinase homolog QseC as an upstream regulator of priM expression, and this regulation is in part dependent upon the aspartate phosphorylation site of PmrA (D51). Several examined environmental signals, including epinephrine, which is reported to activate QseC in other bacteria, do not affect priM expression in a manner dependent on PmrA. Intramacrophage survival assays also question the finding that PriM is an antivirulence factor. Thus, these data suggest that the PmrA-regulated gene priM is modulated by the QseC-PmrA (QseB) TCS in Francisella IMPORTANCE The disease tularemia is caused by the highly infectious Gram-negative pathogen Francisella tularensis This bacterium encodes few regulatory factors (e.g., two-component systems [TCS]). PmrA, required for intramacrophage survival and virulence in the mouse model, is encoded by an orphan TCS response regulator gene. It is unclear how PmrA is responsive to environmental signals to regulate loci, including the PmrA-repressed gene priM We identify an orphan sensor kinase (QseC) that is required for priM repression and further explore both environmental signals that might regulate the QseC-PmrA TCS and the function of PriM.
Collapse
|
10
|
Ramakrishnan G, Pérez NM, Carroll C, Moore MM, Nakamoto RK, Fox TE. Citryl Ornithine Is an Intermediate in a Three-Step Biosynthetic Pathway for Rhizoferrin in Francisella. ACS Chem Biol 2019; 14:1760-1766. [PMID: 31260252 DOI: 10.1021/acschembio.9b00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Gram-negative bacterium Francisella tularensis secretes the siderophore rhizoferrin to scavenge necessary iron from the environment. Rhizoferrin, also produced by a variety of fungi and bacteria, comprises two citrate molecules linked by amide bonds to a central putrescine (diaminobutane) moiety. Genetic analysis has determined that rhizoferrin production in F. tularensis requires two enzymes: FslA, a siderophore synthetase of the nonribosomal peptide synthetase-independent siderophore synthetase (NIS) family, and FslC, a pyridoxal-phosphate-dependent decarboxylase. To discern the steps in the biosynthetic pathway, we tested F. tularensis strain LVS and its ΔfslA and ΔfslC mutants for the ability to incorporate potential precursors into rhizoferrin. Unlike putrescine supplementation, supplementation with ornithine greatly enhanced siderophore production by LVS. Radioactivity from L-[U-14C] ornithine, but not from L-[1-14C] ornithine, was efficiently incorporated into rhizoferrin by LVS. Although neither the ΔfslA nor the ΔfslC mutant produced rhizoferrin, a putative siderophore intermediate labeled by both [U-14C] ornithine and [1-14C] ornithine was secreted by the ΔfslC mutant. Rhizoferrin was identified by liquid chromatography and mass spectrometry in LVS culture supernatants, while citryl-ornithine was detected as the siderophore intermediate in the culture supernatant of the ΔfslC mutant. Our findings support a three-step pathway for rhizoferrin production in Francisella; unlike the fungus Rhizopus delemar, where putrescine functions as a primary precursor for rhizoferrin, biosynthesis in Francisella preferentially starts with ornithine as the substrate for FslA-mediated condensation with citrate. Decarboxylation of this citryl ornithine intermediate by FslC is necessary for a second condensation reaction with citrate to produce rhizoferrin.
Collapse
Affiliation(s)
| | | | - Cassandra Carroll
- Department of Biological Sciences, Simon Fraser University, Burnaby V5A 1S6, Canada
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby V5A 1S6, Canada
| | | | | |
Collapse
|
11
|
Pereira FL, Tavares GC, de Carvalho AF, Rosa JCC, Rezende CP, Leal CAG, Figueiredo HCP. Effects of temperature changes in the transcriptional profile of the emerging fish pathogen Francisella noatunensis subsp. orientalis. Microb Pathog 2019; 133:103548. [PMID: 31112771 DOI: 10.1016/j.micpath.2019.103548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
Abstract
One of the major challenges in Nile tilapia (Oreochromis niloticus L.) farming is the occurrence of bacterial infections, and the Francisella noatunensis subsp. orientalis (FNO) is an important pathogen that has emerged in last decades. Francisellosis outbreaks have been reported in the literature as occurring seasonally when water temperature is below 24 °C. The aim of this study was to quantify the median lethal doses (LD50) of FNO in experimental challenges at 28 °C and 22 °C, and to investigate the impact of temperature changes in whole genome expression using microarray technology. The LD50 for Nile tilapia at 28 °C was ∼105.7, whereas at 22 °C, the LD50 was ∼102.2, showing that the decrease in temperature enhanced disease outcome. Out of 1917 genes screened, a total of 31 and 19 genes were down- and up-regulated at 22 °C, respectively. These genes were grouped by orthology into functional categories of: amino acid, inorganic ion, and carbohydrate transport and metabolism; transcription; and posttranslational modification, protein turnover, and chaperones. Expression of genes related to metabolism, oxidative stress, and thermal shock were regulated by temperature changes, reflecting an ability of FNO to adapt to the environment. Expression of virulence genes usually required for the Francisella genus was not changed between tested temperatures, including that of genes located on the Francisella Pathogenicity Island.
Collapse
Affiliation(s)
- Felipe Luiz Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Guilherme Campos Tavares
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Alex Fiorini de Carvalho
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Júlio César Camara Rosa
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Cristiana Perdigão Rezende
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Carlos Augusto Gomes Leal
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Henrique César Pereira Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil. http://www.vet.ufmg.br/
| |
Collapse
|
12
|
Pérard J, Nader S, Levert M, Arnaud L, Carpentier P, Siebert C, Blanquet F, Cavazza C, Renesto P, Schneider D, Maurin M, Coves J, Crouzy S, Michaud-Soret I. Structural and functional studies of the metalloregulator Fur identify a promoter-binding mechanism and its role in Francisella tularensis virulence. Commun Biol 2018; 1:93. [PMID: 30271974 PMCID: PMC6123631 DOI: 10.1038/s42003-018-0095-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis is a Gram-negative bacterium causing tularaemia. Classified as possible bioterrorism agent, it may be transmitted to humans via animal infection or inhalation leading to severe pneumonia. Its virulence is related to iron homeostasis involving siderophore biosynthesis directly controlled at the transcription level by the ferric uptake regulator Fur, as presented here together with the first crystal structure of the tetrameric F. tularensis Fur in the presence of its physiological cofactor, Fe2+. Through structural, biophysical, biochemical and modelling studies, we show that promoter sequences of F. tularensis containing Fur boxes enable this tetrameric protein to bind them by splitting it into two dimers. Furthermore, the critical role of F. tularensis Fur in virulence and pathogenesis is demonstrated with a fur-deleted mutant showing an attenuated virulence in macrophage-like cells and mice. Together, our study suggests that Fur is an attractive target of new antibiotics that attenuate the virulence of F. tularensis. Pérard et al. report the structure of Francisella tularensis Fur (FtFur) with its physiological cofactor Fe2+, and show that FtFur is important for virulence. This study identifies a promoter-driven tetramer splitting mechanism that may provide insight into future antibiotics development.
Collapse
Affiliation(s)
- J Pérard
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France.
| | - S Nader
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France
| | - M Levert
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - L Arnaud
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France
| | - P Carpentier
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France
| | - C Siebert
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - F Blanquet
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - C Cavazza
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France
| | - P Renesto
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - D Schneider
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - M Maurin
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
| | - J Coves
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - S Crouzy
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France.
| | - I Michaud-Soret
- Univ. Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000, Grenoble, France.
| |
Collapse
|
13
|
Teng T, Xi B, Chen K, Pan L, Xie J, Xu P. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation. BMC Microbiol 2018; 18:52. [PMID: 29866030 PMCID: PMC5987420 DOI: 10.1186/s12866-018-1178-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays important roles in the growth, reproduction and pathogenicity of Aeromonas hydrophila. In this study, we detected and compared the mRNA and protein expression profiles of A. hydrophila under normal and iron restricted medium with 200 μM 2,2-Dipyridyl using RNA Sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) analyses. Results There were 1204 genes (601 up- and 603 down-regulated) and 236 proteins (90 up- and 146 down-regulated) shown to be differentially expressed, and 167 genes and proteins that showed consistent expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins were mainly involved in iron ion transport, protein activity, energy metabolism and virulence processes. Further validation of the RNA-seq and iTRAQ results by quantitative real-time PCR (qPCR) revealed that 18 of the 20 selected genes were consistently expressed. The iron-ion absorption and concentration of A. hydrophila under iron-limited conditions were enhanced, and most virulence factors (protease activity, hemolytic activity, lipase activity, and swimming ability) were also increased. Artificial A. hydrophila infection caused higher mortality in cyprinid Megalobrama amblycephala under iron-limited conditions. Conclusion Understanding the responses of pathogenic Aeromonas hydrophila within the hostile environment of the fish host, devoid of free iron, is important to reveal bacterial infection and pathogenesis. This study further confirmed the previous finding that iron-limitation efficiently enhanced the virulence of A. hydrophila using multi-omics analyses. We identified differentially expressed genes and proteins, related to enterobactin synthesis and virulence establishment, that play important roles in addressing iron scarcity. Electronic supplementary material The online version of this article (10.1186/s12866-018-1178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Teng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
14
|
Carroll CS, Moore MM. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2018; 53:356-381. [DOI: 10.1080/10409238.2018.1476449] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
15
|
Clemens DL, Lee BY, Horwitz MA. The Francisella Type VI Secretion System. Front Cell Infect Microbiol 2018; 8:121. [PMID: 29740542 PMCID: PMC5924787 DOI: 10.3389/fcimb.2018.00121] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Francisella tularensisis subsp. tularensis is an intracellular bacterial pathogen and the causative agent of the life-threatening zoonotic disease tularemia. The Francisella Pathogenicity Island encodes a large secretion apparatus, known as a Type VI Secretion System (T6SS), which is essential for Francisella to escape from its phagosome and multiply within host macrophages and to cause disease in animals. The T6SS, found in one-quarter of Gram-negative bacteria including many highly pathogenic ones, is a recently discovered secretion system that is not yet fully understood. Nevertheless, there have been remarkable advances in our understanding of the structure, composition, and function of T6SSs of several bacteria in the past few years. The system operates like an inside-out headless contractile phage that is anchored to the bacterial membrane via a baseplate and membrane complex. The system injects effector molecules across the inner and outer bacterial membrane and into host prokaryotic or eukaryotic targets to kill, intoxicate, or in the case of Francisella, hijack the target cell. Recent advances include an atomic model of the contractile sheath, insights into the mechanics of sheath contraction, the composition of the baseplate and membrane complex, the process of assembly of the apparatus, and identification of numerous effector molecules and activities. While Francisella T6SS appears to be an outlier among T6SSs, with limited or no sequence homology with other systems, its structure and organization are strikingly similar to other systems. Nevertheless, we have only scratched the surface in uncovering the mysteries of the Francisella T6SS, and there are numerous questions that remain to be answered.
Collapse
Affiliation(s)
- Daniel L. Clemens
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Fletcher JR, Crane DD, Wehrly TD, Martens CA, Bosio CM, Jones BD. The Ability to Acquire Iron Is Inversely Related to Virulence and the Protective Efficacy of Francisella tularensis Live Vaccine Strain. Front Microbiol 2018; 9:607. [PMID: 29670588 PMCID: PMC5893802 DOI: 10.3389/fmicb.2018.00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 02/02/2023] Open
Abstract
Francisella tularensis is a highly infectious bacterial pathogen that causes the potentially fatal disease tularemia. The Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica, while no longer licensed as a vaccine, is used as a model organism for identifying correlates of immunity and bacterial factors that mediate a productive immune response against F. tularensis. Recently, it was reported that two biovars of LVS differed in their virulence and vaccine efficacy. Genetic analysis showed that they differ in ferrous iron homeostasis; lower Fe2+ levels contributed to increased resistance to hydrogen peroxide in the vaccine efficacious LVS biovar. This also correlated with resistance to the bactericidal activity of interferon γ-stimulated murine bone marrow-derived macrophages. We have extended these findings further by showing that a mutant lacking bacterioferritin stimulates poor protection against Schu S4 challenge in a mouse model of tularemia. Together these results suggest that the efficacious biovar of LVS stimulates productive immunity by a mechanism that is dependent on its ability to limit the toxic effects of oxidative stress by maintaining optimally low levels of intracellular Fe2+.
Collapse
Affiliation(s)
- Joshua R. Fletcher
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Deborah D. Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Tara D. Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Craig A. Martens
- Genomics Core, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, MT, United States
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Hamilton, MT, United States
| | - Bradley D. Jones
- Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
17
|
Complement C3 as a Prompt for Human Macrophage Death during Infection with Francisella tularensis Strain SCHU S4. Infect Immun 2017; 85:IAI.00424-17. [PMID: 28739830 DOI: 10.1128/iai.00424-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Tularemia is caused by the Gram-negative bacterial pathogen Francisella tularensis Infection of macrophages and their subsequent death are believed to play important roles in the progression of disease. Because complement is a particularly effective opsonin for Francisella, we asked whether complement-dependent uptake of F. tularensis strain SCHU S4 affects the survival of primary human macrophages during infection. Complement component C3 was found to be an essential opsonin in human serum not only for greatly increased uptake of SCHU S4 but also for the induction of macrophage death. Single-cell analysis also revealed that macrophage death did not require a high intracellular bacterial burden. In the presence of C3, macrophage death was observed at 24 h postinfection in a quarter of the macrophages that contained only 1 to 5 bacterial cells. Macrophages infected in the absence of C3 rarely underwent cell death, even when they contained large numbers of bacteria. The need for C3, but not extensive replication of the pathogen, was confirmed by infections with SCHU S4 ΔpurMCD, a mutant capable of phagosome escape but of only limited cytosolic replication. C3-dependent Francisella uptake alone was insufficient to induce macrophage death, as evidenced by the failure of the phagosome escape-deficient mutant SCHU S4 ΔfevR to induce cell death despite opsonization with C3. Together, these findings indicate that recognition of C3-opsonized F. tularensis, but not extensive cytosolic replication, plays an important role in regulating macrophage viability during intracellular infections with type A F. tularensis.
Collapse
|
18
|
Holland KM, Rosa SJ, Kristjansdottir K, Wolfgeher D, Franz BJ, Zarrella TM, Kumar S, Sunagar R, Singh A, Bakshi CS, Namjoshi P, Barry EM, Sellati TJ, Kron SJ, Gosselin EJ, Reed DS, Hazlett KRO. Differential Growth of Francisella tularensis, Which Alters Expression of Virulence Factors, Dominant Antigens, and Surface-Carbohydrate Synthases, Governs the Apparent Virulence of Ft SchuS4 to Immunized Animals. Front Microbiol 2017; 8:1158. [PMID: 28690600 PMCID: PMC5479911 DOI: 10.3389/fmicb.2017.01158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
The gram-negative bacterium Francisella tularensis (Ft) is both a potential biological weapon and a naturally occurring microbe that survives in arthropods, fresh water amoeba, and mammals with distinct phenotypes in various environments. Previously, we used a number of measurements to characterize Ft grown in Brain-Heart Infusion (BHI) broth as (1) more similar to infection-derived bacteria, and (2) slightly more virulent in naïve animals, compared to Ft grown in Mueller Hinton Broth (MHB). In these studies we observed that the free amino acids in MHB repress expression of select Ft virulence factors by an unknown mechanism. Here, we tested the hypotheses that Ft grown in BHI (BHI-Ft) accurately displays a full protein composition more similar to that reported for infection-derived Ft and that this similarity would make BHI-Ft more susceptible to pre-existing, vaccine-induced immunity than MHB-Ft. We performed comprehensive proteomic analysis of Ft grown in MHB, BHI, and BHI supplemented with casamino acids (BCA) and compared our findings to published “omics” data derived from Ft grown in vivo. Based on the abundance of ~1,000 proteins, the fingerprint of BHI-Ft is one of nutrient-deprived bacteria that—through induction of a stringent-starvation-like response—have induced the FevR regulon for expression of the bacterium's virulence factors, immuno-dominant antigens, and surface-carbohydrate synthases. To test the notion that increased abundance of dominant antigens expressed by BHI-Ft would render these bacteria more susceptible to pre-existing, vaccine-induced immunity, we employed a battery of LVS-vaccination and S4-challenge protocols using MHB- and BHI-grown Ft S4. Contrary to our hypothesis, these experiments reveal that LVS-immunization provides a barrier to infection that is significantly more effective against an MHB-S4 challenge than a BHI-S4 challenge. The differences in apparent virulence to immunized mice are profoundly greater than those observed with primary infection of naïve mice. Our findings suggest that tularemia vaccination studies should be critically evaluated in regard to the growth conditions of the challenge agent.
Collapse
Affiliation(s)
- Kristen M Holland
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Sarah J Rosa
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | | | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicago, IL, United States
| | - Brian J Franz
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Tiffany M Zarrella
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Raju Sunagar
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Anju Singh
- Trudeau InstituteSaranac Lake, NY, United States
| | - Chandra S Bakshi
- Department of Microbiology and Immunology, New York Medical CollegeValhalla, NY, United States
| | - Prachi Namjoshi
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Eileen M Barry
- School of Medicine, University of MarylandBaltimore, MD, United States
| | | | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicago, IL, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| | - Douglas S Reed
- Center for Vaccine Research, University of PittsburghPittsburgh, PA, United States
| | - Karsten R O Hazlett
- Department of Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, United States
| |
Collapse
|
19
|
Brenz Y, Ohnezeit D, Winther-Larsen HC, Hagedorn M. Nramp1 and NrampB Contribute to Resistance against Francisella in Dictyostelium. Front Cell Infect Microbiol 2017; 7:282. [PMID: 28680861 PMCID: PMC5478718 DOI: 10.3389/fcimb.2017.00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The Francisella genus comprises highly pathogenic bacteria that can cause fatal disease in their vertebrate and invertebrate hosts including humans. In general, Francisella growth depends on iron availability, hence, iron homeostasis must be tightly regulated during Francisella infection. We used the system of the professional phagocyte Dictyostelium and the fish pathogen F. noatunensis subsp. noatunensis (F.n.n.) to investigate the role of the host cell iron transporters Nramp (natural resistance associated macrophage proteins) during Francisella infection. Like its mammalian ortholog, Dictyostelium Nramp1 transports iron from the phagosome into the cytosol, whereas the paralog NrampB is located on the contractile vacuole and controls, together with Nramp1, the cellular iron homeostasis. In Dictyostelium, Nramp1 localized to the F.n.n.-phagosome but disappeared from the compartment dependent on the presence of IglC, an established Francisella virulence factor. In the absence of Nramp transporters the bacteria translocated more efficiently from the phagosome into the host cell cytosol, its replicative niche. Increased escape rates coincided with increased proteolytic activity in bead-containing phagosomes indicating a role of the Nramp transporters for phagosomal maturation. In the nramp mutants, a higher bacterial load was observed in the replicative phase compared to wild-type host cells. Upon bacterial access to the cytosol of wt cells, mRNA levels of bacterial iron uptake factors were transiently upregulated. Decreased iron levels in the nramp mutants were compensated by a prolonged upregulation of the iron scavenging system. These results show that Nramps contribute to host cell immunity against Francisella infection by influencing the translocation efficiency from the phagosome to the cytosol but not by restricting access to nutritional iron in the cytosol.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Denise Ohnezeit
- Institute for Medical Microbiology, Hygiene and Virology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution and Department of Pharmaceutical Biosciences, University of OsloOslo, Norway
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs UniversityBremen, Germany
| |
Collapse
|
20
|
Schmitt DM, Barnes R, Rogerson T, Haught A, Mazzella LK, Ford M, Gilson T, Birch JWM, Sjöstedt A, Reed DS, Franks JM, Stolz DB, Denvir J, Fan J, Rekulapally S, Primerano DA, Horzempa J. The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis. Front Cell Infect Microbiol 2017; 7:173. [PMID: 28536678 PMCID: PMC5423315 DOI: 10.3389/fcimb.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensis invades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks.
Collapse
Affiliation(s)
- Deanna M Schmitt
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Rebecca Barnes
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Taylor Rogerson
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Ashley Haught
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Leanne K Mazzella
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Matthew Ford
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Tricia Gilson
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - James W-M Birch
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå UniversityUmeå, Sweden
| | - Douglas S Reed
- Regional Biocontainment Laboratory, Center for Vaccine Research, University of PittsburghPittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biologic Imaging, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Swanthana Rekulapally
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty UniversityWest Liberty, WV, USA
| |
Collapse
|
21
|
Ramakrishnan G. Iron and Virulence in Francisella tularensis. Front Cell Infect Microbiol 2017; 7:107. [PMID: 28421167 PMCID: PMC5378763 DOI: 10.3389/fcimb.2017.00107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is a Gram-negative bacterium that infects a variety of cell types including macrophages, and propagates with great efficiency in the cytoplasm. Iron, essential for key enzymatic and redox reactions, is among the nutrients required to support this pathogenic lifestyle and the bacterium relies on specialized mechanisms to acquire iron within the host environment. Two distinct pathways for iron acquisition are encoded by the F. tularensis genome- a siderophore-dependent ferric iron uptake system and a ferrous iron transport system. Genes of the Fur-regulated fslABCDEF operon direct the production and transport of the siderophore rhizoferrin. Siderophore biosynthesis involves enzymes FslA and FslC, while export across the inner membrane is mediated by FslB. Uptake of the rhizoferrin- ferric iron complex is effected by the siderophore receptor FslE in the outer membrane in a TonB-independent process, and FslD is responsible for uptake across the inner membrane. Ferrous iron uptake relies largely on high affinity transport by FupA in the outer membrane, while the Fur-regulated FeoB protein mediates transport across the inner membrane. FslE and FupA are paralogous proteins, sharing sequence similarity and possibly sharing structural features as well. This review summarizes current knowledge of iron acquisition in this organism and the critical role of these uptake systems in bacterial pathogenicity.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine/Division of Infectious Diseases, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
22
|
Sarva ST, Waldo RH, Belland RJ, Klose KE. Comparative Transcriptional Analyses of Francisella tularensis and Francisella novicida. PLoS One 2016; 11:e0158631. [PMID: 27537327 PMCID: PMC4990168 DOI: 10.1371/journal.pone.0158631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis is composed of a number of subspecies with varied geographic distribution, host ranges, and virulence. In view of these marked differences, comparative functional genomics may elucidate some of the molecular mechanism(s) behind these differences. In this study a shared probe microarray was designed that could be used to compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt), Francisella tularensis subsp. holarctica OR960246 (Fth), Francisella tularensis subsp. holarctica LVS (LVS), and Francisella novicida U112 (Fn). To gain insight into expression differences that may be related to the differences in virulence of these subspecies, transcriptomes were measured from each strain grown in vitro under identical conditions, utilizing a shared probe microarray. The human avirulent Fn strain exhibited high levels of transcription of genes involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth strains, consistent with the process of genome decay in the virulent strains. Genes encoding an efflux system (emrA2 cluster of genes), siderophore (fsl operon), acid phosphatase, LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt when compared to Fn, suggesting that some of these may contribute to the relative high virulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island protein PdpD. Fth and LVS had very few expression differences, consistent with the derivation of LVS from Fth. This study demonstrated that a shared probe microarray designed to detect transcripts in multiple species/subspecies of Francisella enabled comparative transcriptional analyses that may highlight critical differences that underlie the relative pathogenesis of these strains for humans. This strategy could be extended to other closely-related bacterial species for inter-strain and inter-species analyses.
Collapse
Affiliation(s)
- Siva T. Sarva
- University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert H. Waldo
- University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert J. Belland
- University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Dept. of Biology, University of Texas San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wu X, Ren G, Gunning WT, Weaver DA, Kalinoski AL, Khuder SA, Huntley JF. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence. PLoS One 2016; 11:e0160977. [PMID: 27513341 PMCID: PMC4981453 DOI: 10.1371/journal.pone.0160977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisellametal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in magnesium uptake, we demonstrated that FmvB was outer membrane-localized. Finally, ΔfmvB was found to be attenuated in mice and cytokine analyses revealed that ΔfmvB-infected mice produced lower levels of pro-inflammatory cytokines, including GM-CSF, IL-3, and IL-10, compared with mice infected with wild-type F. tularensis. Taken together, although the function of FmvA remains unknown, FmvB appears to play a role in magnesium uptake and F. tularensis virulence. These results may provide new insights into the importance of magnesium for intracellular pathogens.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - William T. Gunning
- Department of Pathology and Electron Microscopy Facility, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - David A. Weaver
- Department of Surgery and Advanced Microscopy and Imaging Center, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Andrea L. Kalinoski
- Department of Surgery and Advanced Microscopy and Imaging Center, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Sadik A. Khuder
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Jason F. Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ma Z, Russo VC, Rabadi SM, Jen Y, Catlett SV, Bakshi CS, Malik M. Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol Microbiol 2016; 101:856-78. [PMID: 27205902 DOI: 10.1111/mmi.13426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Francisella tularensis causes a lethal human disease known as tularemia. As an intracellular pathogen, Francisella survives and replicates in phagocytic cells, such as macrophages. However, to establish an intracellular niche, Francisella must overcome the oxidative stress posed by the reactive oxygen species (ROS) produced by the infected macrophages. OxyR and SoxR/S are two well-characterized transcriptional regulators of oxidative stress responses in several bacterial pathogens. Only the OxyR homolog is present in F. tularensis, while the SoxR homologs are absent. The functional role of OxyR has not been established in F. tularensis. We demonstrate that OxyR regulates oxidative stress responses and provides resistance against ROS, thereby contributing to the survival of the F. tularensis subsp. holarctica live vaccine strain (LVS) in macrophages and epithelial cells and contributing to virulence in mice. Proteomic analysis reveals the differential production of 128 proteins in the oxyR gene deletion mutant, indicating its global regulatory role in the oxidative stress response of F. tularensis. Moreover, OxyR regulates the transcription of the primary antioxidant enzyme genes by binding directly to their putative promoter regions. This study demonstrates that OxyR is an important virulence factor and transcriptional regulator of the oxidative stress response of the F. tularensis LVS.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Vincenzo C Russo
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Seham M Rabadi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Yu Jen
- Department of Pathology, Westchester Medical Center, Valhalla, NY, USA
| | - Sally V Catlett
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | - Meenakshi Malik
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
25
|
The Protease Locus of Francisella tularensis LVS Is Required for Stress Tolerance and Infection in the Mammalian Host. Infect Immun 2016; 84:1387-1402. [PMID: 26902724 DOI: 10.1128/iai.00076-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 02/05/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms.
Collapse
|
26
|
Pérez N, Johnson R, Sen B, Ramakrishnan G. Two parallel pathways for ferric and ferrous iron acquisition support growth and virulence of the intracellular pathogen Francisella tularensis Schu S4. Microbiologyopen 2016; 5:453-68. [PMID: 26918301 PMCID: PMC4905997 DOI: 10.1002/mbo3.342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Iron acquisition mechanisms in Francisella tularensis, the causative agent of tularemia, include the Francisella siderophore locus (fsl) siderophore operon and a ferrous iron–transport system comprising outer‐membrane protein FupA and inner‐membrane transporter FeoB. To characterize these mechanisms and to identify any additional iron uptake systems in the virulent subspecies tularensis, single and double deletions were generated in the fsl and feo iron acquisition systems of the strain Schu S4. Deletion of the entire fsl operon caused loss of siderophore production that could be restored by complementation with the biosynthetic genes fslA and fslC and Major Facilitator Superfamily (MFS) transporter gene fslB. 55Fe‐transport assays demonstrated that siderophore‐iron uptake required the receptor FslE and MFS transporter FslD. A ΔfeoB′ mutation resulted in loss of ability to transport ferrous iron (55Fe2+). A ΔfeoB′ ΔfslA mutant that required added exogenous siderophore for growth in vitro was unable to grow within tissue culture cells and was avirulent in mice, indicating that no compensatory cryptic iron uptake systems were induced in vivo. These studies demonstrate that the fsl and feo pathways function independently and operate in parallel to effectively support virulence of F. tularensis.
Collapse
Affiliation(s)
- Natalie Pérez
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| | - Richard Johnson
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| | - Bhaswati Sen
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| | - Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| |
Collapse
|
27
|
Shabbir MZ, Jamil T, Ali AA, Ahmad A, Naeem M, Chaudhary MH, Bilal M, Ali MA, Muhammad K, Yaqub T, Bano A, Mirza AI, Shabbir MAB, McVey WR, Patel K, Francesconi S, Jayarao BM, Rabbani M. Prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan. Front Microbiol 2015; 6:917. [PMID: 26441860 PMCID: PMC4564694 DOI: 10.3389/fmicb.2015.00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/21/2015] [Indexed: 12/15/2022] Open
Abstract
A multidisciplinary, collaborative project was conducted to determine the prevalence and distribution of soil-borne zoonotic pathogens in Lahore district of Pakistan and ascertain its Public Health Significance. Using a grid-based sampling strategy, soil samples (n = 145) were collected from villages (n = 29, 5 samples/village) and examined for Bacillus anthracis, Burkholderia mallei/pseudomallei, Coxiella burnetii, Francisella tularensis, and Yersinia pestis using real time PCR assays. Chemical analysis of soil samples was also performed on these samples. The relationship between soil composition and absence or presence of the pathogen, and seven risk factors was evaluated. DNA of B. anthracis (CapB), B. mallei/pseudomallei (chromosomal gene), C. burnetii (IS1111, transposase gene), and F. tularensis (lipoprotein/outer membrane protein) was detected in 9.6, 1.4, 4.8, and 13.1% of soil samples, respectively. None of the samples were positive for protective antigen plasmid (PA) of B. anthracis and Y. pestis (plasminogen activating factor, pPla gene). The prevalence of B. anthracis (CapB) was found to be associated with organic matter, magnesium (Mg), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), cadmium (Cd), sodium (Na), ferrous (Fe), calcium (Ca), and potassium (K). Phosphorous (P) was found to be associated with prevalence of F. tularensis while it were Mg, Co, Na, Fe, Ca, and K for C. burnetii. The odds of detecting DNA of F. tularensis were 2.7, 4.1, and 2.7 higher when soil sample sites were >1 km from animal markets, >500 m from vehicular traffic roads and animal density of < 1000 animals, respectively. While the odds of detecting DNA of C. burnetii was 32, 11.8, and 5.9 higher when soil sample sites were >500 m from vehicular traffic roads, presence of ground cover and animal density of < 1000 animals, respectively. In conclusion, the distribution pattern of the soil-borne pathogens in and around the areas of Lahore district puts both human and animal populations at a high risk of exposure. Further studies are needed to explore the genetic nature and molecular diversity of prevailing pathogens together with their seroconversion in animals and humans.
Collapse
Affiliation(s)
| | - Tariq Jamil
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Asad A Ali
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Arfan Ahmad
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | | | | | - Muhammad Bilal
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Muhammad A Ali
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Khushi Muhammad
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences Lahore, Pakistan
| | | | - Ali I Mirza
- Government College University Lahore, Pakistan
| | | | - Walter R McVey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University University Park, PA, USA
| | - Ketan Patel
- Naval Medical Research Unit Frederick, MA, USA
| | | | - Bhushan M Jayarao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University University Park, PA, USA
| | - Masood Rabbani
- University of Veterinary and Animal Sciences Lahore, Pakistan
| |
Collapse
|
28
|
Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production. Appl Environ Microbiol 2015; 81:7057-66. [PMID: 26231649 DOI: 10.1128/aem.02165-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 11/20/2022] Open
Abstract
In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation.
Collapse
|
29
|
The Legionella pneumophila Siderophore Legiobactin Is a Polycarboxylate That Is Identical in Structure to Rhizoferrin. Infect Immun 2015. [PMID: 26195554 DOI: 10.1128/iai.00808-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe(3+) uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner.
Collapse
|
30
|
Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476534. [PMID: 26120582 PMCID: PMC4450229 DOI: 10.1155/2015/476534] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.
Collapse
|
31
|
Lindgren H, Lindgren L, Golovliov I, Sjöstedt A. Mechanisms of heme utilization by Francisella tularensis. PLoS One 2015; 10:e0119143. [PMID: 25756756 PMCID: PMC4355490 DOI: 10.1371/journal.pone.0119143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis is a highly virulent facultative intracellular pathogen causing the severe disease tularemia in mammals. As for other bacteria, iron is essential for its growth but very few mechanisms for iron acquisition have been identified. Here, we analyzed if and how F. tularensis can utilize heme, a major source of iron in vivo. This is by no means obvious since the bacterium lacks components of traditional heme-uptake systems. We show that SCHU S4, the prototypic strain of subspecies tularensis, grew in vitro with heme as the sole iron source. By screening a SCHU S4 transposon insertion library, 16 genes were identified as important to efficiently utilize heme, two of which were required to avoid heme toxicity. None of the identified genes appeared to encode components of a potential heme-uptake apparatus. Analysis of SCHU S4 deletion mutants revealed that each of the components FeoB, the siderophore system, and FupA, contributed to the heme-dependent growth. In the case of the former two systems, iron acquisition was impaired, whereas the absence of FupA did not affect iron uptake but led to abnormally high binding of iron to macromolecules. Overall, the present study demonstrates that heme supports growth of F. tularensis and that the requirements for the utilization are highly complex and to some extent novel.
Collapse
Affiliation(s)
- Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Lena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
32
|
Pérez NM, Ramakrishnan G. The reduced genome of the Francisella tularensis live vaccine strain (LVS) encodes two iron acquisition systems essential for optimal growth and virulence. PLoS One 2014; 9:e93558. [PMID: 24695402 PMCID: PMC3973589 DOI: 10.1371/journal.pone.0093558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/07/2014] [Indexed: 01/19/2023] Open
Abstract
Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within the ferrous iron (feo) and ferric-siderophore (fsl) uptake systems of the live vaccine strain (LVS). The Feo system was disrupted by a partial deletion of the feoB gene (ΔfeoB′), which led to a growth defect on iron-limited modified Muller Hinton agar plates. 55Fe uptake assays verified that the ΔfeoB′ mutant had lost the capacity for ferrous iron uptake but was still competent for 55Fe-siderophore-mediated ferric iron acquisition. Neither the ΔfeoB′ nor the siderophore-deficient ΔfslA mutant was defective for replication within J774A.1 murine macrophage-like cells, thus demonstrating the ability of LVS to survive using either ferrous or ferric sources of intracellular iron. A LVS ΔfslA ΔfeoB′ mutant defective for both ferrous iron uptake and siderophore production was isolated in the presence of exogenous F. tularensis siderophore. In contrast to the single deletion mutants, the ΔfslA ΔfeoB′ mutant was unable to replicate within J774A.1 cells and was attenuated in virulence following intraperitoneal infection of C57BL/6 mice. These studies demonstrate that the siderophore and feoB-mediated ferrous uptake systems are the only significant iron acquisition systems in LVS and that they operate independently. While one system can compensate for loss of the other, both are required for optimal growth and virulence.
Collapse
Affiliation(s)
- Natalie Marie Pérez
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Girija Ramakrishnan
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ramakrishnan G, Sen B. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain. MICROBIOLOGY-SGM 2013; 160:446-457. [PMID: 24307666 DOI: 10.1099/mic.0.072835-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore-ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used (55)Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. (55)Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore-ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, VA 22901, USA
| | - Bhaswati Sen
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
34
|
Bent ZW, Brazel DM, Tran-Gyamfi MB, Hamblin RY, VanderNoot VA, Branda SS. Use of a capture-based pathogen transcript enrichment strategy for RNA-Seq analysis of the Francisella tularensis LVS transcriptome during infection of murine macrophages. PLoS One 2013; 8:e77834. [PMID: 24155975 PMCID: PMC3796476 DOI: 10.1371/journal.pone.0077834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
Francisella tularensis is a zoonotic intracellular pathogen that is capable of causing potentially fatal human infections. Like all successful bacterial pathogens, F. tularensis rapidly responds to changes in its environment during infection of host cells, and upon encountering different microenvironments within those cells. This ability to appropriately respond to the challenges of infection requires rapid and global shifts in gene expression patterns. In this study, we use a novel pathogen transcript enrichment strategy and whole transcriptome sequencing (RNA-Seq) to perform a detailed characterization of the rapid and global shifts in F. tularensis LVS gene expression during infection of murine macrophages. We performed differential gene expression analysis on all bacterial genes at two key stages of infection: phagosomal escape, and cytosolic replication. By comparing the F. tularensis transcriptome at these two stages of infection to that of the bacteria grown in culture, we were able to identify sets of genes that are differentially expressed over the course of infection. This analysis revealed the temporally dynamic expression of a number of known and putative transcriptional regulators and virulence factors, providing insight into their role during infection. In addition, we identified several F. tularensis genes that are significantly up-regulated during infection but had not been previously identified as virulence factors. These unknown genes may make attractive therapeutic or vaccine targets.
Collapse
Affiliation(s)
- Zachary W. Bent
- Sandia National Laboratories, Livermore, California, United States of America
- * E-mail:
| | - David M. Brazel
- Sandia National Laboratories, Livermore, California, United States of America
| | - Mary B. Tran-Gyamfi
- Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Y. Hamblin
- Sandia National Laboratories, Livermore, California, United States of America
| | | | - Steven S. Branda
- Sandia National Laboratories, Livermore, California, United States of America
| |
Collapse
|
35
|
Abstract
Francisella tularensis, the bacterial cause of tularemia, infects the liver and replicates in hepatocytes in vivo and in vitro. However, the factors that govern adaptation of F. tularensis to the intrahepatocytic niche have not been identified. Using cDNA microarrays, we determined the transcriptional profile of the live vaccine strain (LVS) of F. tularensis grown in the FL83B murine hepatocytic cell line compared to that of F. tularensis cultured in broth. The fslC gene of the fsl operon was the most highly upregulated. Deletion of fslC eliminated the ability of the LVS to produce siderophore, which is involved in uptake of ferric iron, but it did not impair its growth in hepatocytes, A549 epithelial cells, or macrophages. Therefore, we sought an alternative means by which F. tularensis might obtain iron. Deletion of feoB, which encodes a putative ferrous iron transporter, retarded replication of the LVS in iron-restricted media, reduced its growth in hepatocytic and epithelial cells, and impaired its acquisition of iron. Survival of mice infected intradermally with a lethal dose of the LVS was slightly improved by deletion of fslC but was not altered by loss of feoB. However, the ΔfeoB mutant showed diminished ability to colonize the lungs, liver, and spleen of mice that received sublethal inocula. Thus, FeoB represents a previously unidentified mechanism for uptake of iron by F. tularensis. Moreover, failure to produce a mutant strain lacking both feoB and fslC suggests that FeoB and the proteins of the fsl operon are the only major means by which F. tularensis acquires iron.
Collapse
|
36
|
Kronda JM, Cooper RA, Maddocks SE. Manuka honey inhibits siderophore production in Pseudomonas aeruginosa. J Appl Microbiol 2013; 115:86-90. [PMID: 23594187 DOI: 10.1111/jam.12222] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/04/2013] [Accepted: 04/14/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to determine whether manuka honey affected siderophore production by three strains of Pseudomonas aeruginosa. METHODS AND RESULTS The minimum inhibitory concentration (MIC) of manuka honey against each of the test bacteria was determined. The effect of manuka honey on siderophore production by three strains of Ps. aeruginosa was investigated using the Chrome azurol S assay (CAS) and CAS-agar plates. Manuka honey at ½ and ¼ of the MIC for each strain led to reduced production of siderophores (1·3-2·2-fold less) which was found to be statistically significant when compared to the untreated control. CONCLUSIONS Manuka honey effectively inhibited siderophore production by all three strains of Ps. aeruginosa used in this study. This suggests that manuka honey may impact on bacterial iron homoeostasis and identified a new target for manuka honey in Ps. aeruginosa. SIGNIFICANCE AND IMPACT OF STUDY Pseudomonas aeruginosa is an opportunistic human pathogen that can cause acute, life-threatening or persistent wound infections. Part of the virulence repertoire of this micro-organism includes the ability to sequester iron from the host during infection by the synthesis and secretion of siderophores. Manuka honey may limit wound infection by Ps. aeruginosa by limiting its ability to capture iron. This is the first time this mechanism has been investigated.
Collapse
Affiliation(s)
- J M Kronda
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | | |
Collapse
|
37
|
Ramond E, Gesbert G, Barel M, Charbit A. Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol 2013; 7:1255-68. [PMID: 23075445 DOI: 10.2217/fmb.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is a member of the γ-proteobacteria class of Gram-negative bacteria. This highly virulent bacterium can infect a large range of mammalian species and has been recognized as a human pathogen for a century. F. tularensis is able to survive in vitro in a variety of cell types. In vivo, the bacterium replicates mainly in infected macrophages, using the cytoplasmic compartment as a replicative niche. To successfully adapt to this stressful environment, F. tularensis must simultaneously: produce and regulate the expression of a series of dedicated virulence factors; adapt its metabolic needs to the nutritional context of the host cytosol; and control the innate immune cytosolic surveillance pathways to avoid premature cell death. We will focus here on the secretion or release of bacterial proteins in the host, as well as on the envelope proteins, involved in bacterial survival inside macrophages.
Collapse
Affiliation(s)
- Elodie Ramond
- Faculté de Médecine Necker, Université Paris Descartes, 156 Rue de Vaugirard, 75730 Paris, Cedex 15, France
| | | | | | | |
Collapse
|
38
|
Brudal E, Winther-Larsen HC, Colquhoun DJ, Duodu S. Evaluation of reference genes for reverse transcription quantitative PCR analyses of fish-pathogenic Francisella strains exposed to different growth conditions. BMC Res Notes 2013; 6:76. [PMID: 23452832 PMCID: PMC3599356 DOI: 10.1186/1756-0500-6-76] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/27/2013] [Indexed: 12/20/2022] Open
Abstract
Background Reverse transcription quantitative PCR has become a powerful technique to monitor mRNA transcription in response to different environmental conditions in many bacterial species. However, correct evaluation of data requires accurate and reliable use of reference genes whose transcription does not change during the course of the experiment. In the present study exposure to different growth conditions was used to validate the transcription stability of eight reference gene candidates in three strains from two subspecies of Francisella noatunensis, a pathogen causing disease in both warm and cold water fish species. Results Relative transcription levels for genes encoding DNA gyrase (gyrA), RNA polymerase beta subunit (rpoB), DNA polymerase I (polA), cell division protein (ftsZ), outer membrane protein (fopA), riboflavin biosynthesis protein (ribC), 16S ribosomal RNA (16S rRNA) and DNA helicases (uvrD) were quantified under exponential, stationary and iron-restricted growth conditions. The suitability of selected reference genes for reliable interpretation of gene expression data was tested using the virulence-associated intracellular growth locus subunit C (iglC) gene. Conclusion Although the transcription stability of the reference genes was slightly different in the three strains studied, fopA, ftsZ and polA proved to be the most stable and suitable for normalization of gene transcription in Francisella noatunensis ssp.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, PO Box 8146 Dep, Oslo 0033, Norway
| | | | | | | |
Collapse
|
39
|
Andrews S, Norton I, Salunkhe AS, Goodluck H, Aly WSM, Mourad-Agha H, Cornelis P. Control of iron metabolism in bacteria. Met Ions Life Sci 2013; 12:203-39. [PMID: 23595674 DOI: 10.1007/978-94-007-5561-1_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria depend upon iron as a vital cofactor that enables a wide range of key metabolic activities. Bacteria must therefore ensure a balanced supply of this essential metal. To do so, they invest considerable resourse into its acquisition and employ elaborate control mechanisms to eleviate both iron-induced toxitiy as well as iron deficiency. This chapter describes the processes that bacteria engage in maintaining iron homeostasis. The focus is Escherichia coli, as this bacterium provides a well studied example. A summary of the current status of understanding of iron management at the 'omics' level is also presented.
Collapse
Affiliation(s)
- Simon Andrews
- The School of Biological Sciences, The University of Reading, Whiteknights, Reading, RG6 6AJ, UK,
| | | | | | | | | | | | | |
Collapse
|
40
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
41
|
Ramakrishnan G, Sen B, Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J Biol Chem 2012; 287:25191-202. [PMID: 22661710 DOI: 10.1074/jbc.m112.371856] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a (55)Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22901, USA.
| | | | | |
Collapse
|
42
|
Honn M, Lindgren H, Sjöstedt A. The role of MglA for adaptation to oxidative stress of Francisella tularensis LVS. BMC Microbiol 2012; 12:14. [PMID: 22264342 PMCID: PMC3305382 DOI: 10.1186/1471-2180-12-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 01/21/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Francisella tularensis protein MglA performs complex regulatory functions since it influences the expression of more than 100 genes and proteins in F. tularensis. Besides regulating the igl operon, it has been suggested that it also regulates several factors such as SspA, Hfq, CspC, and UspA, all important to stress adaptation. Therefore, it can be hypothesized that MglA plays an important role for Francisella stress responses in general and for the oxidative stress response specifically. RESULTS We investigated the oxidative stress response of the ΔmglA mutant of the live vaccine strain (LVS) of F. tularensis and found that it showed markedly diminished growth and contained more oxidized proteins than the parental LVS strain when grown in an aerobic milieu but not when grown microaerobically. Moreover, the ΔmglA mutant exhibited an increased catalase activity and reduced expression of the fsl operon and feoB in the aerobic milieu. The mutant was also found to be less susceptible to H(2)O(2). The aberrant catalase activity and gene expression was partially normalized when the ΔmglA mutant was grown in a microaerobic milieu. CONCLUSIONS Altogether the results show that the ΔmglA mutant exhibits all the hallmarks of a bacterium subjected to oxidative stress under aerobic conditions, indicating that MglA is required for normal adaptation of F. tularensis to oxidative stress and oxygen-rich environments.
Collapse
Affiliation(s)
- Marie Honn
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Sweden
| | | | | |
Collapse
|
43
|
Chatfield CH, Mulhern BJ, Viswanathan VK, Cianciotto NP. The major facilitator superfamily-type protein LbtC promotes the utilization of the legiobactin siderophore by Legionella pneumophila. MICROBIOLOGY-SGM 2011; 158:721-735. [PMID: 22160401 DOI: 10.1099/mic.0.055533-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila elaborates the siderophore legiobactin. We previously showed that cytoplasmic LbtA helps mediate legiobactin synthesis, inner-membrane LbtB promotes export of legiobactin, and outer-membrane LbtU acts as the ferrisiderophore receptor. RT-PCR analyses now identified lbtC as an iron-repressed gene that is the final gene in an operon containing lbtA and lbtB. In silico analysis predicted that LbtC is an inner-membrane protein that belongs to the major facilitator superfamily (MFS). Although capable of normal growth in standard media, lbtC mutants were defective for growth on iron-depleted agar media. While producing normal levels of legiobactin, lbtC mutants were unable to utilize supplied legiobactin to stimulate growth on iron-depleted media and displayed an impaired ability to take up radiolabelled iron. All lbtC mutant phenotypes were complemented by reintroduction of an intact copy of lbtC. When a cloned copy of both lbtC and lbtU was introduced into a heterologous bacterium (Legionella longbeachae), the organism acquired the ability to utilize legiobactin to grow better on low-iron media. Together, these data indicate that LbtC is involved in the uptake of legiobactin, and based upon its predicted location is most likely the mediator of ferrilegiobactin transport across the inner membrane. The data are also a unique documentation of how an MFS protein can promote bacterial iron-siderophore import, standing in contrast to the vast majority of studies which have defined ABC-type permeases as the mediators of siderophore import across the Gram-negative inner membrane or the Gram-positive cytoplasmic membrane.
Collapse
Affiliation(s)
- Christa H Chatfield
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Brendan J Mulhern
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - V K Viswanathan
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
44
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
45
|
Horzempa J, O'Dee DM, Stolz DB, Franks JM, Clay D, Nau GJ. Invasion of erythrocytes by Francisella tularensis. J Infect Dis 2011; 204:51-9. [PMID: 21628658 DOI: 10.1093/infdis/jir221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia and is classified as a category A biodefense agent by the Centers for Disease Control and Prevention because of its highly infectious nature. F. tularensis infects leukocytes and exhibits an extracellular phase in the blood of the host. It is unknown, however, whether F. tularensis can infect erythrocytes; thus, we examined this possibility in vivo and in vitro. In the murine model of pulmonary type A tularemia, we showed the presence of intraerythrocytic bacteria by double-immunofluorescence microscopy and ex vivo gentamicin protection of the purified erythrocyte fraction. In vitro, F. tularensis invaded human erythrocytes, as shown in the gentamicin protection assays, double-immunofluorescence microscopy, flow cytometry, scanning electron microscopy, and transmission electron microscopy with immunogold labeling of the bacteria. Additional in vitro tests indicated that serum complement-dependent and complement-independent mechanisms contribute to erythrocyte invasion. Our results reveal a novel intraerythrocytic phase during F. tularensis infection.
Collapse
Affiliation(s)
- Joseph Horzempa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PA, USA
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Cerqueira GM, Souza NM, Araújo ER, Barros AT, Morais ZM, Vasconcellos SA, Nascimento ALTO. Development of transcriptional fusions to assess Leptospira interrogans promoter activity. PLoS One 2011; 6:e17409. [PMID: 21445252 PMCID: PMC3060810 DOI: 10.1371/journal.pone.0017409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Background Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. Methodology and Principal Findings A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. Conclusions The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.
Collapse
|
48
|
Asare R, Kwaik YA. Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol 2011; 1:145. [PMID: 21687747 PMCID: PMC3109322 DOI: 10.3389/fmicb.2010.00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may activate actin rearrangement in the phagocytic cup resulting in the engulfment of F. tularensis in a lipid raft rich phagosome. Inside the host cells, F. tularensis resides transiently in an acidified late endosome-like compartment before disruption of the phagosomal membrane and escape into the cytosol, where bacterial proliferation occurs. Modulation of phagosome biogenesis and escape into the cytosol is mediated by the Francisella pathogenicity island-encoded type VI-like secretion system. Whilst inside the phagosome, F. tularensis temporarily induce proinflammatory cytokines in PI3K/Akt-dependent manner, which is counteracted by the induction of SHIP that negatively regulates PI3K/Akt activation and promotes bacterial escape into the cytosol. Interestingly, F. tularensis subverts CD4 T cells-mediated killing by inhibiting antigen presentation by activated macrophages through ubiquitin-dependent degradation of MHC II molecules on activated macrophages. In the cytosol, F. tularensis is recognized by the host cell inflammasome, which is down-regulated by F. tularensis that also inhibits caspase-1 and ASC activity. During late stages of intracellular proliferation, caspase-3 is activated but apoptosis is delayed through activation of NF-κB and Ras, which ensures cell viability.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, School of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
49
|
Dai S, Mohapatra NP, Schlesinger LS, Gunn JS. Regulation of francisella tularensis virulence. Front Microbiol 2011; 1:144. [PMID: 21687801 PMCID: PMC3109300 DOI: 10.3389/fmicb.2010.00144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/21/2010] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is one of the most virulent bacteria known and a Centers for Disease Control and Prevention Category A select agent. It is able to infect a variety of animals and insects and can persist in the environment, thus Francisella spp. must be able to survive in diverse environmental niches. However, F. tularensis has a surprising dearth of sensory and regulatory factors. Recent advancements in the field have identified new functions of encoded transcription factors and greatly expanded our understanding of virulence gene regulation. Here we review the current knowledge of environmental adaptation by F. tularensis, its transcriptional regulators and their relationship to animal virulence.
Collapse
Affiliation(s)
- Shipan Dai
- Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | | | | | | |
Collapse
|
50
|
Iron content differs between Francisella tularensis subspecies tularensis and subspecies holarctica strains and correlates to their susceptibility to H(2)O(2)-induced killing. Infect Immun 2010; 79:1218-24. [PMID: 21189323 DOI: 10.1128/iai.01116-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is classified as a category A select agent and a facultative intracellular bacterium. Why F. tularensis subsp. tularensis causes a more severe form of tularemia than F. tularensis subsp. holarctica does is not known. In this study, we have identified prominent phenotypic differences between the subspecies, since we found that F. tularensis subsp. tularensis strains contained less iron than F. tularensis subsp. holarctica strains. Moreover, strain SCHU S4 of F. tularensis subsp. tularensis was less susceptible than FSC200 and the live vaccine strain (LVS) of F. tularensis subsp. holarctica to H(2)O(2)-induced killing. The activity of the H(2)O(2)-degrading enzyme catalase was similar between the strains, whereas the iron content affected their susceptibility to H(2)O(2), since iron starvation rendered F. tularensis subsp. holarctica strains more resistant to H(2)O(2). Complementing LVS with fupA, which encodes an important virulence factor that regulates iron uptake, reduced its iron content and increased the resistance to H(2)O(2)-mediated killing. By real-time PCR, it was demonstrated that FSC200 and LVS expressed higher levels of gene transcripts related to iron uptake and storage than SCHU S4 did, and this likely explained their high iron content. Together, the results suggest that F. tularensis subsp. tularensis strains have restricted iron uptake and storage, which is beneficial for their resistance to H(2)O(2)-induced killing. This may be an important factor for the higher virulence of this subspecies of F. tularensis, as reactive oxygen species, such as H(2)O(2), are important bactericidal components during tularemia.
Collapse
|