1
|
Read CB, Ali AN, Stephenson DJ, Macknight HP, Maus KD, Cockburn CL, Kim M, Xie X, Carlyon JA, Chalfant CE. Ceramide-1-phosphate is a regulator of Golgi structure and is co-opted by the obligate intracellular bacterial pathogen Anaplasma phagocytophilum. mBio 2024; 15:e0029924. [PMID: 38415594 PMCID: PMC11005342 DOI: 10.1128/mbio.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Many intracellular pathogens structurally disrupt the Golgi apparatus as an evolutionarily conserved promicrobial strategy. Yet, the host factors and signaling processes involved are often poorly understood, particularly for Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We found that A. phagocytophilum elevated cellular levels of the bioactive sphingolipid, ceramide-1-phosphate (C1P), to promote Golgi fragmentation that enables bacterial proliferation, conversion from its non-infectious to infectious form, and productive infection. A. phagocytophilum poorly infected mice deficient in ceramide kinase, the Golgi-localized enzyme responsible for C1P biosynthesis. C1P regulated Golgi morphology via activation of a PKCα/Cdc42/JNK signaling axis that culminates in phosphorylation of Golgi structural proteins, GRASP55 and GRASP65. siRNA-mediated depletion of Cdc42 blocked A. phagocytophilum from altering Golgi morphology, which impaired anterograde trafficking of trans-Golgi vesicles into and maturation of the pathogen-occupied vacuole. Cells overexpressing phosphorylation-resistant versions of GRASP55 and GRASP65 presented with suppressed C1P- and A. phagocytophilum-induced Golgi fragmentation and poorly supported infection by the bacterium. By studying A. phagocytophilum, we identify C1P as a regulator of Golgi structure and a host factor that is relevant to disease progression associated with Golgi fragmentation.IMPORTANCECeramide-1-phosphate (C1P), a bioactive sphingolipid that regulates diverse processes vital to mammalian physiology, is linked to disease states such as cancer, inflammation, and wound healing. By studying the obligate intracellular bacterium Anaplasma phagocytophilum, we discovered that C1P is a major regulator of Golgi morphology. A. phagocytophilum elevated C1P levels to induce signaling events that promote Golgi fragmentation and increase vesicular traffic into the pathogen-occupied vacuole that the bacterium parasitizes. As several intracellular microbial pathogens destabilize the Golgi to drive their infection cycles and changes in Golgi morphology is also linked to cancer and neurodegenerative disorder progression, this study identifies C1P as a potential broad-spectrum therapeutic target for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Anika N. Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Daniel J. Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - H. Patrick Macknight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth D. Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, Virginia, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, Virginia, USA
| |
Collapse
|
2
|
Clemente TM, Angara RK, Gilk SD. Establishing the intracellular niche of obligate intracellular vacuolar pathogens. Front Cell Infect Microbiol 2023; 13:1206037. [PMID: 37645379 PMCID: PMC10461009 DOI: 10.3389/fcimb.2023.1206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Obligate intracellular pathogens occupy one of two niches - free in the host cell cytoplasm or confined in a membrane-bound vacuole. Pathogens occupying membrane-bound vacuoles are sequestered from the innate immune system and have an extra layer of protection from antimicrobial drugs. However, this lifestyle presents several challenges. First, the bacteria must obtain membrane or membrane components to support vacuole expansion and provide space for the increasing bacteria numbers during the log phase of replication. Second, the vacuole microenvironment must be suitable for the unique metabolic needs of the pathogen. Third, as most obligate intracellular bacterial pathogens have undergone genomic reduction and are not capable of full metabolic independence, the bacteria must have mechanisms to obtain essential nutrients and resources from the host cell. Finally, because they are separated from the host cell by the vacuole membrane, the bacteria must possess mechanisms to manipulate the host cell, typically through a specialized secretion system which crosses the vacuole membrane. While there are common themes, each bacterial pathogen utilizes unique approach to establishing and maintaining their intracellular niches. In this review, we focus on the vacuole-bound intracellular niches of Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, and Coxiella burnetii.
Collapse
Affiliation(s)
| | | | - Stacey D. Gilk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Gordon JL, Oliva Chavez AS, Martinez D, Vachiery N, Meyer DF. Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium by ntrX gene conversion from an inverted segmental duplication. PLoS One 2023; 18:e0266234. [PMID: 36800354 PMCID: PMC9937504 DOI: 10.1371/journal.pone.0266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/16/2022] [Indexed: 02/18/2023] Open
Abstract
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | - Adela S. Oliva Chavez
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | | | | | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
4
|
Read CB, Lind MCH, Chiarelli TJ, Izac JR, Adcox HE, Marconi RT, Carlyon JA. The Obligate Intracellular Bacterial Pathogen Anaplasma phagocytophilum Exploits Host Cell Multivesicular Body Biogenesis for Proliferation and Dissemination. mBio 2022; 13:e0296122. [PMID: 36409075 PMCID: PMC9765717 DOI: 10.1128/mbio.02961-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of the emerging infection, granulocytic anaplasmosis. This obligate intracellular bacterium lives in a host cell-derived vacuole that receives membrane traffic from multiple organelles to fuel its proliferation and from which it must ultimately exit to disseminate infection. Understanding of these essential pathogenic mechanisms has remained poor. Multivesicular bodies (MVBs) are late endosomal compartments that receive biomolecules from other organelles and encapsulate them into intralumenal vesicles (ILVs) using endosomal sorting complexes required for transport (ESCRT) machinery and ESCRT-independent machinery. Association of the ESCRT-independent protein, ALIX, directs MVBs to the plasma membrane where they release ILVs as exosomes. We report that the A. phagocytophilum vacuole (ApV) is acidified and enriched in lysobisphosphatidic acid, a lipid that is abundant in MVBs. ESCRT-0 and ESCRT-III components along with ALIX localize to the ApV membrane. siRNA-mediated inactivation of ESCRT-0 and ALIX together impairs A. phagocytophilum proliferation and infectious progeny production. RNA silencing of ESCRT-III, which regulates ILV scission, pronouncedly reduces ILV formation in ApVs and halts infection by arresting bacterial growth. Rab27a and its effector Munc13-4, which drive MVB trafficking to the plasma membrane and subsequent exosome release, localize to the ApV. Treatment with Nexinhib20, a small molecule inhibitor that specifically targets Rab27a to block MVB exocytosis, abrogates A. phagocytophilum infectious progeny release. Thus, A. phagocytophilum exploits MVB biogenesis and exosome release to benefit each major stage of its intracellular infection cycle: intravacuolar growth, conversion to the infectious form, and exit from the host cell. IMPORTANCE Anaplasma phagocytophilum causes granulocytic anaplasmosis, a globally emerging zoonosis that can be severe, even fatal, and for which antibiotic treatment options are limited. A. phagocytophilum lives in an endosomal-like compartment that interfaces with multiple organelles and from which it must ultimately exit to spread within the host. How the bacterium accomplishes these tasks is poorly understood. Multivesicular bodies (MVBs) are intermediates in the endolysosomal pathway that package biomolecular cargo from other organelles as intralumenal vesicles for release at the plasma membrane as exosomes. We discovered that A. phagocytophilum exploits MVB biogenesis and trafficking to benefit all aspects of its intracellular infection cycle: proliferation, conversion to its infectious form, and release of infectious progeny. The ability of a small molecule inhibitor of MVB exocytosis to impede A. phagocytophilum dissemination indicates the potential of this pathway as a novel host-directed therapeutic target for granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn R. Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
5
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
6
|
Levin ML, Troughton DR, Loftis AD. Duration of tick attachment necessary for transmission of Anaplasma phagocytophilum by Ixodes scapularis (Acari: Ixodidae) nymphs. Ticks Tick Borne Dis 2021; 12:101819. [PMID: 34520993 DOI: 10.1016/j.ttbdis.2021.101819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
This study assessed the duration of tick attachment necessary for a successful transmission of Anaplasma phagocytophilum by an infected I. scapularis nymph. Individual nymphs were placed upon BALB/c mice and allowed to feed for predetermined time intervals of 4 to 72 h. Ticks removed from mice at predetermined intervals were tested by PCR for verification of infection and evaluation of the bacterial load. The success of pathogen transmission to mice was assessed by blood-PCR at 7, 14 and 21 days postinfestation, and IFA at 21 days postinfestation. Anaplasma phagocytophilum infection was documented in 10-30 % of mice, from which ticks were removed within the first 20 h of feeding. However, transmission success was ≥70% if ticks remained attached for 36 h or longer. Notably, none of the PCR-positive mice that were exposed to infected ticks for 4 to 8 h and only half of PCR-positive mice exposed for 24 h developed antibodies within 3 weeks postinfestation. On the other hand, all mice with detectable bacteremia after being infested for 36 h seroconverted. This suggests that although some of the ticks removed prior to 24 h of attachment succeed in injecting a small amount of A. phagocytophilum, this amount is insufficient for stimulating humoral immunity and perhaps for establishing disseminated infection in BALB/c mice. Although A. phagocytophilum may be present in salivary glands of unfed I. scapularis nymphs, the amount of A. phagocytophilum initially contained in saliva appears insufficient to cause sustainable infection in a host. Replication and, maybe, reactivation of the agent for 12-24 h in a feeding tick is required before a mouse can be consistently infected.
Collapse
Affiliation(s)
- Michael L Levin
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Danielle R Troughton
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amanda D Loftis
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
7
|
El Hamiani Khatat S, Daminet S, Duchateau L, Elhachimi L, Kachani M, Sahibi H. Epidemiological and Clinicopathological Features of Anaplasma phagocytophilum Infection in Dogs: A Systematic Review. Front Vet Sci 2021; 8:686644. [PMID: 34250067 PMCID: PMC8260688 DOI: 10.3389/fvets.2021.686644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a worldwide emerging zoonotic tick-borne pathogen transmitted by Ixodid ticks and naturally maintained in complex and incompletely assessed enzootic cycles. Several studies have demonstrated an extensive genetic variability with variable host tropisms and pathogenicity. However, the relationship between genetic diversity and modified pathogenicity is not yet understood. Because of their proximity to humans, dogs are potential sentinels for the transmission of vector-borne pathogens. Furthermore, the strong molecular similarity between human and canine isolates of A. phagocytophilum in Europe and the USA and the positive association in the distribution of human and canine cases in the USA emphasizes the epidemiological role of dogs. Anaplasma phagocytophilum infects and survives within neutrophils by disregulating neutrophil functions and evading specific immune responses. Moreover, the complex interaction between the bacterium and the infected host immune system contribute to induce inflammatory injuries. Canine granulocytic anaplasmosis is an acute febrile illness characterized by lethargy, inappetence, weight loss and musculoskeletal pain. Hematological and biochemistry profile modifications associated with this disease are unspecific and include thrombocytopenia, anemia, morulae within neutrophils and increased liver enzymes activity. Coinfections with other tick-borne pathogens (TBPs) may occur, especially with Borrelia burgdorferi, complicating the clinical presentation, diagnosis and response to treatment. Although clinical studies have been published in dogs, it remains unclear if several clinical signs and clinicopathological abnormalities can be related to this infection.
Collapse
Affiliation(s)
- Sarah El Hamiani Khatat
- Department of Medicine, Surgery and Reproduction, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Sylvie Daminet
- Department of Companion Animals, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Latifa Elhachimi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Hamid Sahibi
- Department of Pathology and Veterinary Public Health, Unit of Parasitology, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
| |
Collapse
|
8
|
Serologic Evidence for the Exposure of Eastern Coyotes ( Canis latrans) in Pennsylvania to the Tick-Borne Pathogens Borreliella burgdorferi and Anaplasma phagocytophilum. mSphere 2020; 5:5/4/e00544-20. [PMID: 32817454 PMCID: PMC7426170 DOI: 10.1128/msphere.00544-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The incidence of Lyme disease (Borreliella burgdorferi) and anaplasmosis (Anaplasma phagocytophilum) are increasing in North America and Europe. The causative agents of these debilitating tick-transmitted infections are maintained in nature in an enzootic cycle involving Ixodes ticks and diverse mammals and birds. It has been postulated that predators directly or indirectly influence the dynamics of the enzootic cycle and disease incidence. Here, we demonstrate high seropositivity of eastern coyotes for B. burgdorferi and A. phagocytophilum. As coyotes become established in urban and suburban environments, interactions with humans, companion animals, and urban/suburban wildlife will increase. Knowledge of the pathogens that these highly adaptable predators are exposed to or carry, and their potential to influence or participate in enzootic cycles, is central to efforts to reduce the risk of tick-borne diseases in humans and companion animals. Lyme disease and anaplasmosis are tick-borne bacterial diseases caused by Borreliella and Anaplasma species, respectively. A comprehensive analysis of the exposure of eastern coyotes (Canis latrans) in the northeastern United States to tick-borne pathogens has not been conducted. In this report, we assess the serological status of 128 eastern coyotes harvested in Pennsylvania in 2015 and 2017 for antibodies to Borreliella burgdorferi and Anaplasma phagocytophilum. Immunoblot and dot blot approaches were employed to test each plasma sample by using cell lysates and recombinant proteins as detection antigens. The results demonstrate high seropositivity incidences of 64.8% and 72.7% for B. burgdorferi and A. phagocytophilum, respectively. Antibodies to both pathogens were detected in 51.5% of the plasma samples, indicating high potential for coinfection. Antibodies to the B. burgdorferi proteins DbpB, VlsE, DbpA, BBA36, and OspF (BBO39) were detected in 67.2, 63.3, 56.2, 51.6, and 48.4% of the plasma samples, respectively. Antibodies to the A. phagocytophilum P44 and P130 proteins were detected in 72.7 and 60.9% of the plasma samples, respectively. IMPORTANCE The incidence of Lyme disease (Borreliella burgdorferi) and anaplasmosis (Anaplasma phagocytophilum) are increasing in North America and Europe. The causative agents of these debilitating tick-transmitted infections are maintained in nature in an enzootic cycle involving Ixodes ticks and diverse mammals and birds. It has been postulated that predators directly or indirectly influence the dynamics of the enzootic cycle and disease incidence. Here, we demonstrate high seropositivity of eastern coyotes for B. burgdorferi and A. phagocytophilum. As coyotes become established in urban and suburban environments, interactions with humans, companion animals, and urban/suburban wildlife will increase. Knowledge of the pathogens that these highly adaptable predators are exposed to or carry, and their potential to influence or participate in enzootic cycles, is central to efforts to reduce the risk of tick-borne diseases in humans and companion animals.
Collapse
|
9
|
Nelson CM, Herron MJ, Wang XR, Baldridge GD, Oliver JD, Munderloh UG. Global Transcription Profiles of Anaplasma phagocytophilum at Key Stages of Infection in Tick and Human Cell Lines and Granulocytes. Front Vet Sci 2020; 7:111. [PMID: 32211428 PMCID: PMC7069361 DOI: 10.3389/fvets.2020.00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 11/17/2022] Open
Abstract
The incidence of human diseases caused by tick-borne pathogens is increasing but little is known about the molecular interactions between the agents and their vectors and hosts. Anaplasma phagocytophilum (Ap) is an obligate intracellular, tick-borne bacterium that causes granulocytic anaplasmosis in humans, dogs, sheep, and horses. In mammals, neutrophil granulocytes are a primary target of infection, and in ticks, Ap has been found in gut and salivary gland cells. To identify bacterial genes that enable Ap to invade and proliferate in human and tick cells, labeled mRNA from Ap bound to or replicating within human and tick cells (lines HL-60 and ISE6), and replicating in primary human granulocytes ex vivo, was hybridized to a custom tiling microarray containing probes representing the entire Ap genome. Probe signal values plotted over a map of the Ap genome revealed antisense transcripts and unannotated genes. Comparisons of transcript levels from each annotated gene between test conditions (e.g., Ap replicating in HL-60 vs. ISE6) identified those that were differentially transcribed, thereby highlighting genes associated with each condition. Bacteria replicating in HL-60 cells upregulated 122 genes compared to those in ISE6, including numerous p44 paralogs, five HGE-14 paralogs, and 32 hypothetical protein genes, of which 47% were predicted to be secreted or localized to the membrane. By comparison, 60% of genes upregulated in ISE6 encoded hypothetical proteins, 60% of which were predicted to be secreted or membrane associated. In granulocytes, Ap upregulated 120 genes compared to HL-60, 33% of them hypothetical and 43% of those predicted to encode secreted or membrane associated proteins. HL-60-grown bacteria binding to HL-60 cells barely responded transcriptionally, while ISE6-grown bacteria binding to ISE6 cells upregulated 48 genes. HL-60-grown bacteria, when incubated with ISE6 cells, upregulated the same genes that were upregulated by ISE6-grown bacteria exposed to uninfected ISE6. Hypothetical genes (constituting about 29% of Ap genes) played a disproportionate role in most infection scenarios, and particular sets of them were consistently upregulated in bacteria binding/entering both ISE6 and HL-60 cells. This suggested that the encoded proteins played central roles in establishing infection in ticks and humans.
Collapse
Affiliation(s)
- Curtis M Nelson
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Herron
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Xin-Ru Wang
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Gerald D Baldridge
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Ulrike G Munderloh
- Department of Entomology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Green RS, Naimi WA, Oliver LD, O'Bier N, Cho J, Conrad DH, Martin RK, Marconi RT, Carlyon JA. Binding of Host Cell Surface Protein Disulfide Isomerase by Anaplasma phagocytophilum Asp14 Enables Pathogen Infection. mBio 2020; 11:e03141-19. [PMID: 31992623 PMCID: PMC6989111 DOI: 10.1128/mbio.03141-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
Diverse intracellular pathogens rely on eukaryotic cell surface disulfide reductases to invade host cells. Pharmacologic inhibition of these enzymes is cytotoxic, making it impractical for treatment. Identifying and mechanistically dissecting microbial proteins that co-opt surface reductases could reveal novel targets for disrupting this common infection strategy. Anaplasma phagocytophilum invades neutrophils by an incompletely defined mechanism to cause the potentially fatal disease granulocytic anaplasmosis. The bacterium's adhesin, Asp14, contributes to invasion by virtue of its C terminus engaging an unknown receptor. Yeast-two hybrid analysis identified protein disulfide isomerase (PDI) as an Asp14 binding partner. Coimmunoprecipitation confirmed the interaction and validated it to be Asp14 C terminus dependent. PDI knockdown and antibody-mediated inhibition of PDI reductase activity impaired A. phagocytophilum infection of but not binding to host cells. Infection during PDI inhibition was rescued when the bacterial but not host cell surface disulfide bonds were chemically reduced with tris(2-carboxyethyl)phosphine-HCl (TCEP). TCEP also restored bacterial infectivity in the presence of an Asp14 C terminus blocking antibody that otherwise inhibits infection. A. phagocytophilum failed to productively infect myeloid-specific-PDI conditional-knockout mice, marking the first demonstration of in vivo microbial dependency on PDI for infection. Mutational analyses identified the Asp14 C-terminal residues that are critical for binding PDI. Thus, Asp14 binds and brings PDI proximal to A. phagocytophilum surface disulfide bonds that it reduces, which enables cellular and in vivo infection.IMPORTANCEAnaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging potentially fatal disease and the second-most common tick-borne illness in the United States. Treatment options are limited, and no vaccine exists. Due to the bacterium's obligatory intracellular lifestyle, A. phagocytophilum survival and pathogenesis are predicated on its ability to enter host cells. Understanding its invasion mechanism will yield new targets for preventing bacterial entry and, hence, disease. We report a novel entry pathway in which the A. phagocytophilum outer membrane protein Asp14 binds host cell surface protein disulfide isomerase via specific C-terminal residues to promote reduction of bacterial surface disulfide bonds, which is critical for cellular invasion and productive infection in vivo Targeting the Asp14 C terminus could be used to prevent/treat granulocytic anaplasmosis. Our findings have broad implications, as a thematically similar approach could be applied to block infection by other intracellular microbes that exploit cell surface reductases.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Jaehyung Cho
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
11
|
Eskeland S, Stuen S, Crosby FL, Lybeck K, Barbet AF, Lindgren PE, Tollefsen S, Wilhelmsson P, Tollersrud TS, Makvandi-Nejad S, Granquist EG. Assessing the clinical and bacteriological outcomes of vaccination with recombinant Asp14 and OmpA against A. phagocytophilum in sheep. Vet Immunol Immunopathol 2019; 218:109936. [PMID: 31590072 DOI: 10.1016/j.vetimm.2019.109936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum is a tick borne bacterium, causing disease in sheep and other mammals, including humans. The bacterium has great economic and animal welfare implications for sheep husbandry in Northern Europe. With the prospect of a warmer and more humid climate, the vector availability will likely increase, resulting in a higher prevalence of A. phagocytophilum. The current preventive measures, as pyrethroids acting on ticks or long acting antibiotics controlling bacterial infection, are suboptimal for prevention of the disease in sheep. Recently, the increased awareness on antibiotic- and pyrethorid resistance, is driving the search for a new prophylactic approach in sheep against A. phagocytophilum. Previous studies have used an attenuated vaccine, which gave insufficient protection from challenge with live bacteria. Other studies have focused on bacterial membrane surface proteins like Asp14 and OmpA. An animal study using homologous proteins to Asp14 and OmpA of A. marginale, showed no protective effect in heifers. In the current study, recombinant proteins of Asp14 (rAsp14) and OmpA (rOmpA) of A. phagocytophilum were produced and prepared as a vaccine for sheep. Ten lambs were vaccinated twice with an adjuvant emulsified with rAsp14 or rOmpA, three weeks apart and challenged with a live strain of A. phagocytophilum (GenBank acc.nr M73220) on day 42. The control group consisted of five lambs injected twice with PBS and adjuvant. Hematology, real time qPCR, immunodiagnostics and flow cytometric analyses of peripheral blood mononuclear cells were performed. Vaccinated lambs responded with clinical signs of A.phagocytophilum infection after challenge and bacterial load in the vaccinated group was not reduced compared to the control group. rAsp14 vaccinated lambs generated an antibody response against the vaccine, but a clear specificity for rAsp14 could not be established. rOmpA-vaccinated lambs developed a strong specific antibody response on days 28 after vaccination and 14 days post-challenge. Immunofluorescent staining and flow cytometric analysis of peripheral blood mononuclear monocytes revealed no difference between the three groups, but the percentage of CD4+, CD8+, γδ TcR+, λ-Light chain+, CD11b+, CD14+ and MHC II+ cells, within the groups changed during the study, most likely due to the adjuvant or challenge with the bacterium. Although an antigen specific antibody response could be detected against rOmpA and possibly rAsp14, the vaccines seemed to be ineffective in reducing clinical signs and bacterial load caused by A. phagocytophilum. This is the first animal study with recombinant Asp14 and OmpA aimed at obtaining clinical protection against A. phagocytophilum in sheep.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Ullevålsveien 72, 0454, Oslo, Norway.
| | - Snorre Stuen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Francy L Crosby
- University of Florida, College of Veterinary Medicine, 2015 SW 16thAve., Gainesville, FL, 32608, USA
| | - Kari Lybeck
- Norwegian Veterinary Institute, Ullevålsveien 68, 0454, Oslo, Norway
| | - Anthony F Barbet
- University of Florida, College of Veterinary Medicine, 2015 SW 16thAve., Gainesville, FL, 32608, USA
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 581 53, Linköping, Sweden; Department of Medical Microbiology, Laboratory Medicin, County Hospital Ryhov, 551 85, Jönköping, Sweden
| | - Stig Tollefsen
- Norwegian Veterinary Institute, Ullevålsveien 68, 0454, Oslo, Norway
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 581 53, Linköping, Sweden; Department of Medical Microbiology, Laboratory Medicin, County Hospital Ryhov, 551 85, Jönköping, Sweden
| | - Tore S Tollersrud
- Animalia, Norwegian Meat and Poultry Research Center, Lørenveien 38, 0585, Oslo, Norway
| | | | - Erik G Granquist
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Ullevålsveien 72, 0454, Oslo, Norway
| |
Collapse
|
12
|
Cockburn CL, Green RS, Damle SR, Martin RK, Ghahrai NN, Colonne PM, Fullerton MS, Conrad DH, Chalfant CE, Voth DE, Rucks EA, Gilk SD, Carlyon JA. Functional inhibition of acid sphingomyelinase disrupts infection by intracellular bacterial pathogens. Life Sci Alliance 2019; 2:e201800292. [PMID: 30902833 PMCID: PMC6431796 DOI: 10.26508/lsa.201800292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacteria that live in host cell-derived vacuoles are significant causes of human disease. Parasitism of low-density lipoprotein (LDL) cholesterol is essential for many vacuole-adapted bacteria. Acid sphingomyelinase (ASM) influences LDL cholesterol egress from the lysosome. Using functional inhibitors of ASM (FIASMAs), we show that ASM activity is key for infection cycles of vacuole-adapted bacteria that target cholesterol trafficking-Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia trachomatis, and Chlamydia pneumoniae. Vacuole maturation, replication, and infectious progeny generation by A. phagocytophilum, which exclusively hijacks LDL cholesterol, are halted and C. burnetii, for which lysosomal cholesterol accumulation is bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae, which hijack LDL cholesterol and other lipid sources, are suppressed but less so than A. phagocytophilum or C. burnetii A. phagocytophilum fails to productively infect ASM-/- or FIASMA-treated mice. These findings establish the importance of ASM for infection by intracellular bacteria and identify FIASMAs as potential host-directed therapies for diseases caused by pathogens that manipulate LDL cholesterol.
Collapse
Affiliation(s)
- Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Naomi N Ghahrai
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marissa S Fullerton
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elizabeth A Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| |
Collapse
|
13
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Peng Y, Wang K, Zhao S, Yan Y, Wang H, Jing J, Jian F, Wang R, Zhang L, Ning C. Detection and Phylogenetic Characterization of Anaplasma capra: An Emerging Pathogen in Sheep and Goats in China. Front Cell Infect Microbiol 2018; 8:283. [PMID: 30214896 PMCID: PMC6126426 DOI: 10.3389/fcimb.2018.00283] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/25/2018] [Indexed: 01/28/2023] Open
Abstract
Anaplasma capra is an emerging pathogen, which can infect ruminants and humans. This study was conducted to determine the occurrence of A. capra in the blood samples of sheep and goats in China. Using nested polymerase chain reaction (nested-PCR) targeting the gltA gene and conventional PCR targeting the heat shock protein (groEL) gene and the major surface protein4 gene (msp4), A. capra was detected in 129 (8.9%) of 1453 sheep and goat blood samples. The positive rate was higher in goats (9.4%, 89/943) than in sheep (7.8%, 40/510) (χ2 = 1.04, p > 0.05, df = 1). For sheep, A. capra was found in 17 sites from 2 provinces. The prevalence was 28.6% in sheep from Liaoning province, which was higher than in Henan Province (7.3%). For goats, A. capra was detected in 35 sites from 7 provinces. The prevalence varied from 0 to 19.4% in the goat sites examined. The prevalence rates were 19.4, 19.3, 10, 8.8, 6.8, 1.8, and 0% in goats from Guizhou province, Henan Province, Inner Mongolia Autonomous Region, Shanxi Province, Xinjiang Uygur Autonomous Region, Yunnan province, and Gansu province, respectively. Based on the analysis of the A. capra citrate synthase gene (gltA), two variants were identified. Variant I showed a high sequence similarity to the A. capra, which were previously reported in sheep, goats, Ixodes persulcatus, Haemaphysalis longicornis, Haemaphysalis qinghaiensis, and humans. Variant II was only found in Luoyang, Anyang, and Sanmengxia, of Henan province. To our knowledge, this is the first detection of this variant of A. capra in sheep and goat blood in China. Phylogenetic analysis based on groEL and msp4 genes showed that the Anaplasma sp. sequences clustered independently from A. capra and other Anaplasma species with high bootstrap values. We found A. capra DNA in sheep and goats in China, providing evidence that sheep and goats can be infected by A. capra. We also found that this zoonotic pathogen is widely distributed in China. This study provides information for assessing the public health risks for human anaplasmosis.
Collapse
Affiliation(s)
- Yongshuai Peng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Kunlun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Shanshan Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Yaqun Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Haiyan Wang
- Experimental Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jichun Jing
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, China
| |
Collapse
|
15
|
Scherler A, Jacquier N, Greub G. Chlamydiales, Anaplasma and Bartonella: persistence and immune escape of intracellular bacteria. Microbes Infect 2017; 20:416-423. [PMID: 29162422 DOI: 10.1016/j.micinf.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
Intracellular bacteria, such as Chlamydiales, Anaplasma or Bartonella, need to persist inside their host in order to complete their developmental cycle and to infect new hosts. In order to escape from the host immune system, intracellular bacteria have developed diverse mechanisms of persistence, which can directly impact the health of their host.
Collapse
Affiliation(s)
- Aurélie Scherler
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Contreras M, Alberdi P, Mateos-Hernández L, Fernández de Mera IG, García-Pérez AL, Vancová M, Villar M, Ayllón N, Cabezas-Cruz A, Valdés JJ, Stuen S, Gortazar C, de la Fuente J. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection. Front Cell Infect Microbiol 2017; 7:307. [PMID: 28725639 PMCID: PMC5496961 DOI: 10.3389/fcimb.2017.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4) and Heat shock protein 70 (HSP70) were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Ana L García-Pérez
- Departamento de Sanidad Animal, Instituto Vasco de Investigación y Desarrollo Agrario (NEIKER)Derio, Spain
| | - Marie Vancová
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - Alejandro Cabezas-Cruz
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyČeské Budějovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia.,UMR BIPAR, Animal Health Laboratory, INRA, ANSES, ENVAMaisons Alfort, France
| | - James J Valdés
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyČeské Budějovice, Czechia.,Department of Virology, Veterinary Research InstituteBrno, Czechia
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian University of Life SciencesSandnes, Norway
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, CSIC-UCLM-JCCMCiudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, United States
| |
Collapse
|
17
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
18
|
Hebert KS, Seidman D, Oki AT, Izac J, Emani S, Oliver LD, Miller DP, Tegels BK, Kannagi R, Marconi RT, Carlyon JA. Anaplasma marginale Outer Membrane Protein A Is an Adhesin That Recognizes Sialylated and Fucosylated Glycans and Functionally Depends on an Essential Binding Domain. Infect Immun 2017; 85:e00968-16. [PMID: 27993973 PMCID: PMC5328490 DOI: 10.1128/iai.00968-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Anaplasma marginale causes bovine anaplasmosis, a debilitating and potentially fatal tick-borne infection of cattle. Because A. marginale is an obligate intracellular organism, its adhesins that mediate entry into host cells are essential for survival. Here, we demonstrate that A. marginale outer membrane protein A (AmOmpA; AM854) contributes to the invasion of mammalian and tick host cells. AmOmpA exhibits predicted structural homology to OmpA of A. phagocytophilum (ApOmpA), an adhesin that uses key lysine and glycine residues to interact with α2,3-sialylated and α1,3-fucosylated glycan receptors, including 6-sulfo-sialyl Lewis x (6-sulfo-sLex). Antisera against AmOmpA or its predicted binding domain inhibits A. marginale infection of host cells. Residues G55 and K58 are contributory, and K59 is essential for recombinant AmOmpA to bind to host cells. Enzymatic removal of α2,3-sialic acid and α1,3-fucose residues from host cell surfaces makes them less supportive of AmOmpA binding. AmOmpA is both an adhesin and an invasin, as coating inert beads with it confers adhesiveness and invasiveness. Recombinant forms of AmOmpA and ApOmpA competitively antagonize A. marginale infection of host cells, but a monoclonal antibody against 6-sulfo-sLex fails to inhibit AmOmpA adhesion and A. marginale infection. Thus, the two OmpA proteins bind related but structurally distinct receptors. This study provides a detailed understanding of AmOmpA function, identifies its essential residues that can be targeted by blocking antibody to reduce infection, and determines that it binds to one or more α2,3-sialylated and α1,3-fucosylated glycan receptors that are unique from those targeted by ApOmpA.
Collapse
Affiliation(s)
- Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jerilyn Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Sarvani Emani
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Brittney K Tegels
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Reiji Kannagi
- Research Complex for Medical Frontiers, Aichi Medical University, Yazako, Nagakute, Japan
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
19
|
Beyer AR, Rodino KG, VieBrock L, Green RS, Tegels BK, Oliver LD, Marconi RT, Carlyon JA. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2. Cell Microbiol 2017; 19. [PMID: 28103630 DOI: 10.1111/cmi.12727] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/11/2023]
Abstract
Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that afflicts 1 million people annually. This obligate intracellular bacterium boasts one of the largest microbial arsenals of ankyrin repeat-containing protein (Ank) effectors, most of which target the endoplasmic reticulum (ER) by undefined mechanisms. Ank9 is the only one proven to function during infection. Here, we demonstrate that Ank9 bears a motif that mimics the GRIP domain of eukaryotic golgins and is necessary and sufficient for its Golgi localization. Ank9 reaches the ER exclusively by retrograde trafficking from the Golgi. Consistent with this observation, it binds COPB2, a host protein that mediates Golgi-to-ER transport. Ank9 destabilizes the Golgi and ER in a Golgi localization domain-dependent manner and induces the activating transcription factor 4-dependent unfolded protein response. The Golgi is also destabilized in cells infected with O. tsutsugamushi or treated with COPB2 small interfering RNA. COPB2 reduction and/or the cellular events that it invokes, such as Golgi destabilization, benefit Orientia replication. Thus, Ank9 or bacterial negative modulation of COPB2 might contribute to the bacterium's intracellular replication. This report identifies a novel microbial Golgi localization domain, links Ank9 to the ability of O. tsutsugamushi to perturb Golgi structure, and describes the first mechanism by which any Orientia effector targets the secretory pathway.
Collapse
Affiliation(s)
- Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Department of Biology, Virginia State University, Petersburg, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brittney K Tegels
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Kaztronix, McLean, VA, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
20
|
Oki AT, Huang B, Beyer AR, May LJ, Truchan HK, Walker NJ, Galloway NL, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum APH0032 Is Exposed on the Cytosolic Face of the Pathogen-Occupied Vacuole and Co-opts Host Cell SUMOylation. Front Cell Infect Microbiol 2016; 6:108. [PMID: 27713867 PMCID: PMC5031783 DOI: 10.3389/fcimb.2016.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae and the obligate intracellular bacterium that causes granulocytic anaplasmosis, resides in a host cell-derived vacuole. Bacterial proteins that localize to the A. phagocytophilum-occupied vacuole membrane (AVM) are critical host-pathogen interfaces. Of the few bacterial AVM proteins that have been identified, the domains responsible for AVM localization and the host cell pathways that they co-opt are poorly defined. APH0032 is an effector that is expressed and localizes to the AVM late during the infection cycle. Herein, the APH0032 domain that is essential for associating with host cell membranes was mapped. Immunofluorescent labeling of infected cells that had been differentially permeabilized confirmed that APH0032 is exposed on the AVM's cytosolic face, signifying its potential to interface with host cell processes. SUMOylation is the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates. Previous work from our laboratory determined that SUMOylation is important for A. phagocytophilum survival and that SUMOylated proteins decorate the AVM. Algorithmic prediction analyses identified APH0032 as a candidate for SUMOylation. Endogenous APH0032 was precipitated from infected cells using a SUMO affinity matrix, confirming that the effector co-opts SUMOylation during infection. APH0032 pronouncedly colocalized with SUMO1, but not SUMO2/3 moieties on the AVM. Ectopic expression of APH0032 in A. phagocytophilum infected host cells significantly boosted the bacterial load. This study delineates the first domain of any Anaplasmataceae protein that is essential for associating with the pathogen-occupied vacuole membrane, demonstrates the importance of APH0032 to infection, and identifies it as the second A. phagocytophilum effector that co-opts SUMOylation, thus underscoring the relevance of this post-translational modification to infection.
Collapse
Affiliation(s)
- Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Levi J May
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Hilary K Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine Davis, CA, USA
| | - Nathan L Galloway
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine Davis, CA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| |
Collapse
|
21
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
22
|
Truchan HK, Cockburn CL, Hebert KS, Magunda F, Noh SM, Carlyon JA. The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum. Front Cell Infect Microbiol 2016; 6:22. [PMID: 26973816 PMCID: PMC4771727 DOI: 10.3389/fcimb.2016.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
The genus Anaplasma consists of tick-transmitted obligate intracellular bacteria that invade white or red blood cells to cause debilitating and potentially fatal infections. A. phagocytophilum, a human and veterinary pathogen, infects neutrophils to cause granulocytic anaplasmosis. A. marginale invades bovine erythrocytes. Evidence suggests that both species may also infect endothelial cells in vivo. In mammalian and arthropod host cells, A. phagocytophilum and A. marginale reside in host cell derived pathogen-occupied vacuoles (POVs). While it was recently demonstrated that the A. phagocytophilum-occupied vacuole (ApV) intercepts membrane traffic from the trans-Golgi network, it is unclear if it or the A. marginale-occupied vacuole (AmV) interacts with other secretory organelles. Here, we demonstrate that the ApV and AmV extensively interact with the host endoplasmic reticulum (ER) in endothelial, myeloid, and/or tick cells. ER lumen markers, calreticulin, and protein disulfide isomerase, and the ER membrane marker, derlin-1, were pronouncedly recruited to the peripheries of both POVs. ApV association with the ER initiated early and continued throughout the infection cycle. Both the ApV and AmV interacted with the rough ER and smooth ER. However, only derlin-1-positive rough ER derived vesicles were delivered into the ApV lumen where they localized with intravacuolar bacteria. Transmission electron microscopy identified multiple ER-POV membrane contact sites on the cytosolic faces of both species' vacuoles that corresponded to areas on the vacuoles' lumenal faces where intravacuolar Anaplasma organisms closely associated. A. phagocytophilum is known to hijack Rab10, a GTPase that regulates ER dynamics and morphology. Yet, ApV-ER interactions were unhindered in cells in which Rab10 had been knocked down, demonstrating that the GTPase is dispensable for the bacterium to parasitize the ER. These data establish the ApV and AmV as pathogen-host interfaces that directly engage the ER in vertebrate and invertebrate host cells and evidence the conservation of ER parasitism between two Anaplasma species.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Kathryn S Hebert
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Forgivemore Magunda
- Program in Vector Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA; The Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| | - Susan M Noh
- Program in Vector Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State UniversityPullman, WA, USA; Animal Disease Research Unit, Agricultural Research Service, U. S. Department of AgriculturePullman, WA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
23
|
Truchan HK, VieBrock L, Cockburn CL, Ojogun N, Griffin BP, Wijesinghe DS, Chalfant CE, Carlyon JA. Anaplasma phagocytophilum Rab10-dependent parasitism of the trans-Golgi network is critical for completion of the infection cycle. Cell Microbiol 2016; 18:260-81. [PMID: 26289115 PMCID: PMC4891814 DOI: 10.1111/cmi.12500] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023]
Abstract
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell-derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense-cored (DC) morphotypes. Host-pathogen interactions that are critical for RC-to-DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)-tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid-rich trans-Golgi network (TGN) to its vacuole in a guanine nucleotide-independent manner. Here, we demonstrate that endogenous Rab10-positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum-occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up-regulates expression of the DC-specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide-independent, Rab10-specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brian P. Griffin
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dayanjan S. Wijesinghe
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Charles E. Chalfant
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Victoria Johnson Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Institute for Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Research and Development, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Molecular Biology and Genetics Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
24
|
Oliva Chávez AS, Fairman JW, Felsheim RF, Nelson CM, Herron MJ, Higgins L, Burkhardt NY, Oliver JD, Markowski TW, Kurtti TJ, Edwards TE, Munderloh UG. An O-Methyltransferase Is Required for Infection of Tick Cells by Anaplasma phagocytophilum. PLoS Pathog 2015; 11:e1005248. [PMID: 26544981 PMCID: PMC4636158 DOI: 10.1371/journal.ppat.1005248] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/03/2015] [Indexed: 12/16/2022] Open
Abstract
Anaplasma phagocytophilum, the causative agent of Human Granulocytic Anaplasmosis (HGA), is an obligately intracellular α-proteobacterium that is transmitted by Ixodes spp ticks. However, the pathogen is not transovarially transmitted between tick generations and therefore needs to survive in both a mammalian host and the arthropod vector to complete its life cycle. To adapt to different environments, pathogens rely on differential gene expression as well as the modification of proteins and other molecules. Random transposon mutagenesis of A. phagocytophilum resulted in an insertion within the coding region of an o-methyltransferase (omt) family 3 gene. In wild-type bacteria, expression of omt was up-regulated during binding to tick cells (ISE6) at 2 hr post-inoculation, but nearly absent by 4 hr p.i. Gene disruption reduced bacterial binding to ISE6 cells, and the mutant bacteria that were able to enter the cells were arrested in their replication and development. Analyses of the proteomes of wild-type versus mutant bacteria during binding to ISE6 cells identified Major Surface Protein 4 (Msp4), but also hypothetical protein APH_0406, as the most differentially methylated. Importantly, two glutamic acid residues (the targets of the OMT) were methyl-modified in wild-type Msp4, whereas a single asparagine (not a target of the OMT) was methylated in APH_0406. In vitro methylation assays demonstrated that recombinant OMT specifically methylated Msp4. Towards a greater understanding of the overall structure and catalytic activity of the OMT, we solved the apo (PDB_ID:4OA8), the S-adenosine homocystein-bound (PDB_ID:4OA5), the SAH-Mn2+ bound (PDB_ID:4PCA), and SAM- Mn2+ bound (PDB_ID:4PCL) X-ray crystal structures of the enzyme. Here, we characterized a mutation in A. phagocytophilum that affected the ability of the bacteria to productively infect cells from its natural vector. Nevertheless, due to the lack of complementation, we cannot rule out secondary mutations. Since its discovery in 1994, Human Granulocytic Anaplasmosis (HGA) has become the second most commonly diagnosed tick-borne disease in the US, and it is gaining importance in several countries in Europe. HGA is caused by Anaplasma phagocytophilum, a bacterium transmitted by black-legged ticks and their relatives. Whereas several of the molecules and processes leading to infection of human cells have been identified, little is known about their counterparts in the tick. We analyzed the effects of a mutation in a gene encoding an o-methyltransferase that is involved in methylation of an outer membrane protein. The mutation of the OMT appears to be important for the ability of A. phagocytophilum to adhere to, invade, and replicate in tick cells. Several tests including binding assays, microscopic analysis of the infection cycle within tick cells, gene expression assays, and biochemical assays using recombinant OMT strongly suggested that the mutation of the o-methyltransferase gene arrested the growth and development of this bacterium within tick cells. Proteomic analyses identified several possible OMT substrates, and in vitro methylation assays using recombinant o-methyltransferase identified an outer membrane protein, Msp4, as a specifically methyl-modified target. Our results indicated that methylation was important for infection of tick cells by A. phagocytophilum, and suggested possible strategies to block transmission of this emerging pathogen. The solved crystal structure of the o-methyltransferase will further stimulate the search for small molecule inhibitors that could break the tick transmission cycle of A. phagocytophilum in nature.
Collapse
Affiliation(s)
- Adela S. Oliva Chávez
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| | - James W. Fairman
- Emerald Bio, Bainbridge Island, Washington, United States of America
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
| | - Roderick F. Felsheim
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Curtis M. Nelson
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael J. Herron
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nicole Y. Burkhardt
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jonathan D. Oliver
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Todd W. Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Thomas E. Edwards
- Emerald Bio, Bainbridge Island, Washington, United States of America
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington, United States of America
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
25
|
Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS One 2015; 10:e0137237. [PMID: 26340562 PMCID: PMC4560377 DOI: 10.1371/journal.pone.0137237] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface proteins during A. phagocytophilum infection in ticks. Characterization of Anaplasma proteome contributes information on host-pathogen interactions and provides targets for development of novel control strategies for pathogen infection and transmission.
Collapse
|
26
|
Walker DH, Dumler JS. The role of CD8 T lymphocytes in rickettsial infections. Semin Immunopathol 2015; 37:289-99. [PMID: 25823954 DOI: 10.1007/s00281-015-0480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Abstract
Arthropod-borne obligately intracellular bacteria pose a difficult challenge to the immune system. The genera Rickettsia, Orientia, Ehrlichia, and Anaplasma evolved mechanisms of immune evasion, and each interacts differently with the immune system. The roles of CD8 T cells include protective immunity and immunopathology. In Rickettsia infections, CD8 T cells are protective mediated in part by cytotoxicity toward infected cells. In contrast, TNF-α overproduction by CD8 T cells is pathogenic in lethal ehrlichiosis by induction of apoptosis/necrosis in hepatocytes. Yet, CD8 T cells, along with CD4 T cells and antibodies, also contribute to protective immunity in ehrlichial infections. In granulocytic anaplasmosis, CD8 T cells impact pathogen control modestly but could contribute to immunopathology by virtue of their dysfunction. While preliminary evidence indicates that CD8 T cells are important in protection against Orientia tsutsugamushi, mechanistic studies have been neglected. Valid animal models will enable experiments to elucidate protective and pathologic immune mechanisms. The public health need for vaccines against these agents of human disease, most clearly O. tsutsugamushi, and the veterinary diseases, canine monocytotropic ehrlichiosis (Ehrlichia canis), heartwater (Ehrlichia ruminantium), and bovine anaplasmosis (A. marginale), requires detailed immunity and immunopathology investigations, including the roles of CD8 T lymphocytes.
Collapse
Affiliation(s)
- David H Walker
- Department of Pathology, Director, UTMB Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0609, USA,
| | | |
Collapse
|
27
|
Sinclair SHG, Garcia-Garcia JC, Dumler JS. Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol 2015; 6:55. [PMID: 25705208 PMCID: PMC4319465 DOI: 10.3389/fmicb.2015.00055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022] Open
Abstract
Obligate intracellular bacteria have an arsenal of proteins that alter host cells to establish and maintain a hospitable environment for replication. Anaplasma phagocytophilum secrets Ankyrin A (AnkA), via a type IV secretion system, which translocates to the nucleus of its host cell, human neutrophils. A. phagocytophilum-infected neutrophils have dramatically altered phenotypes in part explained by AnkA-induced transcriptional alterations. However, it is unlikely that AnkA is the sole effector to account for infection-induced transcriptional changes. We developed a simple method combining bioinformatics and iTRAQ protein profiling to identify potential bacterial-derived nuclear-translocated proteins that could impact transcriptional programming in host cells. This approach identified 50 A. phagocytophilum candidate genes or proteins. The encoding genes were cloned to create GFP fusion protein-expressing clones that were transfected into HEK-293T cells. We confirmed nuclear translocation of six proteins: APH_0062, RplE, Hup, APH_0382, APH_0385, and APH_0455. Of the six, APH_0455 was identified as a type IV secretion substrate and is now under investigation as a potential nucleomodulin. Additionally, application of this approach to other intracellular bacteria such as Mycobacterium tuberculosis, Chlamydia trachomatis and other intracellular bacteria identified multiple candidate genes to be investigated.
Collapse
Affiliation(s)
- Sara H G Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jose C Garcia-Garcia
- Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Procter and Gamble Co. Cincinnati, OH, USA
| | - J Stephen Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
28
|
Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection. Vet Microbiol 2014; 174:448-455. [DOI: 10.1016/j.vetmic.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 11/23/2022]
|
29
|
Beyer AR, Truchan HK, May LJ, Walker NJ, Borjesson DL, Carlyon JA. The Anaplasma phagocytophilum effector AmpA hijacks host cell SUMOylation. Cell Microbiol 2014; 17:504-19. [PMID: 25308709 DOI: 10.1111/cmi.12380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/18/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022]
Abstract
SUMOylation, the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates, is an essential post-translational modification in eukaryotes. Microbial manipulation of SUMOylation recently emerged as a key virulence strategy for viruses and facultative intracellular bacteria, the latter of which have only been shown to deploy effectors that negatively regulate SUMOylation. Here, we demonstrate that the obligate intracellular bacterium, Anaplasma phagocytophilum, utilizes an effector, AmpA (A. phagocytophilum post-translationally modified protein A) that becomes SUMOylated in host cells and this is important for the pathogen's survival. We previously discovered that AmpA (formerly APH1387) localizes to the A. phagocytophilum-occupied vacuolar membrane (AVM). Algorithmic prediction analyses denoted AmpA as a candidate for SUMOylation. We verified this phenomenon using a SUMO affinity matrix to precipitate both native AmpA and ectopically expressed green fluorescent protein (GFP)-tagged AmpA. SUMOylation of AmpA was lysine dependent, as SUMO affinity beads failed to precipitate a GFP-AmpA protein when its lysine residues were substituted with arginine. Ectopically expressed and endogenous AmpA were poly-SUMOylated, which was consistent with the observation that AmpA colocalizes with SUMO2/3 at the AVM. Only late during the infection cycle did AmpA colocalize with SUMO1, which terminally caps poly-SUMO2/3 chains. AmpA was also detected in the cytosol of infected host cells, further supporting its secretion and likely participation in interactions that aid pathogen survival. Indeed, whereas siRNA-mediated knockdown of Ubc9 - a necessary enzyme for SUMOylation - slightly bolstered A. phagocytophilum infection, pharmacologically inhibiting SUMOylation in infected cells significantly reduced the bacterial load. Ectopically expressed GFP-AmpA served as a competitive agonist against native AmpA in infected cells, while lysine-deficient GFP-AmpA was less effective, implying that modification of AmpA lysines is important for infection. Collectively, these data show that AmpA becomes directly SUMOylated during infection, representing a novel tactic for A. phagocytophilum survival.
Collapse
Affiliation(s)
- Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pruneau L, Moumène A, Meyer DF, Marcelino I, Lefrançois T, Vachiéry N. Understanding Anaplasmataceae pathogenesis using "Omics" approaches. Front Cell Infect Microbiol 2014; 4:86. [PMID: 25072029 PMCID: PMC4078744 DOI: 10.3389/fcimb.2014.00086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
This paper examines how "Omics" approaches improve our understanding of Anaplasmataceae pathogenesis, through a global and integrative strategy to identify genes and proteins involved in biochemical pathways key for pathogen-host-vector interactions. The Anaplasmataceae family comprises obligate intracellular bacteria mainly transmitted by arthropods. These bacteria are responsible for major human and animal endemic and emerging infectious diseases with important economic and public health impacts. In order to improve disease control strategies, it is essential to better understand their pathogenesis. Our work focused on four Anaplasmataceae, which cause important animal, human and zoonotic diseases: Anaplasma marginale, A. phagocytophilum, Ehrlichia chaffeensis, and E. ruminantium. Wolbachia spp. an endosymbiont of arthropods was also included in this review as a model of a non-pathogenic Anaplasmataceae. A gap analysis on "Omics" approaches on Anaplasmataceae was performed, which highlighted a lack of studies on the genes and proteins involved in the infection of hosts and vectors. Furthermore, most of the studies have been done on the pathogen itself, mainly on infectious free-living forms and rarely on intracellular forms. In order to perform a transcriptomic analysis of the intracellular stage of development, researchers developed methods to enrich bacterial transcripts from infected cells. These methods are described in this paper. Bacterial genes encoding outer membrane proteins, post-translational modifications, eukaryotic repeated motif proteins, proteins involved in osmotic and oxidative stress and hypothetical proteins have been identified to play a key role in Anaplasmataceae pathogenesis. Further investigations on the function of these outer membrane proteins and hypothetical proteins will be essential to confirm their role in the pathogenesis. Our work underlines the need for further studies in this domain and on host and vector responses to infection.
Collapse
Affiliation(s)
- Ludovic Pruneau
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; Université des Antilles et de la Guyane Pointe-à-Pitre, France
| | - Amal Moumène
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; Université des Antilles et de la Guyane Pointe-à-Pitre, France
| | - Damien F Meyer
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| | - Isabel Marcelino
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; IBET Apartado, Oeiras, Portugal ; ITQB-UNL, Estação Agronómica Nacional Oeiras, Lisboa, Portugal
| | - Thierry Lefrançois
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| | - Nathalie Vachiéry
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| |
Collapse
|
31
|
Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, Karandashova S, Miller DP, Tegels BK, Marconi RT, Fikrig E, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol 2014; 16:1133-45. [PMID: 24612118 DOI: 10.1111/cmi.12286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/11/2023]
Abstract
Anaplasma phagocytophilum, which causes granulocytic anaplasmosis in humans and animals, is a tick-transmitted obligate intracellular bacterium that mediates its own uptake into neutrophils and non-phagocytic cells. Invasins of obligate intracellular pathogens are attractive targets for protecting against or curing infection because blocking the internalization step prevents survival of these organisms. The complement of A. phagocytophilum invasins is incompletely defined. Here, we report the significance of a novel A. phagocytophilum invasion protein, AipA. A. phagocytophilum induced aipA expression during transmission feeding of infected ticks on mice. The bacterium upregulated aipA transcription when it transitioned from its non-infectious reticulate cell morphotype to its infectious dense-cored morphotype during infection of HL-60 cells. AipA localized to the bacterial surface and was expressed during in vivo infection. Of the AipA regions predicted to be surface-exposed, only residues 1 to 87 (AipA1-87 ) were found to be essential for host cell invasion. Recombinant AipA1-87 protein bound to and competitively inhibited A. phagocytophilum infection of mammalian cells. Antiserum specific for AipA1-87 , but not other AipA regions, antagonized infection. Additional blocking experiments using peptide-specific antisera narrowed down the AipA invasion domain to residues 9 to 21. An antisera combination targeting AipA1-87 together with two other A. phagocytophilum invasins, OmpA and Asp14, nearly abolished infection of host cells. This study identifies AipA as an A. phagocytophilum surface protein that is critical for infection, demarcates its invasion domain, and establishes a rationale for targeting multiple invasins to protect against granulocytic anaplasmosis.
Collapse
Affiliation(s)
- David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Utilization of a precolumn with size exclusion and reversed-phase modes for size-exclusion chromatographic analysis of polysorbate-containing protein aggregates. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:68-72. [PMID: 24576768 DOI: 10.1016/j.jchromb.2014.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 11/22/2022]
Abstract
Size-exclusion chromatography (SEC) is a useful method for quantification of protein aggregates because of its high throughput capacity and highly quantitative performance. One of the problems in this method concerns polysorbates, which are well-known additives for protein-containing products to prevent protein aggregation, but frequently interfere with the photometric detection of protein aggregates. We developed a new SEC method that can separate polysorbates from protein sample solutions in an on-line mode with a precolumn with size exclusion and reversed-phase mixed modes. The precolumn can effectively trap polysorbates in aqueous mobile phase, and the trapped polysorbates are easily eluted with acetonitrile-containing aqueous mobile phase to clean the precolumn. Small parts of protein aggregates may be also trapped on the precolumn depending on temperature and proteins. Setting appropriate column temperature can minimize such inconvenient trapping of aggregates.
Collapse
|
33
|
Truchan HK, Seidman D, Carlyon JA. Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. Microbes Infect 2013; 15:1017-25. [PMID: 24141091 PMCID: PMC3894830 DOI: 10.1016/j.micinf.2013.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
Abstract
Anaplasma phagocytophilum invades neutrophils to cause the emerging infection, human granulocytic anaplasmosis. Here, we provide a focused review of the A. phagocytophilum invasin-host cell receptor interactions that promote bacterial entry and the degradative and membrane traffic pathways that the organism exploits to route nutrients to the organelle in which it resides. Because its obligatory intracellular nature hinders knock out-complementation approaches, we also discuss the current methods used to study A. phagocytophilum gene function and the potential benefit of applying novel tools that have advanced studies of other obligate intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Hilary K. Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David Seidman
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
34
|
|
35
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
36
|
Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, VieBrock L, Thomas RJ, Borjesson DL, Fikrig E, Carlyon JA. Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun 2012; 80:3748-60. [PMID: 22907813 PMCID: PMC3486060 DOI: 10.1128/iai.00654-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/25/2012] [Indexed: 01/14/2023] Open
Abstract
Anaplasma phagocytophilum is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis (HGA). A. phagocytophilum binding to sialyl Lewis x (sLe(x)) and other sialylated glycans that decorate P selectin glycoprotein 1 (PSGL-1) and other glycoproteins is critical for infection of mammalian host cells. Here, we demonstrate the importance of A. phagocytophilum outer membrane protein A (OmpA) APH_0338 in infection of mammalian host cells. OmpA is transcriptionally induced during transmission feeding of A. phagocytophilum-infected ticks on mice and is upregulated during invasion of HL-60 cells. OmpA is presented on the pathogen's surface. Sera from HGA patients and experimentally infected mice recognize recombinant OmpA. Pretreatment of A. phagocytophilum organisms with OmpA antiserum reduces their abilities to infect HL-60 cells. The OmpA N-terminal region is predicted to contain the protein's extracellular domain. Glutathione S-transferase (GST)-tagged versions of OmpA and OmpA amino acids 19 to 74 (OmpA(19-74)) but not OmpA(75-205) bind to, and competitively inhibit A. phagocytophilum infection of, host cells. Pretreatment of host cells with sialidase or trypsin reduces or nearly eliminates, respectively, GST-OmpA adhesion. Therefore, OmpA interacts with sialylated glycoproteins. This study identifies the first A. phagocytophilum adhesin-receptor pair and delineates the region of OmpA that is critical for infection.
Collapse
Affiliation(s)
- Nore Ojogun
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Amandeep Kahlon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Stephanie A. Ragland
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Matthew J. Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Juliana E. Mastronunzio
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naomi J. Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rachael J. Thomas
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
37
|
Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun 2012; 81:65-79. [PMID: 23071137 DOI: 10.1128/iai.00932-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae, is the tick-transmitted obligate intracellular bacterium that causes human granulocytic anaplasmosis. The life cycle of A. phagocytophilum is biphasic, transitioning between the noninfectious reticulate cell (RC) and infectious dense-cored (DC) forms. We analyzed the bacterium's DC surface proteome by selective biotinylation of surface proteins, NeutrAvidin affinity purification, and mass spectrometry. Transcriptional profiling of selected outer membrane protein candidates over the course of infection revealed that aph_0248 (designated asp14 [14-kDa A. phagocytophilum surface protein]) expression was upregulated the most during A. phagocytophilum cellular invasion. asp14 transcription was induced during transmission feeding of A. phagocytophilum-infected ticks on mice and was upregulated when the bacterium engaged its receptor, P-selectin glycoprotein ligand 1. Asp14 localized to the A. phagocytophilum surface and was expressed during in vivo infection. Treating DC organisms with Asp14 antiserum or preincubating mammalian host cells with glutathione S-transferase (GST)-Asp14 significantly inhibited infection of host cells. Moreover, preincubating host cells with GST-tagged forms of both Asp14 and outer membrane protein A, another A. phagocytophilum invasin, pronouncedly reduced infection relative to treatment with either protein alone. The Asp14 domain that is sufficient for cellular adherence and invasion lies within the C-terminal 12 to 24 amino acids and is conserved among other Anaplasma and Ehrlichia species. These results identify Asp14 as an A. phagocytophilum surface protein that is critical for infection, delineate its invasion domain, and demonstrate the potential of targeting Asp14 in concert with OmpA for protecting against infection by A. phagocytophilum and other Anaplasmataceae pathogens.
Collapse
|
38
|
Severo MS, Stephens KD, Kotsyfakis M, Pedra JH. Anaplasma phagocytophilum: deceptively simple or simply deceptive? Future Microbiol 2012; 7:719-31. [PMID: 22702526 DOI: 10.2217/fmb.12.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular rickettsial pathogen transmitted by ixodid ticks. This bacterium colonizes myeloid and nonmyeloid cells and causes human granulocytic anaplasmosis--an important immunopathological vector-borne disease in the USA, Europe and Asia. Recent studies uncovered novel insights into the mechanisms of A. phagocytophilum pathogenesis and immunity. Here, we provide an overview of the underlying events by which the immune system responds to A. phagocytophilum infection, how this pathogen counteracts host immunity and the contribution of the tick vector for microbial transmission. We also discuss current scientific gaps in the knowledge of A. phagocytophilum biology for the purpose of exchanging research perspectives.
Collapse
Affiliation(s)
- Maiara S Severo
- Department of Entomology & Center for Disease Vector Research, 900 University Avenue, University of California - Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
39
|
Postgenomic analyses reveal development of infectious Anaplasma phagocytophilum during transmission from ticks to mice. J Bacteriol 2012; 194:2238-47. [PMID: 22389475 DOI: 10.1128/jb.06791-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obligate intracellular bacteria of the Rickettsiales order have evolved to colonize both arthropod and mammalian hosts, but few details are known about the bacterial adaptations that occur during transmission from blood-feeding arthropods to mammals. Here we apply proteomics and transcriptome sequencing to Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, in Ixodes scapularis tick salivary glands, to detect proteins or genes expressed by the pathogen during transmission feeding by the tick. We detected expression of 139 genes, representing 11% of the open reading frames (ORFs) in the A. phagocytophilum genome. The predominant categories of proteins were ribosomal proteins, cell surface proteins, chaperones, and uncharacterized proteins. There was no evidence of DNA replication enzymes, suggesting that most of the A. phagocytophilum cells were no longer dividing. Instead, protein expression reflected conversion to the extracellular, infectious "dense-core" (DC) form. High expression of a DC-specific marker, APH_1235, further suggested this developmental transition in ticks. We showed that blocking APH_1235 with antibodies reduced A. phagocytophilum infection levels in mammalian cell culture. This work represents a starting point for clarifying essential proteins expressed by A. phagocytophilum during transmission from ticks to mammals and demonstrates that the abundantly expressed, DC-associated APH_1235 protein is important during in vivo infection by A. phagocytophilum.
Collapse
|