1
|
Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin. J Mol Evol 2017; 84:174-186. [DOI: 10.1007/s00239-017-9791-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
2
|
Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. INFECTION GENETICS AND EVOLUTION 2016; 44:17-27. [PMID: 27320793 DOI: 10.1016/j.meegid.2016.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum.
Collapse
|
3
|
Prathiviraj R, Prisilla A, Chellapandi P. Structure–function discrepancy inClostridium botulinumC3 toxin for its rational prioritization as a subunit vaccine. J Biomol Struct Dyn 2015; 34:1317-29. [DOI: 10.1080/07391102.2015.1078745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Nakamura K, Kohda T, Seto Y, Mukamoto M, Kozaki S. Improved detection methods by genetic and immunological techniques for botulinum C/D and D/C mosaic neurotoxins. Vet Microbiol 2013. [DOI: 10.1016/j.vetmic.2012.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560-602, table of contents. [PMID: 15353570 PMCID: PMC515249 DOI: 10.1128/mmbr.68.3.560-602.2004] [Citation(s) in RCA: 1117] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.
Collapse
Affiliation(s)
- Harald Brüssow
- Nestlé, Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne, Switzerland.
| | | | | |
Collapse
|
6
|
Ahnert-Hilger G, Höltje M, Grosse G, Pickert G, Mucke C, Nixdorf-Bergweiler B, Boquet P, Hofmann F, Just I. Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J Neurochem 2004; 90:9-18. [PMID: 15198662 DOI: 10.1111/j.1471-4159.2004.02475.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formation of neurites and their differentiation into axons and dendrites requires precisely controlled changes in the cytoskeleton. While small GTPases of the Rho family appear to be involved in this regulation, it is still unclear how Rho function affects axonal and dendritic growth during development. Using hippocampal neurones at defined states of differentiation, we have dissected the function of RhoA in axonal and dendritic growth. Expression of a dominant negative RhoA variant inhibited axonal growth, whereas dendritic growth was promoted. The opposite phenotype was observed when a constitutively active RhoA variant was expressed. Inactivation of Rho by C3-catalysed ADP-ribosylation using C3 isoforms (Clostridium limosum, C3(lim) or Staphylococcus aureus, C3(stau2)), diminished axonal branching. By contrast, extracellularly applied nanomolar concentrations of C3 from C. botulinum (C3(bot)) or enzymatically dead C3(bot) significantly increased axon growth and axon branching. Taken together, axonal development requires activation of RhoA, whereas dendritic development benefits from its inactivation. However, extracellular application of enzymatically active or dead C3(bot) exclusively promotes axonal growth and branching suggesting a novel neurotrophic function of C3 that is independent from its enzymatic activity.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Centrum für Anatomie, Charité Universitätsmedizin, Berlin, AG Funktionelle Zellbiologie, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Wilde C, Aktories K. The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon 2001; 39:1647-60. [PMID: 11595628 DOI: 10.1016/s0041-0101(01)00152-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Wilde
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | | |
Collapse
|
9
|
Just I, Hofmann F, Genth H, Gerhard R. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins. Int J Med Microbiol 2001; 291:243-50. [PMID: 11680784 DOI: 10.1078/1438-4221-00127] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rho GTPases, which belong to the Ras superfamily of low-molecular-mass GTP-binding proteins, are the preferred intracellular targets of bacterial protein toxins. The Rho GTPases RhoA/B/C, Rac1/2 and Cdc42 are the master regulators of the actin cytoskeleton. Clostridium difficile toxins A and B, the causative agents of the antibiotic-associated pseudomembranous colitis, are intracellularly acting cytotoxins which mono-glucosylate the Rho GTPases. Clostridium botulinum C3 toxin, which is not related to the clostridial neurotoxins, catalyses ADP-ribosylation of RhoA/B/C but not of other Rho GTPases. Glucosylation as well as ADP-ribosylation result in functional inactivation of Rho causing disassembly of the actin cytoskeleton.
Collapse
Affiliation(s)
- I Just
- Institut für Toxikologie, Medizinische Hochschule Hannover, Germany.
| | | | | | | |
Collapse
|
10
|
Wilde C, Genth H, Aktories K, Just I. Recognition of RhoA by Clostridium botulinum C3 exoenzyme. J Biol Chem 2000; 275:16478-83. [PMID: 10748216 DOI: 10.1074/jbc.m910362199] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The C3-like ADP-ribosyltransferases exhibit a very confined substrate specificity compared with other Rho-modifying bacterial toxins; they selectively modify the RhoA, -B, and -C isoforms but not other members of the Rho or Ras subfamilies. In this study, the amino acid residues involved in the RhoA substrate recognition by C3 from Clostridium botulinum are identified by applying mutational analyses of the nonsubstrate Rac. First, the minimum domain responsible for the recognition by C3 was identified as the N-terminal 90 residues. Second, the combination of the N-terminal basic amino acids ((Rho)Arg(5)-Lys(6)), the acid residues (Rho)Glu(47) and (Rho)Glu(54) only slightly increases ADP-ribosylation but fully restores the binding of the respective mutant Rac to C3. Third, the residues (Rho)Glu(40) and (Rho)Val(43) also participate in binding to C3 but they are mainly involved in the correct formation of the ternary complex between Rho, C3, and NAD(+). Thus, these six residues (Arg(5), Lys(6), Glu(40), Val(43), Glu(47), and Glu(54)) distributed over the N-terminal part of Rho are involved in the correct binding of Rho to C3. Mutant Rac harboring these residues shows a kinetic property with regard to ADP-ribosylation, which is identical with that of RhoA. Differences in the conformation of Rho given by the nucleotide occupancy have only minor effects on ADP-ribosylation.
Collapse
Affiliation(s)
- C Wilde
- Institut für Pharmakologie und Toxikologie der Universität Freiburg, Hermann-Herder-Strasse 5, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
11
|
Sasaki M, Hattori Y, Tomita F, Moriishi K, Kanno M, Kohya T, Oguma K, Kitabatake A. Tyrosine phosphorylation as a convergent pathway of heterotrimeric G protein- and rho protein-mediated Ca2+ sensitization of smooth muscle of rabbit mesenteric artery. Br J Pharmacol 1998; 125:1651-60. [PMID: 9886756 PMCID: PMC1565753 DOI: 10.1038/sj.bjp.0702242] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The aim of this study was to determine whether different signal transduction mechanisms underlie the Ca2+ sensitizing effects of guanosine 5'-O-(3-thiotriphosphate) (GTP(gamma)S) and receptor agonists on beta-escin-skinned smooth muscle of rabbit mesenteric artery. 2. In the homogenate of the beta-escin-skinned arterial strip, C3 exoenzyme of Clostridium botulinum catalyzed the [32P]-ADP-ribosylation of only one protein that had the same molecular mass as the protein detected in Western blots with anti-rho p21 antibody. Pretreatment of preparations with C3 resulted in great inhibition of GTP(gamma)S-induced Ca2+ sensitization, although the effect of GTP(gamma)S at higher concentrations (> or = 30 microM) was not completely blocked by this treatment. In contrast, the enhancement by phenylephrine and histamine, in the presence of guanosine 5'-triphosphate, of the Ca2+-induced contraction was not affected by C3 pretreatment. 3. The protein kinase C (PKC) inhibitors calphostin C and staurosporine completely eliminated the enhancement by phorbol ester 12,13-dibutyrate of the Ca2+-induced contraction. However, these PKC inhibitors had no effect on GTP(gamma)S- and receptor agonist-induced Ca2+ sensitization. 4. The tyrosine kinase inhibitors genistein and tyrphostin 25 caused an irreversible and complete block of the enhancement by GTP(gamma)S of the Ca2+-induced contraction without affecting this Ca2+ contraction. The inactive genistein analogue daidzein did not modify the effect of GTP(gamma)S. The Ca2+ sensitizing effects of phenylephrine and histamine were also blocked by these tyrosine kinase inhibitors. 5. These results suggest that rho p21 predominantly mediates GTP(gamma)S-induced Ca2+ sensitization of beta-escin-skinned smooth muscle of rabbit mesenteric artery, while the Ca2+ sensitizing actions of heterotrimeric G protein-coupled receptor agonists do not involve this small G protein. However, it seems that tyrosine phosphorylation, but not PKC activation, plays an important role in both of the rho p21 protein- and heterotrimeric G protein-mediated Ca2+ sensitization mechanisms.
Collapse
Affiliation(s)
- M Sasaki
- Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K, Ogumad K. Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:123-6. [PMID: 8679691 DOI: 10.1016/0167-4781(96)00006-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We isolated the gene encoding a botulinum neurotoxin (BoNT) of 1285 amino acids with a molecular weight of 147,364 from the toxigenic bacteriophage d-sA of Clostridium botulinum type D strain South African (Dsa). The BoNT of Dsa (BoNT/Dsa) is composed of three regions on the basis of the homology to BoNT types C1 (BoNT/C1) and D (BoNT/D). The N-terminal (Met-1 to Val-522) and the C-terminal regions (Trp-945 to Glu-1285) have high identity to corresponding regions of BoNT/D (96% identity) and BoNT/C1 (74% identity), respectively. The core region (Pro-523 to Lys-944) is common to three toxins (83% to 92% identity). These results suggest that neurotoxins produced from Clostridium botulinum types C and D are composed in a mosaic-like fashion.
Collapse
Affiliation(s)
- K Moriishi
- Department of Veterinary Science, National Institute of Health, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Moriishi K, Koura M, Fujii N, Fujinaga Y, Inoue K, Syuto B, Oguma K. Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl Environ Microbiol 1996; 62:662-7. [PMID: 8593068 PMCID: PMC167833 DOI: 10.1128/aem.62.2.662-667.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The DNA fragment common to the genes encoding botulinum neurotoxin types C1 (BN/C1) and D (BN/D) was amplified by PCR from the culture supernatant of Clostridium botulinum type C strain 6813 (C6813) that was treated with either DNase I or proteinase K but not from the supernatant that was treated with both DNase I and proteinase K, suggesting the neurotoxin gene is located on a certain bacteriophage DNA. Thus, to isolate the neurotoxin gene, we performed PCR with the culture supernatant of C6813 and seven primer pairs designed from the genes encoding BN/C1 and BN/D. The coding region in the connected sequence encodes a neurotoxin composed of 1,280 amino acids with a molecular weight of 147,817. The neurotoxin from C6813 has 95% amino acid identity to BN/C1, except for its C-terminal one-third, which is quite similar to the C-terminal one-third of BN/D (95% identity). When we performed PCRs with four primer pairs designed from the 5'-terminal two-thirds of the BN/C1 gene and two primers from the 3'-terminal one-third of the BN/D gene, DNA fragments of the expected sizes (0.5 to 1.3 kbp) could be amplified from C. botulinum type C strains 6812 and 6814. These results suggest that some strains of C. botulinum type C contain the gene encoding the mosaic neurotoxin composed of parts of BN/C1 and BN/D.
Collapse
Affiliation(s)
- K Moriishi
- Department of Veterinary Science, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Pathogenic bacteria utilize a variety of virulence factors that contribute to the clinical manifestation of their pathogenesis. Bacterial ADP-ribosylating exotoxins (bAREs) represent one family of virulence factors that exert their toxic effects by transferring the ADP-ribose moiety of NAD onto specific eucaryotic target proteins. The observations that some bAREs ADP-ribosylate eucaryotic proteins that regulate signal transduction, like the heterotrimeric GTP-binding proteins and the low-molecular-weight GTP-binding proteins, has extended interest in bAREs beyond the bacteriology laboratory. Molecular studies have shown that bAREs possess little primary amino acid homology and have diverse quaternary structure-function organization. Underlying this apparent diversity, biochemical and crystallographic studies have shown that several bAREs have conserved active-site structures and possess a conserved glutamic acid within their active sites.
Collapse
Affiliation(s)
- K M Krueger
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|