1
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Jani C, Solomon SL, Peters JM, Pringle SC, Hinman AE, Boucau J, Bryson BD, Barczak AK. TLR2 is non-redundant in the population and subpopulation responses to Mycobacterium tuberculosis in macrophages and in vivo. mSystems 2023; 8:e0005223. [PMID: 37439558 PMCID: PMC10506474 DOI: 10.1128/msystems.00052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023] Open
Abstract
Tuberculosis (TB), caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is a global health threat. Targeting host pathways that modulate protective or harmful components of inflammation has been proposed as a therapeutic strategy that could aid sterilization or mitigate TB-associated permanent tissue damage. In purified form, many Mtb components can activate innate immune pathways. However, knowledge of the pathways that contribute most to the observed response to live Mtb is incomplete, limiting the possibility of precise intervention. We took a systematic, unbiased approach to define the pathways that drive the earliest immune response to Mtb. Using a macrophage model of infection, we compared the bulk transcriptional response to infection with the response to a panel of Mtb-derived putative innate immune ligands. We identified two axes of response: an NF-kB-dependent response similarly elicited by all Mtb pathogen-associated molecular patterns (PAMPs) and a type I interferon axis unique to cells infected with live Mtb. Consistent with growing literature data pointing to TLR2 as a dominant Mtb-associated PAMP, the TLR2 ligand PIM6 most closely approximated the NF-kB-dependent response to the intact bacterium. Quantitatively, the macrophage response to Mtb was slower and weaker than the response to purified PIM6. On a subpopulation level, the TLR2-dependent response was heterogeneously induced, with only a subset of infected cells expressing key inflammatory genes known to contribute to the control of infection. Despite potential redundancies in Mtb ligand/innate immune receptor interactions during in vivo infection, loss of the TLR2/PIM6 interaction impacted the cellular composition of both the innate and adaptive compartments. IMPORTANCE Tuberculosis (TB) is a leading cause of death globally. Drug resistance is outpacing new antibiotic discovery, and even after successful treatment, individuals are often left with permanent lung damage from the negative consequences of inflammation. Targeting host inflammatory pathways has been proposed as an approach that could either improve sterilization or improve post-treatment lung health. However, our understanding of the inflammatory pathways triggered by Mycobacterium tuberculosis (Mtb) in infected cells and lungs is incomplete, in part because of the complex array of potential molecular interactions between bacterium and host. Here, we take an unbiased approach to identify the pathways most central to the host response to Mtb. We examine how individual pathways are triggered differently by purified Mtb products or infection with the live bacterium and consider how these pathways inform the emergence of subpopulation responses in cell culture and in infected mice. Understanding how individual interactions and immune pathways contribute to inflammation in TB opens the door to the possibility of developing precise therapeutic interventions.
Collapse
Affiliation(s)
- Charul Jani
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Sydney L. Solomon
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joshua M. Peters
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Amelia E. Hinman
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julie Boucau
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Bryan D. Bryson
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amy K. Barczak
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- The Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Dow CT, Lin NW, Chan ED. Sarcoidosis, Mycobacterium paratuberculosis and Noncaseating Granulomas: Who Moved My Cheese. Microorganisms 2023; 11:microorganisms11040829. [PMID: 37110254 PMCID: PMC10143120 DOI: 10.3390/microorganisms11040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Clinical and histological similarities between sarcoidosis and tuberculosis have driven repeated investigations looking for a mycobacterial cause of sarcoidosis. Over 50 years ago, "anonymous mycobacteria" were suggested to have a role in the etiology of sarcoidosis. Both tuberculosis and sarcoidosis have a predilection for lung involvement, though each can be found in any area of the body. A key histopathologic feature of both sarcoidosis and tuberculosis is the granuloma-while the tuberculous caseating granuloma has an area of caseous necrosis with a cheesy consistency; the non-caseating granuloma of sarcoidosis does not have this feature. This article reviews and reiterates the complicity of the infectious agent, Mycobacterium avium subsp. paratuberculosis (MAP) as a cause of sarcoidosis. MAP is involved in a parallel story as the putative cause of Crohn's disease, another disease featuring noncaseating granulomas. MAP is a zoonotic agent infecting ruminant animals and is found in dairy products and in environmental contamination of water and air. Despite increasing evidence tying MAP to several human diseases, there is a continued resistance to embracing its pleiotropic roles. "Who Moved My Cheese" is a simple yet powerful book that explores the ways in which individuals react to change. Extending the metaphor, the "non-cheesy" granuloma of sarcoidosis actually contains the difficult-to-detect "cheese", MAP; MAP did not move, it was there all along.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Nancy W Lin
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Department of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Hunter RL. The Pathogenesis of Tuberculosis-The Koch Phenomenon Reinstated. Pathogens 2020; 9:E813. [PMID: 33020397 PMCID: PMC7601602 DOI: 10.3390/pathogens9100813] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research on the pathogenesis of tuberculosis (TB) has been hamstrung for half a century by the paradigm that granulomas are the hallmark of active disease. Human TB, in fact, produces two types of granulomas, neither of which is involved in the development of adult type or post-primary TB. This disease begins as the early lesion; a prolonged subclinical stockpiling of secreted mycobacterial antigens in foamy alveolar macrophages and nearby highly sensitized T cells in preparation for a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary granulomas and fibrocaseous disease. Post-primary TB progresses if the antigens are continuously released and regresses when they are depleted. This revised paradigm is supported by nearly 200 years of research and suggests new approaches and animal models to investigate long standing mysteries of human TB and vaccines that inhibit the early lesion to finally end its transmission.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mycobacterial Trehalose 6,6'-Dimycolate-Induced M1-Type Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:286-294. [PMID: 31734231 DOI: 10.1016/j.ajpath.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 01/25/2023]
Abstract
Murine models of Mycobacterium tuberculosis (Mtb) infection demonstrate progression of M1-like (proinflammatory) and M2-like (anti-inflammatory) macrophage morphology following primary granuloma formation. The Mtb cell wall cording factor, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant and useful molecule for modeling early macrophage-mediated events during establishment of the tuberculosis-induced granuloma pathogenesis. Here, it is shown that TDM is a major driver of the early M1-like macrophage response as seen during initiation of the granulomas of primary pathology. Proinflammatory cytokines tumor necrosis factor-α, IL-1β, IL-6, and IL-12p40 are produced in lung tissue after administration of TDM to mice. Furthermore, CD11b+CD45+ macrophages with a high surface expression of the M1-like markers CD38 and CD86 were found present in regions of pathology in lungs of mice at 7 days post-TDM introduction. Conversely, only low phenotypic marker expression of M2-like markers CD206 and EGR-2 were present on macrophages. These findings suggest that TDM plays a role in establishment of the M1-like shift in the microenvironment during primary tuberculosis.
Collapse
|
6
|
Cord factor as an invisibility cloak? A hypothesis for asymptomatic TB persistence. Tuberculosis (Edinb) 2016; 101S:S2-S8. [PMID: 27743706 DOI: 10.1016/j.tube.2016.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (MTB) has long been known to persist in grossly normal tissues even in people with active lesions and granulomas in other parts of the body. We recently reported that post-primary TB begins as an asymptomatic infection that slowly progresses, accumulating materials for a massive necrotizing reaction that results in cavitation. This paper explores the possible roles of trehalose 6,6' dimycolate (TDM) or cord factor in the ability of MTB to persist in such lesions without producing inflammation. TDM is unique in that it has three distinct sets of biologic activities depending on its physical conformation. As a single molecule, TDM stimulates macrophage C-type lectin receptors including Mincle. TDM can also form three crystal like structures, cylindrical micelles, intercalated bilayer and monolayer, that have distinct non receptor driven activities that depend on modulation of interactions with water. In the monolayer form, TDM is highly toxic and destroys cells in minutes upon contact. The cylindrical micelles and an intercalated bilayer have surfaces composed entirely of trehalose which protect MTB from killing in macrophages. Here we review evidence that these trehalose surfaces bind water. We speculate that this immobilized water constituites of an "invisibility cloak" that facilitates the persistence of MTB in multiple cell types without producing inflammation, even in highly immune individuals.
Collapse
|
7
|
Hunter RL. Tuberculosis as a three-act play: A new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 2016; 97:8-17. [PMID: 26980490 DOI: 10.1016/j.tube.2015.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/22/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Lack of access to human tissues with untreated tuberculosis (TB) has forced generations of researchers to use animal models and to adopt a paradigm that granulomas are the characteristic lesion of both primary and post primary TB. An extended search of studies of human lung tissues failed to find any reports that support this paradigm. We found scores of publications from gross pathology in 1804 through high resolution CT scans in 2015 that identify obstructive lobular pneumonia, not granulomas, as the characteristic lesion of developing post-primary TB. This paper reviews this literature together with other relevant observations to formulate a new paradigm of TB with three distinct stages: a three-act play. First, primary TB, a war of attrition, begins with infection that spreads via lymphatics and blood stream before inducing systemic immunity that contains and controls the organisms within granulomas. Second, post-primary TB, a sneak attack, develops during latent TB as an asymptomatic obstructive lobular pneumonia in persons with effective systemic immunity. It is a paucibacillary process with no granulomas that spreads via bronchi and accumulates mycobacterial antigens and host lipids for 1-2 years before suddenly undergoing caseous necrosis. Third, the fallout, is responsible for nearly all clinical post primary disease. It begins with caseous necrotic pneumonia that is either retained to become the focus of fibrocaseous disease or is coughed out to leave a cavity. This three-stage paradigm suggests testable hypotheses and plausible answers to long standing questions of immunity to TB.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, MSB 2.136, 6431 Fannin, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Welsh KJ, Hunter RL, Actor JK. Trehalose 6,6'-dimycolate--a coat to regulate tuberculosis immunopathogenesis. Tuberculosis (Edinb) 2014; 93 Suppl:S3-9. [PMID: 24388646 DOI: 10.1016/s1472-9792(13)70003-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) remains a significant public health burden worldwide. Treatment of this disease requires a minimum of six months and there is no vaccine available for the most common form of the disease. Increasing evidence suggests that the mycobacterial glycolipid trehalose 6,6' dimycolate (TDM; cord factor) plays a key role in the pathogenesis of TB disease. TDM protects the TB bacilli from macrophage-mediated killing, inhibits effective antigen presentation, and reduces the formation of protective T-cell responses. TDM promotes initiation of granuloma formation and likely plays a role in caseation. Furthermore, TDM may contribute to the development of post primary disease. Receptors for TDM were recently described and are expected to contribute to our knowledge of the molecular pathogenesis of TB disease. In this manner, understanding TDM may prove promising towards development of targeted TB therapeutics to limit clinical pathologies.
Collapse
Affiliation(s)
- Kerry J Welsh
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA
| | - Robert L Hunter
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA
| | - Jeffrey K Actor
- Department of Pathology, Medical School, University of Texas-Houston Medical School, Houston, Texas, USA.
| |
Collapse
|
9
|
Prozorov AA, Fedorova IA, Bekker OB, Danilenko VN. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Whittingham JL, Blagova EV, Finn CE, Luo H, Miranda-CasoLuengo R, Turkenburg JP, Leech AP, Walton PH, Murzin AG, Meijer WG, Wilkinson AJ. Structure of the virulence-associated protein VapD from the intracellular pathogen Rhodococcus equi. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2139-51. [PMID: 25084333 PMCID: PMC4118825 DOI: 10.1107/s1399004714012632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/30/2014] [Indexed: 01/17/2023]
Abstract
Rhodococcus equi is a multi-host pathogen that infects a range of animals as well as immune-compromised humans. Equine and porcine isolates harbour a virulence plasmid encoding a homologous family of virulence-associated proteins associated with the capacity of R. equi to divert the normal processes of endosomal maturation, enabling bacterial survival and proliferation in alveolar macrophages. To provide a basis for probing the function of the Vap proteins in virulence, the crystal structure of VapD was determined. VapD is a monomer as determined by multi-angle laser light scattering. The structure reveals an elliptical, compact eight-stranded β-barrel with a novel strand topology and pseudo-twofold symmetry, suggesting evolution from an ancestral dimer. Surface-associated octyl-β-D-glucoside molecules may provide clues to function. Circular-dichroism spectroscopic analysis suggests that the β-barrel structure is preceded by a natively disordered region at the N-terminus. Sequence comparisons indicate that the core folds of the other plasmid-encoded virulence-associated proteins from R. equi strains are similar to that of VapD. It is further shown that sequences encoding putative R. equi Vap-like proteins occur in diverse bacterial species. Finally, the functional implications of the structure are discussed in the light of the unique structural features of VapD and its partial structural similarity to other β-barrel proteins.
Collapse
Affiliation(s)
- Jean L. Whittingham
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Elena V. Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Ciaran E. Finn
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Haixia Luo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Raúl Miranda-CasoLuengo
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Johan P. Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Andrew P. Leech
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Paul H. Walton
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Alexey G. Murzin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
11
|
Rajni, Rao N, Meena LS. Biosynthesis and Virulent Behavior of Lipids Produced by Mycobacterium tuberculosis: LAM and Cord Factor: An Overview. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2010; 2011:274693. [PMID: 21350659 PMCID: PMC3039431 DOI: 10.4061/2011/274693] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/21/2010] [Accepted: 11/29/2010] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis disease, which has developed a myriad of exceptional features contributing to its survival within the hostile environment of host cell. Unique cell wall structure with high lipid content plays an imperative role in the pathogenicity of mycobacteria. Cell wall components of MTB such as lipoarabinomannan and Trehalose dimycolate (cord factor) are virulent in nature apart from its virulence genes. Virulent effect of these factors on host cells reduces host cell immunity. LAM has been known to inhibit phagosome maturation by inhibiting the Ca2+/calmodulin phosphatidyl inositol-3-kinase hvps34 pathways. Moreover, TDM (Trehalose dimycolate) also inhibits fusion between phospholipid vesicles and migration of polymorphonuclear neutrophils. The objective of this paper is to understand the virulence of LAM and cord factor on host cell which might be helpful to design an effective drug against tuberculosis.
Collapse
Affiliation(s)
- Rajni
- Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi 110007, India
| | | | | |
Collapse
|
12
|
Hunter RL, Armitige L, Jagannath C, Actor JK. TB research at UT-Houston--a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 2009; 89 Suppl 1:S18-25. [PMID: 20006299 PMCID: PMC3682682 DOI: 10.1016/s1472-9792(09)70007-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.
Collapse
Affiliation(s)
- Robert L Hunter
- University of Texas--Houston Medical School, Department of Pathology and Laboratory, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Hunter RL, Olsen M, Jagannath C, Actor JK. Trehalose 6,6'-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1249-61. [PMID: 16565499 PMCID: PMC1606544 DOI: 10.2353/ajpath.2006.050848] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2006] [Indexed: 11/20/2022]
Abstract
Trehalose 6,6'-dimycolate (TDM) is the most abundant, most granulomagenic, and most toxic lipid extractable from the surface of virulent Mycobacterium tuberculosis (MTB). We further examined its toxicity, which requires activation by oily surfaces. Injections of MTB and/or TDM into sensitized mice induced caseating granulomas that centered on oil droplets. If large doses of MTB were injected in saline, caseating granulomas developed in adipose tissue, but MTB with surface TDM removed induced only acute inflammation that did not persist. Variations in protocols produced several variants of caseating granulomas, each with characteristics of human tuberculosis. In each instance, MTB were localized in fat cells or oil drops during initiation of caseating granulomas suggesting that necrosis was caused by activation of the toxicity of TDM toxicity. Evidence extending these findings to the lung was derived from the observation that in sensitized mice, as in humans, tuberculosis development stimulates accumulation of lipid selectively in alveoli. MTB preferentially associated with lipid droplets in developing necrotic foci in late-stage murine tuberculosis. This supports the hypothesis that pulmonary tuberculosis sequesters MTB in a protected environment that accumulates lipid until it is able to activate the toxicity of TDM and initiate necrosis that results in caseating granulomas.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, MSB 2.136, 6431 Fannin, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
14
|
Hunter RL, Venkataprasad N, Olsen MR. The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro. Tuberculosis (Edinb) 2005; 86:349-56. [PMID: 16343989 DOI: 10.1016/j.tube.2005.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 11/18/2022]
Abstract
SETTING M. tuberculosis (MTB) lose virulence during prolonged culture on artificial media. This loss of virulence is associated with a change in colony morphology. Several studies suggested that trehalose 6,6' dimycolate (TDM or cord factor), contributes to colony morphology. OBJECTIVE To investigate the role of TDM in colony morphology of MTB using clinical isolates selected to have colony morphology typical of virulent or attenuated organisms. DESIGN Use immunohistochemical and physical chemical methods to assess the presence and distribution of TDM in rapidly growing pellicles of MTB. RESULTS TDM forms an insoluble crystalline monolayer at the air-water interfaces that is more rigid than that formed by any other biologic amphiphile and is strong enough to support a spreading pellicle of MTB. The surface of young pellicles of the isolate with virulent morphology displayed the regular linear pattern characteristic of monolayers of TDM. TDM was also identified in the open spaces of pellicles of MTB by immunohistochemistry. MTB with morphology of attenuated organisms had neither of these properties. CONCLUSION These data suggest that the characteristic morphology of colonies of virulent MTB is due to TDM released from the surface of the organisms.
Collapse
Affiliation(s)
- Robert Lee Hunter
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, MSB 2.136, 6431 Fannin, Houston, TX 77030, USA.
| | | | | |
Collapse
|
15
|
Actor JK, Indrigo J, Beachdel CM, Olsen M, Wells A, Hunter RL, Dasgupta A. Mycobacterial glycolipid cord factor trehalose 6,6'-dimycolate causes a decrease in serum cortisol during the granulomatous response. Neuroimmunomodulation 2005; 10:270-82. [PMID: 12759564 PMCID: PMC2556037 DOI: 10.1159/000069971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 08/30/2002] [Indexed: 11/19/2022] Open
Abstract
Serum cortisol levels were evaluated in mice following intravenous administration of purified mycobacterial glycolipid trehalose 6,6'-dimycolate (TDM). C57BL/6 mice develop lung granulomas in response to TDM, while A/J mice are deficient in this process. Administration of TDM to C57BL/6 mice led to a rapid reduction in serum cortisol, concurrent with initiation of the granulomatous response and cytokine and chemokine mRNA induction. Cortisol levels were lowest on day 5 after TDM administration, but there was significant production of IL-6, TNF-alpha and IL-1beta messages. Granuloma formation and full immune responsiveness to TDM were only apparent upon a sufficient decrease in levels of systemic cortisol. Treatment of the C57BL/6 mice with hydrocortisone abolished inflammatory responses. Histologically nonresponding A/J mice exhibited higher constitutive serum cortisol and demonstrated different kinetics of cortisol reduction upon administration of TDM. A/J mice demonstrated hyperplastic morphology in the suprarenal gland with a high degree of vacuolization in the medullary region and activation of cells in the zona fasciculata and zona reticularis. The A/J mice were dysregulated with respect to cytokine responses thought to be necessary during granuloma formation. The high constitutive serum cortisol in the A/J mice may therefore contribute to pulmonary immunoresponsiveness and the establishment of an environment counterproductive to the initiation of granulomatous responses. The identification of a mycobacterial glycolipid able to influence serum cortisol levels is unique and is discussed in relation to immunopathology during tuberculosis disease.
Collapse
Affiliation(s)
- Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Actor JK, Olsen M, Hunter RL, Geng YJ. Dysregulated response to mycobacterial cord factor trehalose-6,6'-dimycolate in CD1D-/- mice. J Interferon Cytokine Res 2001; 21:1089-96. [PMID: 11798467 DOI: 10.1089/107999001317205222] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The biologic effects of the mycobacterial glycolipid trehalose-6,6'-dimycolate (TDM) include granuloma formation and macrophage activation and are dependent on physical conformation. In mice, the group II CD1 surface molecule CD1d has been implicated in glycolipid presentation. The importance of CD1d interactions in pathology has yet to be established. We hypothesized that mice lacking CD1d (CD1D(-/-)) would demonstrate dysregulated granulomatous response to TDM, compared with CD1D(+/-) heterozygous controls. Mice were intravenously injected with TDM-coated polystyrene-divinylbenzene beads and examined for histologic response and for changes in inflammatory cytokine and chemokine mRNA. Control CD1D heterozygous mice demonstrated a granulomatous response, which peaked at day 5. Increased mRNA for tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-1alpha (MIP-1alpha) correlated with development of granulomas, with very little change in interleukin-1beta (IL-1beta) and monocyte chemoattractant protein-1 (MCP-1). In contrast, the CD1D(-/-) mice revealed markedly different responses. Five days after administration, severe pulmonary hemorrhage was induced. The relative size of inflammation surrounding coated bead in the CD1D(-/-) mice was nearly double that induced in the CD1D(+/-) mice. CD1D(-/-) mice also demonstrated elevated mRNA for both inflammatory cytokines and chemokines by day 1 after administration, significantly earlier than responses seen in the heterozygous controls.
Collapse
Affiliation(s)
- J K Actor
- Department of Pathology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
17
|
|