1
|
Meléndez-Hernández MG, Barrios MLL, Orozco E, Luna-Arias JP. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein. BMC Microbiol 2008; 8:235. [PMID: 19108705 PMCID: PMC2629482 DOI: 10.1186/1471-2180-8-235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
Collapse
|
2
|
Mitra BN, Yasuda T, Kobayashi S, Saito-Nakano Y, Nozaki T. Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenicEntamoeba histolytica and the non-pathogenicEntamoeba dispar. ACTA ACUST UNITED AC 2005; 62:84-99. [PMID: 16106449 DOI: 10.1002/cm.20087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phagocytosis plays an important role in the pathogenicity of the intestinal protozoan parasite Entamoeba histolytica. We compared the morphology of phagosomes and the kinetics of phagosome maturation using conventional light and electron microscopy and live imaging with video microscopy between the virulent E. histolytica and the closely-related, but non-virulent E. dispar species. Electron micrographs showed that axenically cultivated trophozoites of the two Entamoeba species revealed morphological differences in the number of bacteria contained in a single phagosome and the size of phagosomes. Video microscopy using pH-sensitive fluorescein isothiocynate-conjugated yeasts showed that phagosome acidification occurs within 2 min and persists for >12 h in both species. The acidity of phagosomes significantly differed between two species (4.58 +/- 0.36 or 5.83 +/- 0.38 in E. histolytica or E. dispar, respectively), which correlated well with the differences in the kinetics of degradation of promastigotes of GFP-expressing Leishmania amazonensis. The acidification of phagosomes was significantly inhibited by a myosin inhibitor, whereas it was only marginally inhibited by microtubules or actin inhibitors. A specific inhibitor of vacuolar ATPase, concanamycin A, interrupted both the acidification and degradation in phagosomes in both species, suggesting the ubiquitous role of vacuolar ATPase in the acidification and degradation in Entamoeba. In contrast, inhibitors against microtubules or cysteine proteases (CP) showed distinct effects on degradation in phagosomes between these two species. Although depolymerization of microtubules severely inhibited degradation in phagosomes of E. histolytica, it did not affect degradation in E. dispar. Similarly, the inhibition of CP significantly reduced degradation in phagosomes of E. histolytica, but not in E. dispar. These data suggest the presence of biochemical or functional differences in the involvement of microtubules and proteases in phagosome maturation and degradation between the two species.
Collapse
Affiliation(s)
- Biswa Nath Mitra
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-851, Japan
| | | | | | | | | |
Collapse
|
3
|
Meza I, Clarke M. Dynamics of endocytic traffic ofEntamoeba histolyticarevealed by confocal microscopy and flow cytometry. ACTA ACUST UNITED AC 2004; 59:215-26. [PMID: 15476263 DOI: 10.1002/cm.20038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica, the protozoan parasite of humans, manifests constitutive endocytosis to obtain nutrients and, when induced to express invasive behavior, as a means of ingesting and processing host cells and tissue debris. E. histolytica trophozoites were grown in liquid axenic medium that contained fluorescently labeled fluid-phase markers, so that the kinetics of uptake, the transit of loaded endosomes through the cytoplasm, and the time of release of the markers could be monitored by flow cytometry. Confocal microscopy of live trophozoites revealed uptake of fluid by avid macropinocytosis and the occurrence of fusion between young and older endosomes, as well as between pinosomes and phagosomes containing bacteria. Endosomes were rapidly acidified, then gradually neutralized; finally, indigestible material was released. Transit of endosomes containing fluid-phase markers required about 2 h. Uptake and release of fluid-phase markers were impaired by drugs that inhibited actin dynamics and actin-myosin interaction; uptake was also impaired by inhibition of PI 3-kinase. A striking feature of the trophozoites was the great heterogeneity of their endocytic behavior.
Collapse
Affiliation(s)
- Isaura Meza
- Departamento de Biomedicina Molecular, CINVESTAV del IPN, Mexico DF, Mexico.
| | | |
Collapse
|
4
|
Abstract
We have expressed and purified a protein fragment from Entamoeba histolytica. It catalyses transhydrogenation between analogues of NAD(H) and NADP(H). The characteristics of this reaction resemble those of the reaction catalysed by a complex of the NAD(H)- and NADP(H)-binding subunits of proton-translocating transhydrogenases from bacteria and mammals. It is concluded that the complete En. histolytica protein, which, along with similar proteins from other protozoan parasites, has an unusual subunit organisation, is also a proton-translocating transhydrogenase. The function of the transhydrogenase, thought to be located in organelles which do not have the enzymes of oxidative phosphorylation, is not clear.
Collapse
Affiliation(s)
- C J Weston
- School of Biosciences, University of Birmingham, P.O. Box 363, Edgbaston, B15 2TT, Birmingham, UK
| | | | | |
Collapse
|
5
|
Govoni G, Canonne-Hergaux F, Pfeifer CG, Marcus SL, Mills SD, Hackam DJ, Grinstein S, Malo D, Finlay BB, Gros P. Functional expression of Nramp1 in vitro in the murine macrophage line RAW264.7. Infect Immun 1999; 67:2225-32. [PMID: 10225878 PMCID: PMC115961 DOI: 10.1128/iai.67.5.2225-2232.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1998] [Accepted: 02/18/1999] [Indexed: 11/20/2022] Open
Abstract
Mutations at the Nramp1 locus in vivo cause susceptibility to infection by unrelated intracellular microbes. Nramp1 encodes an integral membrane protein abundantly expressed in the endosomal-lysosomal compartment of macrophages and is recruited to the phagosomal membrane following phagocytosis. The mechanism by which Nramp1 affects the biochemical properties of the phagosome to control microbial replication is unknown. To devise an in vitro assay for Nramp1 function, we introduced a wild-type Nramp1(G169) cDNA into RAW 264.7 macrophages (which bear a homozygous mutant Nramp1(D169) allele and thus are permissive to replication of specific intracellular parasites). Recombinant Nramp1 was expressed in a membranous compartment in RAW264.7 cells and was recruited to the membrane of Salmonella typhimurium and Yersinia enterocolitica containing phagosomes. Evaluation of the antibacterial activity of RAW264.7 transfectants showed that expression of the recombinant Nramp1 protein abrogated intracellular replication of S. typhimurium. Studies with a replication-defective S. typhimurium mutant suggest that this occurs through an enhanced bacteriostatic activity. The effect of Nramp1 expression was specific, since (i) it was not seen in RAW264.7 transfectants overexpressing the closely related Nramp2 protein, and (ii) control RAW264.7 cells, Nramp1, and Nramp2 transfectants could all efficiently kill a temperature-sensitive, replication-defective mutant of S. typhimurium. Finally, increased antibacterial activity of the Nramp1 RAW264.7 transfectants was linked to increased phagosomal acidification, a distinguishing feature of primary macrophages expressing a wild-type Nramp1 allele. Together, these results indicate that transfection of Nramp1 cDNAs in the RAW264.7 macrophage cell line can be used as a direct assay to study both Nramp1 function and mechanism of action as well as to identify structure-function relationships in this protein.
Collapse
Affiliation(s)
- G Govoni
- Department of Biochemistry, McGill University, Montreal, Quebec
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Skamene E, Schurr E, Gros P. Infection genomics: Nramp1 as a major determinant of natural resistance to intracellular infections. Annu Rev Med 1998; 49:275-87. [PMID: 9509263 DOI: 10.1146/annurev.med.49.1.275] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The scope of the tuberculosis (TB) epidemic in the world today is enormous, with about 30 million active cases. Current research into preventing the spread of TB is focused on development of new drugs to inactivate Mycobacterium tuberculosis, the causative agent of TB, as well as on identifying the critical steps of host defense to infection with Mycobacteria, which might also yield therapeutic targets. Our infection genomics approach toward the latter strategy has been to isolate and characterize a mouse gene, Bcg (Nramp1), which controls natural susceptibility to infection with Mycobacteria, as well as Salmonella and Leishmania. Through comparative genomics, we have identified the homologous human NRAMP1 gene, alleles of which are now being used for tests of linkage with TB and leprosy.
Collapse
Affiliation(s)
- E Skamene
- Division of Clinical Immunology and Allergy, Montreal General Hospital, Quebec, Canada.
| | | | | |
Collapse
|
7
|
Pinner E, Gruenheid S, Raymond M, Gros P. Functional complementation of the yeast divalent cation transporter family SMF by NRAMP2, a member of the mammalian natural resistance-associated macrophage protein family. J Biol Chem 1997; 272:28933-8. [PMID: 9360964 DOI: 10.1074/jbc.272.46.28933] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian NRAMP gene family has two members, NRAMP1 and NRAMP2 that encode integral membrane proteins. Nramp1 is expressed exclusively in macrophages where it is found in the phagosomal membrane, and NRAMP1 mutations cause susceptibility to infection by abrogating the capacity of macrophages to control intracellular microbial replication. Nramp2 is highly similar to Nramp1, but is expressed in several tissues and cell types. The Nramp protein family is remarkably conserved throughout evolution, and recent data suggest that the mammalian Nramp2 and the yeast homologues Smf1 and Smf2 transport divalent cations. We tested whether structural similarity between the mammalian Nramp and the yeast Smf proteins results in functional complementation in yeast. Wild-type and mutant variants of the Nramp1 and Nramp2 proteins were expressed in a yeast mutant bearing null alleles at the SMF1 and SMF2 loci, and complementation of the phenotypes of this yeast mutant was investigated. Nramp2, but not Nramp1, was found to complement hypersensitivity to EGTA of the smf1/smf2 mutant under oxidative stress conditions (methyl viologen). We also observed that the smf1/smf2 double mutant is hypersensitive to growth at alkaline pH (pH 7.9) and that Nramp2 could complement this phenotype as well. Complementation by Nramp2 was specific and required a functional protein as independent mutations in residues highly conserved in all members of the Nramp family abrogated Nramp2 complementation. Since Mn2+ was the only divalent cation capable of completely suppressing both the EGTA and pH phenotypes, our results suggest that Nramp2 can transport Mn2+ in yeast.
Collapse
Affiliation(s)
- E Pinner
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
8
|
Ghosh SK, Samuelson J. Involvement of p21racA, phosphoinositide 3-kinase, and vacuolar ATPase in phagocytosis of bacteria and erythrocytes by Entamoeba histolytica: suggestive evidence for coincidental evolution of amebic invasiveness. Infect Immun 1997; 65:4243-9. [PMID: 9317033 PMCID: PMC175609 DOI: 10.1128/iai.65.10.4243-4249.1997] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trophozoites of Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, phagocytose bacteria in the colonic lumen and erythrocytes (RBC) in host tissues. Because tissue invasion is an evolutionary dead end, it is likely that amebic pathogenicity is coincidentally selected, i.e., the same methods used to kill bacteria in the colonic lumen are used by parasites to damage host cells and cause disease. In support of this idea, the amebic lectin and pore-forming peptide are involved in binding and killing, respectively, bacteria and host epithelial cells. Here amebic phagocytosis of bacteria, RBC, and mucin-coated beads was disrupted by overexpression of E. histolytica p21(racA-V12), a ras-family protein involved in selection of sites of actin polymerization, which had been mutated to eliminate its GTPase activity. p21(racA-V12) transformants were also defective in capping and cytokinesis, while pinocytosis of fluorescent dextrans was not affected. Wortmannin, a fungal inhibitor of phosphoinositide 3-kinase, markedly inhibited phagocytosis of bacteria, RBC, and mucin-coated beads by wild-type amebae. In contrast to p21(racA-V12) overexpression, wortmannin abolished amebic pinocytosis of dextrans but had no inhibitory effects on capping. Inhibition of amebic vacuolar acidification by bafilomycin also decreased bacterial and RBC uptake. These results, which demonstrate similarities between mechanisms of phagocytosis of bacteria and RBC by amebae and macrophages, support the idea of coincidental selection of amebic genes encoding proteins that mediate destruction of host cells.
Collapse
Affiliation(s)
- S K Ghosh
- Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
9
|
Belouchi A, Kwan T, Gros P. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. PLANT MOLECULAR BIOLOGY 1997; 33:1085-92. [PMID: 9154989 DOI: 10.1023/a:1005723304911] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mammalian Nramp1 protein is an integral membrane protein expressed exclusively in macrophages, where it plays a critical role in the ability of these cells to destroy ingested microbes. The bactericidal mechanism of action of Nramp1 remains unknown. We report the identification and characterization of cDNA clones corresponding to three homologues of the mammalian Nramp1 gene from the genome of Oryza sativa, OsNramp1, OsNramp2, and OsNramp3. These three genes encode a novel group of highly similar hydrophobic polypeptides sharing between 64% and 75% sequence similarity, that show similar hydropathy profiles, and predicted secondary structure, including the same number, position, and sequence characteristics (including conserved charges) of transmembrane domains. Together, these define a highly conserved membrane associated hydrophobic core. The three plant proteins show a remarkable degree of sequence similarity with their mammalian counterpart (60% to 70% similarity), including primary and secondary structure elements previously described in ion transporters and channels. Expression studies in normal plant tissues indicate that while OsNramp1 is expressed primarily in roots, and OsNramp2 is primarily expressed in leaves, OsNramp3 is expressed in both tissues. The recent discovery that the yeast Nramp homologue SMF1 functions as a manganese transporter raises the exciting possibility that OsNramp encodes a family of metal ion transporters in plants.
Collapse
Affiliation(s)
- A Belouchi
- Department of Biochemistry, McGill University, Montréal Québec, Canada
| | | | | |
Collapse
|
10
|
Cellier M, Belouchi A, Gros P. Resistance to intracellular infections: comparative genomic analysis of Nramp. Trends Genet 1996; 12:201-4. [PMID: 8928221 DOI: 10.1016/0168-9525(96)30042-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Cellier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
11
|
|
12
|
Yu Y, Samuelson J. Primary structure of an Entamoeba histolytica nicotinamide nucleotide transhydrogenase. Mol Biochem Parasitol 1994; 68:323-8. [PMID: 7739679 DOI: 10.1016/0166-6851(94)90178-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Y Yu
- Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115
| | | |
Collapse
|