1
|
Junk L, Schmiedel VM, Guha S, Fischel K, Greb P, Vill K, Krisilia V, van Geelen L, Rumpel K, Kaur P, Krishnamurthy RV, Narayanan S, Shandil RK, Singh M, Kofink C, Mantoulidis A, Biber P, Gmaschitz G, Kazmaier U, Meinhart A, Leodolter J, Hoi D, Junker S, Morreale FE, Clausen T, Kalscheuer R, Weinstabl H, Boehmelt G. Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria. Nat Commun 2024; 15:2005. [PMID: 38443338 PMCID: PMC10914731 DOI: 10.1038/s41467-024-46218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Antimicrobial resistance is a global health threat that requires the development of new treatment concepts. These should not only overcome existing resistance but be designed to slow down the emergence of new resistance mechanisms. Targeted protein degradation, whereby a drug redirects cellular proteolytic machinery towards degrading a specific target, is an emerging concept in drug discovery. We are extending this concept by developing proteolysis targeting chimeras active in bacteria (BacPROTACs) that bind to ClpC1, a component of the mycobacterial protein degradation machinery. The anti-Mycobacterium tuberculosis (Mtb) BacPROTACs are derived from cyclomarins which, when dimerized, generate compounds that recruit and degrade ClpC1. The resulting Homo-BacPROTACs reduce levels of endogenous ClpC1 in Mycobacterium smegmatis and display minimum inhibitory concentrations in the low micro- to nanomolar range in mycobacterial strains, including multiple drug-resistant Mtb isolates. The compounds also kill Mtb residing in macrophages. Thus, Homo-BacPROTACs that degrade ClpC1 represent a different strategy for targeting Mtb and overcoming drug resistance.
Collapse
Affiliation(s)
- Lukas Junk
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany.
| | - Volker M Schmiedel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Somraj Guha
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany
| | - Katharina Fischel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Peter Greb
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Kristin Vill
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Violetta Krisilia
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Lasse van Geelen
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Ramya V Krishnamurthy
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Mayas Singh
- Foundation for Neglected Disease Research, Plot No. 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru, 561203, Karnataka, India
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Philipp Biber
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, 66123, Saarbrücken, Germany
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - David Hoi
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, 40225, Düsseldorf, Germany
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer-Gasse 5-11, 1121, Vienna, Austria.
| |
Collapse
|
2
|
Robbins L, Balaram A, Dejneka S, McMahon M, Najibi Z, Pawlowicz P, Conrad WH. Heterologous production of the D-cycloserine intermediate O-acetyl-L-serine in a human type II pulmonary cell model. Sci Rep 2023; 13:8551. [PMID: 37237156 DOI: 10.1038/s41598-023-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Tuberculosis (TB) is the second leading cause of death by a single infectious disease behind COVID-19. Despite a century of effort, the current TB vaccine does not effectively prevent pulmonary TB, promote herd immunity, or prevent transmission. Therefore, alternative approaches are needed. We seek to develop a cell therapy that produces an effective antibiotic in response to TB infection. D-cycloserine (D-CS) is a second-line antibiotic for TB that inhibits bacterial cell wall synthesis. We have determined D-CS to be the optimal candidate for anti-TB cell therapy due to its effectiveness against TB, relatively short biosynthetic pathway, and its low-resistance incidence. The first committed step towards D-CS synthesis is catalyzed by the L-serine-O-acetyltransferase (DcsE) which converts L-serine and acetyl-CoA to O-acetyl-L-serine (L-OAS). To test if the D-CS pathway could be an effective prophylaxis for TB, we endeavored to express functional DcsE in A549 cells as a human pulmonary model. We observed DcsE-FLAG-GFP expression using fluorescence microscopy. DcsE purified from A549 cells catalyzed the synthesis of L-OAS as observed by HPLC-MS. Therefore, human cells synthesize functional DcsE capable of converting L-serine and acetyl-CoA to L-OAS demonstrating the first step towards D-CS production in human cells.
Collapse
Affiliation(s)
- Laurel Robbins
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Ariane Balaram
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Stefanie Dejneka
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Matthew McMahon
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Zarina Najibi
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - Peter Pawlowicz
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA
| | - William H Conrad
- Department of Chemistry and Biochemistry and Molecular Biology Program, Lake Forest College, Lake Forest, USA.
| |
Collapse
|
3
|
Whole-genome sequencing as a tool for studying the microevolution of drug-resistant serial Mycobacterium tuberculosis isolates. Tuberculosis (Edinb) 2021; 131:102137. [PMID: 34673379 DOI: 10.1016/j.tube.2021.102137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022]
Abstract
Treatment of drug-resistant tuberculosis requires extended use of more toxic and less effective drugs and may result in retreatment cases due to failure, abandonment or disease recurrence. It is therefore important to understand the evolutionary process of drug resistance in Mycobacterium tuberculosis. We here in describe the microevolution of drug resistance in serial isolates from six previously treated patients. Drug resistance was initially investigated through phenotypic methods, followed by genotypic approaches. The use of whole-genome sequencing allowed the identification of mutations in the katG, rpsL and rpoB genes associated with drug resistance, including the detection of rare mutations in katG and mixed populations of strains. Molecular docking simulation studies of the impact of observed mutations on isoniazid binding were also performed. Whole-genome sequencing detected 266 single nucleotide polymorphisms between two isolates obtained from one patient, suggesting a case of exogenous reinfection. In conclusion, sequencing technologies can detect rare mutations related to drug resistance, identify subpopulations of resistant strains, and identify diverse populations of strains due to exogenous reinfection, thus improving tuberculosis control by guiding early implementation of appropriate clinical and therapeutic interventions.
Collapse
|
4
|
Abrahams KA, Hu W, Li G, Lu Y, Richardson EJ, Loman NJ, Huang H, Besra GS. Anti-tubercular derivatives of rhein require activation by the monoglyceride lipase Rv0183. ACTA ACUST UNITED AC 2020; 6:100040. [PMID: 32743152 PMCID: PMC7389528 DOI: 10.1016/j.tcsw.2020.100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023]
Abstract
The emergence and perseverance of drug resistant strains of Mycobacterium tuberculosis (Mtb) ensures that drug discovery efforts remain at the forefront of tuberculosis research. There are numerous different approaches that can be employed to lead to the discovery of anti-tubercular agents. In this work, we endeavored to optimize the anthraquinone chemical scaffold of a known drug, rhein, converting it from a compound with negligible activity against Mtb, to a series of compounds with potent activity. Two compounds exhibited low toxicity and good liver microsome stability and were further progressed in attempts to identify the biological target. Whole genome sequencing of resistant isolates revealed inactivating mutations in a monoglyceride lipase. Over-expression trials and an enzyme assay confirmed that the designed compounds are prodrugs, activated by the monoglyceride lipase. We propose that rhein is the active moiety of the novel compounds, which requires chemical modifications to enable access to the cell through the extensive cell wall structure. This work demonstrates that re-engineering of existing antimicrobial agents is a valid method in the development of new anti-tubercular compounds.
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wei Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Emily J Richardson
- MicrobesNG, Units 1-2 First Floor, The BioHub, Birmingham Research Park, 97 Vincent Drive, Birmingham B15 2SQ, UK
| | - Nicholas J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Haihong Huang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Borrell S, Trauner A, Brites D, Rigouts L, Loiseau C, Coscolla M, Niemann S, De Jong B, Yeboah-Manu D, Kato-Maeda M, Feldmann J, Reinhard M, Beisel C, Gagneux S. Reference set of Mycobacterium tuberculosis clinical strains: A tool for research and product development. PLoS One 2019; 14:e0214088. [PMID: 30908506 PMCID: PMC6433267 DOI: 10.1371/journal.pone.0214088] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/06/2019] [Indexed: 11/19/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and various other mammals. The human-adapted members of the MTBC comprise seven phylogenetic lineages that differ in their geographical distribution. There is growing evidence that this phylogeographic diversity modulates the outcome of TB infection and disease. For decades, TB research and development has focused on the two canonical MTBC laboratory strains H37Rv and Erdman, both of which belong to Lineage 4. Relying on only a few laboratory-adapted strains can be misleading as study results might not be directly transferrable to clinical settings where patients are infected with a diverse array of strains, including drug-resistant variants. Here, we argue for the need to expand TB research and development by incorporating the phylogenetic diversity of the MTBC. To facilitate such work, we have assembled a group of 20 genetically well-characterized clinical strains representing the seven known human-adapted MTBC lineages. With the "MTBC clinical strains reference set" we aim to provide a standardized resource for the TB community. We hope it will enable more direct comparisons between studies that explore the physiology of MTBC beyond the laboratory strains used thus far. We anticipate that detailed phenotypic analyses of this reference strain set will increase our understanding of TB biology and assist in the development of new control tools that are broadly effective.
Collapse
Affiliation(s)
- Sònia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Collection of Mycobacterial Cultures (BCCM/ITM), Institute of Tropical Medicine, Antwerp, Belgium
| | - Chloe Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany
| | - Bouke De Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Midori Kato-Maeda
- School of Medicine, University of California at San Francisco, San Francisco, California, United States of America
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Beisel
- Genomics Facility, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, Rodríguez-López GM, Soria-Castro R, García-Pérez BE, Puebla-Osorio N, Ullrich SE, Luna-Herrera J, Flores-Romo L, Sumano-López H, Pérez-Tapia SM, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps. Front Immunol 2018; 9:1161. [PMID: 29892297 PMCID: PMC5985745 DOI: 10.3389/fimmu.2018.01161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, UNAM, México City, Mexico
| | - Kahiry Leyva-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, México City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen E Ullrich
- Department of Immunology, The Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,The University of Texas Graduate School of Biological Sciences at Houston, Houston, TX, United States
| | - Julieta Luna-Herrera
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, México City, Mexico
| | - Héctor Sumano-López
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, UNAM, México City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| |
Collapse
|
7
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
8
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
9
|
Kostera J, Leckie G, Tang N, Lampinen J, Szostak M, Abravaya K, Wang H. Analytical and clinical performance characteristics of the Abbott RealTime MTB RIF/INH Resistance, an assay for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis in pulmonary specimens. Tuberculosis (Edinb) 2016; 101:137-143. [DOI: 10.1016/j.tube.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
10
|
Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2016; 45:474-492. [DOI: 10.1016/j.meegid.2016.09.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/17/2022]
|
11
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
Affiliation(s)
- Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
12
|
Njuma OJ, Ndontsa EN, Goodwin DC. Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG. Arch Biochem Biophys 2013; 544:27-39. [PMID: 24280274 DOI: 10.1016/j.abb.2013.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
Abstract
Catalase-peroxidase (KatG) is found in eubacteria, archaea, and lower eukaryotae. The enzyme from Mycobacterium tuberculosis has received the greatest attention because of its role in activation of the antitubercular pro-drug isoniazid, and the high frequency with which drug resistance stems from mutations to the katG gene. Generally, the catalase activity of KatGs is striking. It rivals that of typical catalases, enzymes with which KatGs share no structural similarity. Instead, catalatic turnover is accomplished with an active site that bears a strong resemblance to a typical peroxidase (e.g., cytochrome c peroxidase). Yet, KatG is the only member of its superfamily with such capability. It does so using two mutually dependent cofactors: a heme and an entirely unique Met-Tyr-Trp (MYW) covalent adduct. Heme is required to generate the MYW cofactor. The MYW cofactor allows KatG to leverage heme intermediates toward a unique mechanism for H2O2 oxidation. This review evaluates the range of intermediates identified and their connection to the diverse catalytic processes KatG facilitates, including mechanisms of isoniazid activation.
Collapse
Affiliation(s)
- Olive J Njuma
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Elizabeth N Ndontsa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
13
|
Rapid identification of mycobacteria and drug-resistant Mycobacterium tuberculosis by use of a single multiplex PCR and DNA sequencing. J Clin Microbiol 2011; 50:326-36. [PMID: 22162548 DOI: 10.1128/jcm.05570-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) remains a significant global health problem for which rapid diagnosis is critical to both treatment and control. This report describes a multiplex PCR method, the Mycobacterial IDentification and Drug Resistance Screen (MID-DRS) assay, which allows identification of members of the Mycobacterium tuberculosis complex (MTBC) and the simultaneous amplification of targets for sequencing-based drug resistance screening of rifampin-resistant (rifampin(r)), isoniazid(r), and pyrazinamide(r) TB. Additionally, the same multiplex reaction amplifies a specific 16S rRNA gene target for rapid identification of M. avium complex (MAC) and a region of the heat shock protein 65 gene (hsp65) for further DNA sequencing-based confirmation or identification of other mycobacterial species. Comparison of preliminary results generated with MID-DRS versus culture-based methods for a total of 188 bacterial isolates demonstrated MID-DRS sensitivity and specificity as 100% and 96.8% for MTBC identification; 100% and 98.3% for MAC identification; 97.4% and 98.7% for rifampin(r) TB identification; 60.6% and 100% for isoniazid(r) TB identification; and 75.0% and 98.1% for pyrazinamide(r) TB identification. The performance of the MID-DRS was also tested on acid-fast-bacterium (AFB)-positive clinical specimens, resulting in sensitivity and specificity of 100% and 78.6% for detection of MTBC and 100% and 97.8% for detection of MAC. In conclusion, use of the MID-DRS reduces the time necessary for initial identification and drug resistance screening of TB specimens to as little as 2 days. Since all targets needed for completing the assay are included in a single PCR amplification step, assay costs, preparation time, and risks due to user errors are also reduced.
Collapse
|
14
|
Hall G, Bradshaw TD, Laughton CA, Stevens MF, Emsley J. Structure of Mycobacterium tuberculosis thioredoxin in complex with quinol inhibitor PMX464. Protein Sci 2011; 20:210-5. [PMID: 20981751 DOI: 10.1002/pro.533] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thioredoxin (Trx) plays a critical role in the regulation of cellular redox homeostasis. Many disease causing pathogens rely on the Trx redox system for survival in conditions of environmental stress. The Trx redox system has been implicated in the resistance of Mycobacterium tuberculosis (Mtb) to phagocytosis. Trx is able to reduce a variety of target substrates and reactive oxygen species (ROS) through the cyclization of its active site dithiol to the oxidized disulphide Cys37-Cys40. Here we report the crystal structure of the Mtb Trx C active site mutant C40S (MtbTrxCC40S) in isolation and in complex with the hydroxycyclohexadienone inhibitor PMX464. We observe PMX464 is covalently bound to the active site residue Cys37 through Michael addition of the cyclohexadienone ring and also forms noncovalent contacts which mimic the binding of natural Trx ligands. In comparison with the ligand free MtbTrxCC40S structure a conformational change occurs in the PMX464 complex involving movement of helix α2 and the active site loop. These changes are almost identical to those observed for helix α2 in human Trx ligand complexes. Whereas the ligand free structure forms a homodimer the inhibitor complex unexpectedly forms a different dimer with one PMX464 molecule bound at the interface. This 2:1 MtbTrxCC40S-PMX464 complex is also observed using mass spectrometry measurements. This structure provides an unexpected scaffold for the design of improved Trx inhibitors targeted at developing treatments for tuberculosis.
Collapse
Affiliation(s)
- Gareth Hall
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Kolibab K, Parra M, Yang AL, Perera LP, Derrick SC, Morris SL. A practical in vitro growth inhibition assay for the evaluation of TB vaccines. Vaccine 2009; 28:317-22. [PMID: 19879231 DOI: 10.1016/j.vaccine.2009.10.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/05/2009] [Accepted: 10/12/2009] [Indexed: 01/15/2023]
Abstract
New vaccines and novel immunization strategies are needed to improve the control of the global tuberculosis epidemic. To facilitate vaccine development, we have been creating in vitro mycobacterial intra-macrophage growth inhibition assays. Here we describe the development of an in vitro assay designed for BSL-2 laboratories which measures the capacity of vaccine-induced immune splenocytes to control the growth of isoniazid-resistant Mycobacterium bovis BCG (INH(r) BCG). The use of the INH(r) BCG as the infecting organism allows the discrimination of BCG bacilli used in murine vaccinations from BCG used in the in vitro assay. In this study, we showed that protective immune responses evoked by four different types of Mycobacterium tuberculosis vaccines [BCG, an ESAT6/Antigen 85B fusion protein formulated in DDA/MPL adjuvant, a DNA vaccine expressing the same fusion protein, and a TB Modified Vaccinia Ankara construct expressing four TB antigens (MVA-4TB)] were detected. Importantly, the levels of vaccine-induced protective immunity seen in the in vitro assay correlated with the results from in vivo protection studies in the mouse model of pulmonary tuberculosis. Furthermore, the growth inhibition data for the INH(r) BCG assay was similar to the previously reported results for a M. tuberculosis infection assay. The cytokine expression profiles at day 7 of the INH(r) BCG growth inhibition studies were also similar but not identical to the cytokine patterns detected in earlier M. tuberculosis co-culture assays. Overall, we have shown that a BSL-2 compatible in vitro growth inhibition assay using INH(r) BCG as the intra-macrophage target organism should be useful in developing and evaluating new TB immunization strategies.
Collapse
Affiliation(s)
- Kristopher Kolibab
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, MD 20892, United States
| | | | | | | | | | | |
Collapse
|
16
|
Choi JH, Lee KW, Kang HR, Hwang YI, Jang S, Kim DG, Kim CH, Hyun IG, Shin TR, Park SM, Lee MG, Lee CY, Park YB, Jung KS. Clinical efficacy of direct DNA sequencing analysis on sputum specimens for early detection of drug-resistant Mycobacterium tuberculosis in a clinical setting. Chest 2009; 137:393-400. [PMID: 19741059 DOI: 10.1378/chest.09-0150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Early detection of drug-resistant Mycobacterium tuberculosis is important for the control and prevention of disease transmission. However, conventional drug susceptibility tests for drug-resistant M tuberculosis take at least 3 to 8 weeks. Here, we report the clinical efficacy of direct DNA sequencing analysis for detecting drug-resistant TB on sputum specimens in a clinical setting. METHODS A total of 113 sputum specimens from 111 patients, who were suspected of having drug-resistant TB by clinicians, were used for DNA sequencing of katG, rpoB, embB, and pncA genes for isoniazid (INH), rifampin (RIF), ethambutol (EMB), and pyrazinamide (PZA) resistance, respectively, and the results were compared with drug susceptibility tests. The optimization of antituberculosis drugs according to the results of DNA sequencing and the treatment outcomes of the patients were also analyzed. RESULTS Turnaround time of the direct DNA sequencing analysis was 3.8 +/- 1.8 days. We found mutations related to drug resistance in 30 clinical specimens for katG, 39 for rpoB, 13 for embB, and 24 for pncA. The sensitivity and specificity of the assay were 63.6% and 94.6% for INH, 96.2 and 93.9% for RIF, 69.2% and 97.5% for EMB, and 100% and 92.6% for PZA, respectively. Of the patients with RIF resistance, including multidrug-resistant TB by the assay, 92.5% of the patients with initial first-line antituberculosis drugs were changed to second-line antituberculosis drugs, and treatment was successful in 61.9% of these cases. CONCLUSION Direct DNA sequencing analysis of clinical sputum specimens is a rapid and useful method for the detection and treatment of drug-resistant TB.
Collapse
Affiliation(s)
- Jeong-Hee Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Medical Center, Gangwon-do, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Metcalfe C, Macdonald IK, Murphy EJ, Brown KA, Raven EL, Moody PC. The Tuberculosis Prodrug Isoniazid Bound to Activating Peroxidases. J Biol Chem 2008; 283:6193-200. [DOI: 10.1074/jbc.m707412200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Lin HH, Kim HY, Yun YJ, Park CG, Kim BJ, Park YG, Kook YH. Mutations of katG and inhA in MDR M. tuberculosis. Tuberc Respir Dis (Seoul) 2007; 63:128. [DOI: 10.4046/trd.2007.63.2.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/26/2007] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hai Hua Lin
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Korea
| | - Hee-Youn Kim
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Korea
| | - Yeo-Jun Yun
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Korea
| | - Chan Geun Park
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Korea
- Institute of Endemic Diseases, SNUMRC, Seoul National University College of Medicine, Korea
- Clinical Research Institute, Seoul National University Hospital, Korea
| | - Young-Gil Park
- The Korean Institute of Tuberculosis, The Korean National Tuberculosis Association, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Cancer Research Institute, Seoul National University College of Medicine, Korea
- Institute of Endemic Diseases, SNUMRC, Seoul National University College of Medicine, Korea
- Clinical Research Institute, Seoul National University Hospital, Korea
| |
Collapse
|
19
|
Abstract
In the last ten years, an unexpected resurgence of tuberculosis (TB) has occurred in industrialised countries; contributing factors are likely to include the spread of HIV infection and increasing waves of immigration. Moreover, multidrug resistant (MDR) strains of Mycobacterium tuberculosis are emerging, rendering older therapies largely ineffective. One approach to circumvent this situation has been the addition of antimicrobials with some in vitro antituberculosis activity, but which are marketed for other infections (particularly some quinolones and the combination of oxicillin-clavulanic acid), to current therapeutic regimens. New drugs, possibly acting on novel targets, are urgently required, as are more specific vaccines.
Collapse
Affiliation(s)
- C Grassi
- Institute of Respiratory Disease, University of Pavia, IRCCS S. Matteo Hospital, Via Taramelli, 5, 271 00 Pavia, Italy
| |
Collapse
|
20
|
Bertrand T, Eady NAJ, Jones JN, Nagy JM, Jamart-Grégoire B, Raven EL, Brown KA. Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase. J Biol Chem 2004; 279:38991-9. [PMID: 15231843 DOI: 10.1074/jbc.m402382200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mycobacterium tuberculosis catalase-peroxidase is a multifunctional heme-dependent enzyme that activates the core anti-tuberculosis drug isoniazid. Numerous studies have been undertaken to elucidate the enzyme-dependent mechanism of isoniazid activation, and it is well documented that mutations that reduce activity or inactivate the catalase-peroxidase lead to increased levels of isoniazid resistance in M. tuberculosis. Interpretation of the catalytic activities and the effects of mutations upon the action of the enzyme to date have been limited due to the lack of a three-dimensional structure for this enzyme. In order to provide a more accurate model of the three-dimensional structure of the M. tuberculosis catalase-peroxidase, we have crystallized the enzyme and now report its crystal structure refined to 2.4-A resolution. The structure reveals new information about dimer assembly and provides information about the location of residues that may play a role in catalysis including candidates for protein-based radical formation. Modeling and computational studies suggest that the binding site for isoniazid is located near the delta-meso heme edge rather than in a surface loop structure as currently proposed. The availability of a crystal structure for the M. tuberculosis catalase-peroxidase also permits structural and functional effects of mutations implicated in causing elevated levels of isoniazid resistance in clinical isolates to be interpreted with improved confidence.
Collapse
Affiliation(s)
- Thomas Bertrand
- Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Taylor GM, Stewart GR, Cooke M, Chaplin S, Ladva S, Kirkup J, Palmer S, Young DB. Koch's bacillus - a look at the first isolate of Mycobacterium tuberculosis from a modern perspective. MICROBIOLOGY-SGM 2004; 149:3213-3220. [PMID: 14600233 DOI: 10.1099/mic.0.26654-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using molecular methods the authors have studied mycobacterial DNA taken from a 19th century victim of tuberculosis. This was the case from which Robert Koch first isolated and cultured the organism responsible for tuberculosis. The mycobacteria were preserved within five glass culture tubes as abundant bacterial colonies on slopes of a gelatinous culture medium of unknown composition. Originally presented by Koch to surgical laryngologist Walter Jobson Horne in London in 1901, the relic has, since 1983, been in the care of the Royal College of Surgeons of England. Light and electron microscopy established the presence of acid-fast mycobacteria but showed that morphological preservation was generally poor. Eleven different genomic loci were successfully amplified by PCR. This series of experiments confirmed that the organisms were indeed Mycobacterium tuberculosis and further showed that the original strain was in evolutionary terms similar to 'modern' isolates, having undergone the TB D1 deletion. Attempts to determine the genotypic group of the isolate were only partially successful, due in part to the degraded nature of the DNA and possibly also to a truncation in the katG gene, which formed part of the classification scheme. Spoligotyping resulted in amplification of DR spacers consistent with M. tuberculosis but with discrepancies between independent extracts, stressing the limitations of this typing method when applied to poorly preserved material.
Collapse
Affiliation(s)
- G M Taylor
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - G R Stewart
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - M Cooke
- Museums of The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - S Chaplin
- Museums of The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - S Ladva
- Department of Histopathology, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - J Kirkup
- Museums of The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - S Palmer
- TB Diagnostic Department, Veterinary Laboratory Agency, Addlestone, New Haw, Weybridge, Surrey KT15 3NB, UK
| | - D B Young
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
22
|
Yu S, Girotto S, Lee C, Magliozzo RS. Reduced affinity for Isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. J Biol Chem 2003; 278:14769-75. [PMID: 12586821 DOI: 10.1074/jbc.m300326200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catalase-peroxidase (KatG) from Mycobacterium tuberculosis is responsible for the activation of the antitubercular drug isonicotinic acid hydrazide (INH) and is important for survival of M. tuberculosis in macrophages. Characterization of the structure and catalytic mechanism of KatG is being pursued to provide insights into drug (INH) resistance in M. tuberculosis. Site-directed mutagenesis was used to prepare the INH-resistant mutant KatG[S315T], and the overexpressed enzyme was characterized and compared with wild-type KatG. KatG[S315T] exhibits a reduced tendency to form six-coordinate heme, because of coordination of water to iron during purification and storage, and also forms a highly unstable Compound III (oxyferrous enzyme). Catalase activity and peroxidase activity measured using t-butylhydroperoxide and o-dianisidine were moderately reduced in the mutant compared with wild-type KatG. Stopped-flow spectrophotometric experiments revealed a rate of Compound I formation similar to wild-type KatG using peroxyacetic acid to initiate the catalytic cycle, but no Compound I was detected when bulkier peroxides (chloroperoxybenzoic acid, t-butylhydroperoxide) were used. The affinity of resting (ferric) KatG[S315T] for INH, measured using isothermal titration calorimetry, was greatly reduced compared with wild-type KatG, as were rates of reaction of Compound I with the drug. These observations reveal that although KatG[S315T] maintains reasonably good steady state catalytic rates, poor binding of the drug to the enzyme limits drug activation and brings about INH resistance.
Collapse
Affiliation(s)
- Shengwei Yu
- Department of Chemistry, Brooklyn College and The Graduate Center of the City University of New York, Brooklyn, New York 11210, USA
| | | | | | | |
Collapse
|
23
|
DeVito JA, Morris S. Exploring the structure and function of the mycobacterial KatG protein using trans-dominant mutants. Antimicrob Agents Chemother 2003; 47:188-95. [PMID: 12499190 PMCID: PMC148984 DOI: 10.1128/aac.47.1.188-195.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to probe the structure and function of the mycobacterial catalase-peroxidase enzyme (KatG), we employed a genetic approach using dominant-negative analysis of katG merodiploids. Transformation of Mycobacterium bovis BCG with various katG point mutants (expressed from low-copy-number plasmids) resulted in reductions in peroxidase and catalase activities as measured in cell extracts. These reductions in enzymatic activity usually correlated with increased resistance to the antituberculosis drug isoniazid (INH). However, for the N138S trans-dominant mutant, the catalase-peroxidase activity was significantly decreased while the sensitivity to INH was retained. trans-dominance required katG expression from multicopy plasmids and could not be demonstrated with katG mutants integrated elsewhere on the wild-type M. bovis BCG chromosome. Reversal of the mutant phenotype through plasmid exchange suggested the catalase-peroxidase deficiency occurred at the protein level and that INH resistance was not due to a second site mutation(s). Electrophoretic analysis of KatG proteins from the trans-dominant mutants showed a reduction in KatG dimers compared to WT and formation of heterodimers with reduced activity. The mutants responsible for these defects cluster around proposed active site residues: N138S, T275P, S315T, and D381G. In an attempt to identify mutants that might delimit the region(s) of KatG involved in subunit interactions, C-terminal truncations were constructed (with and without the D381G dominant-negative mutation). None of the C-terminal deletions were able to complement a DeltakatG strain, nor could they cause a dominant-negative effect on the WT. Taken together, these results suggest an intricate association between the amino- and carboxy-terminal regions of KatG and may be consistent with a domain-swapping mechanism for KatG dimer formation.
Collapse
Affiliation(s)
- Joseph A DeVito
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland 19880, USA
| | | |
Collapse
|
24
|
Zahrt TC, Deretic V. Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid Redox Signal 2002; 4:141-59. [PMID: 11970850 DOI: 10.1089/152308602753625924] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The production of reactive oxygen and reactive nitrogen intermediates is an important host defense mechanism mediated in response to infection by bacterial pathogens. Not surprisingly, intracellular pathogens have evolved numerous defense strategies to protect themselves against the damaging effects of these agents. In enteric bacteria, exposure to oxidative or nitrosative stress induces expression of numerous pathways that allow the bacterium to resist the toxic effects of these compounds during growth in the host. In contrast, members of pathogenic mycobacterial species, including the frank human pathogens Mycobacterium tuberculosis and Mycobacterium leprae, are dysfunctional in aspects of the oxidative and nitrosative stress response, yet they remain able to establish and maintain productive acute and persistent infections in the host. This article reviews the current knowledge regarding reactive oxygen and nitrogen intermediates, and compares the adaptative mechanisms utilized by enteric organisms and mycobacterial species to resist the bactericidal and bacteriostatic effects resulting from exposure to these compounds.
Collapse
Affiliation(s)
- Thomas C Zahrt
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | | |
Collapse
|
25
|
van Doorn HR, Kuijper EJ, van der Ende A, Welten AG, van Soolingen D, de Haas PE, Dankert J. The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg-->Leu mutation at codon 463 of katG are not associated. J Clin Microbiol 2001; 39:1591-4. [PMID: 11283093 PMCID: PMC87976 DOI: 10.1128/jcm.39.4.1591-1594.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation (CCG-->CTG [Arg-->Leu]) in codon 463 of katG (catalase peroxidase) of Mycobacterium tuberculosis has been found in isoniazid (INH)-resistant strains. A PCR restriction endonuclease analysis to detect this mutation was applied to 395 M. tuberculosis isolates from patients in The Netherlands. The proportion of isolates with a detectable mutation was 32% (32 out of 100) and 29% (85 out of 295) among INH-susceptible isolates and INH-resistant or -intermediate isolates, respectively. Sequencing of five INH-susceptible isolates with such mutations showed that all five had the Arg463Leu mutation. We conclude that the Arg463Leu mutation of katG of M. tuberculosis is not a reliable indicator of INH resistance.
Collapse
Affiliation(s)
- H R van Doorn
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Zahrt TC, Song J, Siple J, Deretic V. Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Mol Microbiol 2001; 39:1174-85. [PMID: 11251835 DOI: 10.1111/j.1365-2958.2001.02321.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In several bacteria, the catalase-peroxidase gene katG is under positive control by oxyR, a transcriptional regulator of the peroxide stress response. The Mycobacterium tuberculosis genome also contains sequences corresponding to oxyR, but this gene has been inactivated in the tubercle bacillus because of the presence of multiple mutations and deletions. Thus, M. tuberculosis katG and possibly other parts of the oxidative stress response in this organism are either not regulated or are controlled by a factor different from OxyR. The mycobacterial FurA is a homologue of the ferric uptake regulator Fur and is encoded by a gene located immediately upstream of katG. Here, we examine the possibility that FurA regulates katG expression. Inactivation of furA on the Mycobacterium smegmatis chromosome, a mycobacterial species that also lacks an oxyR homologue, resulted in derepression of katG, concomitant with increased resistance of the furA mutant to H2O2. In addition, M. smegmatis furA::Km(r) was more sensitive to the front-line antituberculosis agent isonicotinic acid hydrazide (INH) compared with the parental furA+ strain. The phenotypic manifestations were specific, as the mutant strain did not show altered sensitivity to organic peroxides, and both H2O2 and INH susceptibility profiles were complemented by the wild-type furA+ gene. We conclude that FurA is a second regulator of oxidative stress response in mycobacteria and that it negatively controls katG. In species lacking a functional oxyR, such as M. tuberculosis and M. smegmatis, FurA appears to be a dominant regulator affecting mycobacterial physiology and intracellular survival.
Collapse
Affiliation(s)
- T C Zahrt
- Department of Microbiology and Immunology, University of Michigan Medical School, Medical Science Building II, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- J A Caminero Luna
- Servicio de Neumología, Hospital de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria.
| |
Collapse
|
28
|
Slayden RA, Barry CE. The genetics and biochemistry of isoniazid resistance in mycobacterium tuberculosis. Microbes Infect 2000; 2:659-69. [PMID: 10884617 DOI: 10.1016/s1286-4579(00)00359-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the primary targets of activated isoniazid (INH) are proteins involved in the biosynthesis of cell wall mycolic acids, clinical resistance is dominated by specific point mutations in katG. Mutations associated with target mutations contribute to, but still cannot completely explain, resistance to INH. Despite the wealth of genetic information currently available, the molecular mechanism of cell death induced by INH remains elusive.
Collapse
Affiliation(s)
- R A Slayden
- Tuberculosis Research Section, Laboratory of Host Defenses, NIAID, NIH, 12441 Parklawn Dr., Rockville 20852, USA
| | | |
Collapse
|
29
|
Mulder MA, Zappe H, Steyn LM. The Mycobacterium tuberculosis katG promoter region contains a novel upstream activator. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2507-2518. [PMID: 10517603 DOI: 10.1099/00221287-145-9-2507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An Escherichia coli-mycobacterial shuttle vector, pJCluc, containing a luciferase reporter gene, was constructed and used to analyse the Mycobacterium tuberculosis katG promoter. A 1.9 kb region immediately upstream of katG promoted expression of the luciferase gene in E. coli and Mycobacterium smegmatis. A smaller promoter fragment (559 bp) promoted expression with equal efficiency, and was used in all further studies. Two transcription start sites were mapped by primer extension analysis to 47 and 56 bp upstream of the GTG initiation codon. Putative promoters associated with these show similarity to previously identified mycobacterial promoters. Deletions in the promoter fragment, introduced with BAL-31 nuclease and restriction endonucleases, revealed that a region between 559 and 448 bp upstream of the translation initiation codon, designated the upstream activator region (UAR), is essential for promoter activity in E. coli, and is required for optimal activity in M. smegmatis. The katG UAR was also able to increase expression from the Mycobacterium paratuberculosis P(AN) promoter 15-fold in E. coli and 12-fold in M. smegmatis. An alternative promoter is active in deletion constructs in which either the UAR or the katG promoters identified here are absent. Expression from the katG promoter peaks during late exponential phase, and declines during stationary phase. The promoter is induced by ascorbic acid, and is repressed by oxygen limitation and growth at elevated temperatures. The promoter constructs exhibited similar activities in Mycobacterium bovis BCG as they did in M. smegmatis.
Collapse
Affiliation(s)
- Michelle A Mulder
- Department of Medical Microbiology, University of Cape Town and Groote Schuur Hospital, Medical School, Observatory, 7925 Cape Town, South Africa1
| | - Harold Zappe
- Department of Medical Microbiology, University of Cape Town and Groote Schuur Hospital, Medical School, Observatory, 7925 Cape Town, South Africa1
| | - Lafras M Steyn
- Department of Medical Microbiology, University of Cape Town and Groote Schuur Hospital, Medical School, Observatory, 7925 Cape Town, South Africa1
| |
Collapse
|
30
|
Brimnes J, Miörner H, Anthoni U, Bruun L, Houen G. Reactions of N-N and N-O compounds with horseradish peroxidase and peroxidases from Mycobacterium tuberculosis. APMIS 1999; 107:555-65. [PMID: 10379683 DOI: 10.1111/j.1699-0463.1999.tb01593.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several N-N-and N-O-containing compounds were analysed for their ability to act as substrates for horseradish peroxidase and peroxidases in Mycobacterium tuberculosis extracts. Aminoguanidine, diaminoguanidine, isoniazid, hydroxylamine and hydrazine were found to be weak substrates for horseradish peroxidase in reaction I and to inhibit the reaction of horseradish peroxidase with hydrogen peroxide. The same compounds inhibited the reaction of Mycobacterium tuberculosis peroxidase-catalase with hydrogen peroxide, and hydroxylamine was found to be a weak substrate for this enzyme. In growth inhibition experiments, diaminoguanidine inhibited the growth of M. tuberculosis H37Rv at 50 microg/mL, but not the growth of two isoniazid-resistant strains. Isonicotinic acid hydroxamate inhibited the reaction of the peroxidases with hydrogen peroxide, but was not itself a substrate and had no growth-inhibitory effects. On the basis of these results we suggest that the effect of isoniazid on growth of M. tuberculosis results from increased oxidative stress due to inhibition of catalase-peroxidase as well as from generation of toxic radicals with the structure [structure in text].
Collapse
Affiliation(s)
- J Brimnes
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
31
|
Zhang Z, Hillas PJ, Ortiz de Montellano PR. Reduction of peroxides and dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin reductase. Arch Biochem Biophys 1999; 363:19-26. [PMID: 10049495 DOI: 10.1006/abbi.1998.1056] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thioredoxin (Trx) and thioredoxin reductase (TR) of Mycobacterium tuberculosis have been expressed in Escherichia coli and shown to reduce peroxides and dinitrobenzenes. The reduction of H2O2 requires both Trx and TR and is more efficient under anaerobic than aerobic conditions. In contrast, cumene hydroperoxide is reduced to cumyl alcohol and acetophenone in a process that requires NADPH and TR but not Trx. Cumene hydroperoxide reduction is partially inhibited by chelation of trace metals in the medium. The reduction of cumene hydroperoxide by TR is more effective under anaerobic than aerobic conditions due to a competing oxidase reaction in which electrons are transferred from TR to O2. Under anaerobic conditions, dinitrobenzenes also serve as electron acceptors and are reduced by TR to nitroanilines, but the enzyme does not reduce mononitrobenzenes or mononitroimidazoles such as metronidazole. The reductive activity of the Trx-TR system may modify the antioxidant defenses of M. tuberculosis.
Collapse
Affiliation(s)
- Z Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
32
|
Marklund BI, Mahenthiralingam E, Stokes RW. Site-directed mutagenesis and virulence assessment of the katG gene of Mycobacterium intracellulare. Mol Microbiol 1998; 29:999-1008. [PMID: 9767568 DOI: 10.1046/j.1365-2958.1998.00982.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterial catalases have been suggested as acting as virulence factors by protecting intracellular mycobacteria from reactive oxidative metabolites produced by host phagocytes. Mycobacterium intracellulare, like many other mycobacteria, produces two proteins with catalase activity: a heat-stable catalase (KatE) and an inducible, heat-labile catalase peroxidase (KatG). The M. intracellulare katG gene was cloned, and a plasmid derivative with a 4 bp insertion in the katG coding sequence was constructed and used for site-directed mutagenesis of M. intracellulare 1403 (ATCC 35761). The resulting katG mutant was highly resistant to isoniazid (INH), showed an increased sensitivity to H2O2 and had lost peroxidase and heat-sensitive catalase activity but retained heat-stable catalase activity. The plasmid carrying the katG frameshift allele was also used for mutagenesis of the mouse virulent M. intracellulare isolate D673. After intravenous injection into BALB/c mice, D673 and the isogenic katG mutant showed the same growth kinetics in the spleen, liver and lungs of the infected mice. Our results demonstrate that the KatG catalase peroxidase mediates resistance to H2O2 and susceptibility to INH but is not an essential virulence factor for the survival and growth of M. intracellulare in the mouse.
Collapse
Affiliation(s)
- B I Marklund
- Swedish Institute for Infectious Disease Control, Stockholm.
| | | | | |
Collapse
|
33
|
Barry CE, Slayden RA, Mdluli K. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis. Drug Resist Updat 1998; 1:128-34. [PMID: 16904399 DOI: 10.1016/s1368-7646(98)80028-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1997] [Revised: 12/24/1997] [Accepted: 01/02/1998] [Indexed: 11/28/2022]
Abstract
Isoniazid (INH) is a widely used front-line antituberculous agent with bacteriocidal activity at concentrations as low as 150 nM against Mycobacterium tuberculosis. INH is a prodrug and requires activation by an endogenous mycobacterial enzyme, the catalase-peroxidase KatG, before exerting toxic effects on cellular targets. Resistance to INH develops primarily through failure to activate the prodrug due to point mutations in the katG gene. In addition to mutations in katG, mutations in several other loci, such as the alkylhydroperoxidase AhpC and the enoylreductase InhA, may contribute to INH resistance. Although these markers can be used to accurately predict clinical INH resistance in a large number of cases, the molecular mechanisms involved remain largely speculative and incomplete.
Collapse
Affiliation(s)
- C E Barry
- Tuberculosis Research Unit, Rocky Mountain Laboratories, National Institutes for Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | |
Collapse
|
34
|
Sreevatsan S, Pan X, Zhang Y, Deretic V, Musser JM. Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother 1997; 41:600-6. [PMID: 9056000 PMCID: PMC163758 DOI: 10.1128/aac.41.3.600] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Automated DNA sequencing was used to analyze the oxyR-ahpC region in 229 Mycobacterium tuberculosis complex isolates recently recovered from diseased humans and animals. The entire 1,221-bp region was studied in 118 isolates, and 111 other isolates were sequenced for oxyR, ahpC, or the 105-bp oxyR-ahpC intergenic region. The sample included isoniazid (INH)-susceptible and -resistant organisms in which the katG gene and inhA locus had previously been sequenced in their entirety to identify polymorphisms. A total of 16 polymorphic sites was identified, including 5 located in oxyR, 2 in ahpC, and 9 in the 105-bp intergenic region. All polymorphic sites located in the intergenic region, and the two missense substitutions identified in ahpC, occurred in INH-resistant organisms. In contrast, there was no preferential association of polymorphisms in oxyR, a pseudogene, with INH-resistant organisms. Surprisingly, most INH-resistant strains with KatG codon 315 substitutions that substantially reduce catalase-peroxidase activity and confer high MICs of INH lacked alterations in the ahpC gene or oxyR-ahpC intervening region. Taken together, the data are consistent with the hypothesis that some polymorphisms located in the ahpC-oxyR intergenic region are selected for after reduction in catalase or peroxidase activity attributable to katG alterations arising with INH therapy. These mutations are uncommon in recently recovered clinically significant organisms, and hence, there is no strict association with INH-resistant patient isolates. The ahpC compensatory mutations are apparently uncommon because strains with a KatG null phenotype are relatively rare among epidemiologically independent INH-resistant organisms.
Collapse
Affiliation(s)
- S Sreevatsan
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Doran JL, Pang Y, Mdluli KE, Moran AJ, Victor TC, Stokes RW, Mahenthiralingam E, Kreiswirth BN, Butt JL, Baron GS, Treit JD, Kerr VJ, Van Helden PD, Roberts MC, Nano FE. Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA transporter family. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1997; 4:23-32. [PMID: 9008277 PMCID: PMC170471 DOI: 10.1128/cdli.4.1.23-32.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Mycobacterium tuberculosis H37Rv efpA gene encodes a putative efflux protein, EfpA, of 55,670 Da. The deduced EfpA protein was similar in secondary structure to Pur8, MmrA, TcmA, LfrA, EmrB, and other members of the QacA transporter family (QacA TF) which mediate antibiotic and chemical resistance in bacteria and yeast. The predicted EfpA sequence possessed all transporter motifs characteristic of the QacA TF, including those associated with proton-antiport function and the motif considered to be specific to exporters. The 1,590-bp efpA open reading frame was G+C rich (65%), whereas the 40-bp region immediately upstream had an A+T bias (35% G+C). Reverse transcriptase-PCR assays indicated that efpA was expressed in vitro and in situ. Putative promoter sequences were partially overlapped by the A+T-rich region and by a region capable of forming alternative secondary structures indicative of transcriptional regulation in analogous systems. PCR single-stranded conformational polymorphism analysis demonstrated that these upstream flanking sequences and the 231-bp, 5' coding region are highly conserved among both drug-sensitive and multiply-drug-resistant isolates of M. tuberculosis. The efpA gene was present in the slow-growing human pathogens M. tuberculosis, Mycobacterium leprae, and Mycobacterium bovis and in the opportunistic human pathogens Mycobacterium avium and Mycobacterium intracellular. However, efpA was not present in 17 other opportunistically pathogenic or nonpathogenic mycobacterial species.
Collapse
Affiliation(s)
- J L Doran
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Dhandayuthapani S, Deretic V. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci U S A 1996; 93:13212-6. [PMID: 8917570 PMCID: PMC24072 DOI: 10.1073/pnas.93.23.13212] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The exceptional sensitivity of Mycobacterium tuberculosis to isonicotinic acid hydrazide (INH) lacks satisfactory definition. M. tuberculosis is a natural mutant in oxyR, a central regulator of peroxide stress response. The ahpC gene, which encodes a critical subunit of alkyl hydroperoxide reductase, is one of the targets usually controlled by oxyR in bacteria. Unlike in mycobacterial species less susceptible to INH, the expression of ahpC was below detection limits at the protein level in INH-sensitive M. tuberculosis and Mycobacterium bovis strains. In contrast, AhpC was detected in several series of isogenic INH-resistant (INHr) derivatives. In a demonstration of the critical role of ahpC in sensitivity to INH, insertional inactivation of ahpC on the chromosome of Mycobacterium smegmatis, a species naturally insensitive to INH, dramatically increased its susceptibility to this compound. These findings suggest that AhpC counteracts the action of INH and that the levels of its expression may govern the intrinsic susceptibility of mycobacteria to this front-line antituberculosis drug.
Collapse
Affiliation(s)
- Y Zhang
- Department of Microbiology, University of Texas Health Sciences Center at San Antonio 78284-7758, USA
| | | | | |
Collapse
|
37
|
Deretic V, Pagán-Ramos E, Zhang Y, Dhandayuthapani S, Via LE. The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nat Biotechnol 1996; 14:1557-61. [PMID: 9634820 DOI: 10.1038/nbt1196-1557] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis is a natural mutant in oxyR, a close homolog of the central regulator of peroxide stress response in enteric bacteria. Inactivation of oxyR is specific for M. tuberculosis and other members of the M. tuberculosis complex. This phenomenon appears as a paradox due to the ability of this organism to parasitize host macrophages, in which the ingested organisms are likely to be exposed to reactive oxygen intermediates. However, the surprising finding that M. tuberculosis has multiple deletions, nonsense and frameshift mutations in oxyR may help explain the exceptionally high sensitivity of M. tuberculosis to the potent antituberculosis agent isoniazid. One of the genes affected by oxyR lesions, ahpC (encoding an alkylhydroperoxide reductase) may determine the intrinsic sensitivity of mycobacteria to isoniazid.
Collapse
Affiliation(s)
- V Deretic
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA.
| | | | | | | | | |
Collapse
|
38
|
Marttila HJ, Soini H, Huovinen P, Viljanen MK. katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother 1996; 40:2187-9. [PMID: 8878604 PMCID: PMC163496 DOI: 10.1128/aac.40.9.2187] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
katG and inhA genes from isoniazid-resistant Mycobacterium tuberculosis strains isolated in Finland were examined by PCR or sequencing. By PCR, katG was not detected in 3 of 54 strains. Sequencing of katG from 13 strains showed small point mutations or insertions; a previously described mutation causing a Ser-to-Thr change at position 315 was found in 4 strains, and there were nine new missense mutations of katG. A 209-bp segment of inhA from 17 strains was sequenced, but no mutations were observed. This result indicates that different mutations prevail in different geographical areas.
Collapse
Affiliation(s)
- H J Marttila
- National Public Health Institute, Mycobacterial Reference Laboratory, Turku, Finland.
| | | | | | | |
Collapse
|
39
|
Victor TC, Pretorius GS, Felix JV, Jordaan AM, van Helden PD, Eisenach KD. katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis are not infrequent. Antimicrob Agents Chemother 1996; 40:1572. [PMID: 8726044 PMCID: PMC163374 DOI: 10.1128/aac.40.6.1572] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
40
|
Dhandayuthapani S, Zhang Y, Mudd MH, Deretic V. Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol 1996; 178:3641-9. [PMID: 8655566 PMCID: PMC178138 DOI: 10.1128/jb.178.12.3641-3649.1996] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis is a natural mutant with inactivated oxidative stress regulatory gene oxyR. This characteristic has been linked to the exquisite sensitivity of M. tuberculosis to isonicotinic acid hydrazide (INH). In the majority of mycobacteria tested, including M. tuberculosis, oxyR is divergently transcribed from ahpC, a gene encoding a homolog of the subunit of alkyl hydroperoxide reductase that carries out substrate peroxide reduction. Here we compared ahpC expression in Mycobacterium smegmatis, a mycobacterium less sensitive to INH, with that in two highly INH sensitive species, M. tuberculosis and Mycobacterium aurum. The ahpC gene of M. smegmatis was cloned and characterized, and the 5' ends of ahpC mRNA were mapped by S1 nuclease protection analysis. M. smegmatis AhpC and eight other polypeptides were inducible by exposure to H2O2 or organic peroxides, as determined by metabolic labeling and Western blot (immunoblot) analysis. In contrast, M. aurum displayed differential induction of only one 18-kDa polypeptide when exposed to organic peroxides. AhpC could not be detected in this organism by immunological means. AhpC was also below detection levels in M. tuberculosis H37Rv. These observations are consistent with the interpretation that ahpC expression and INH sensitivity are inversely correlated in the mycobacterial species tested. In further support of this conclusion, the presence of plasmid-borne ahpC reduced M. smegmatis susceptibility to INH. Interestingly, mutations in the intergenic region between oxyR and ahpC were identified and increased ahpC expression observed in deltakatG M. tuberculosis and Mycobacterium bovis INH(r) strains. We propose that mutations activating ahpC expression may contribute to the emergence of INH(r) strains.
Collapse
Affiliation(s)
- S Dhandayuthapani
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | |
Collapse
|
41
|
Ohno H, Koga H, Kohno S, Tashiro T, Hara K. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother 1996; 40:1053-6. [PMID: 8849230 PMCID: PMC163262 DOI: 10.1128/aac.40.4.1053] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We analyzed the relationship between rifampin MICs and rpoB mutations of 40 clinical isolates of Mycobacterium tuberculosis. A point mutation in either codon 516, 526, or 531 was found in 13 strains requiring MICs of > or = 64 micrograms/ml, while 21 strains requiring MICs of < or = 1 microgram/ml showed no alteration in these codons. However, 3 of these 21 strains contained a point mutation in either codon 515 or 533. Of the other six strains requiring MICs between 2 and 32 micrograms/ml, three contained a point mutation in codon 516 or 526, while no alteration was detected in the other three. Our results indicate that the sequencing analysis of a 69-bp fragment in the rpoB gene is useful in predicting rifampin-resistant phenotypes.
Collapse
Affiliation(s)
- H Ohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- N Rastogi
- Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Pointe-a-Pitre, Guadeloupe, French West Indies
| | | |
Collapse
|
43
|
Morris SL, Rouse DA. The genetics of multiple drug resistance in Mycobacterium tuberculosis and the Mycobacterium avium complex. Res Microbiol 1996; 147:68-73. [PMID: 8761725 DOI: 10.1016/0923-2508(96)80206-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S L Morris
- Laboratory of Mycobacteria, Center for Biologics Evaluation and Research, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Rouse DA, Li Z, Bai GH, Morris SL. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995; 39:2472-7. [PMID: 8585728 PMCID: PMC162967 DOI: 10.1128/aac.39.11.2472] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Resistance to isoniazid in Mycobacterium tuberculosis has been associated with mutations in genes encoding the mycobacterial catalase-peroxidase (katG) and the InhA protein (inhA). Among the 26 isoniazid-resistant clinical isolates evaluated in this study, mutations in putative inhA regulatory sequences were identified in 2 catalase-positive isolates, katG gene alterations were detected in 20 strains, and 4 isolates had wild-type katG and inhA genes. Mutations in the katG gene were detected in all 11 catalase-negative isolates: one frameshift insertion, two partial gene deletions, and nine different missense mutations were identified. An arginine-to-leucine substitution at position 463 was detected in nine catalase-positive isolates. However, site-directed mutagenesis experiments demonstrated that the presence of a leucine at codon 463 did not alter the activity of the M. tuberculosis catalase-peroxidase and did not affect the capacity of this enzyme to restore isoniazid susceptibility to isoniazid-resistant, KatG-defective Mycobacterium smegmatis BH1 cells. These studies further support the association between katG and inhA gene mutations and isoniazid resistance in M. tuberculosis, while also suggesting that other undefined mechanisms of isoniazid resistance exist.
Collapse
Affiliation(s)
- D A Rouse
- Laboratory of Mycobacteria, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|