1
|
The Legionella pneumophila Siderophore Legiobactin Is a Polycarboxylate That Is Identical in Structure to Rhizoferrin. Infect Immun 2015. [PMID: 26195554 DOI: 10.1128/iai.00808-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe(3+) uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner.
Collapse
|
2
|
Cianciotto NP. Iron acquisition by Legionella pneumophila. Biometals 2006; 20:323-31. [PMID: 17180462 DOI: 10.1007/s10534-006-9057-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 11/28/2006] [Indexed: 11/29/2022]
Abstract
For nearly 20 years, it was believed that Legionella pneumophila does not produce siderophores. Yet, we have now determined that L. pneumophila secretes a siderophore (legiobactin) that is detectable by the CAS assay. We have optimized conditions for legiobactin expression, shown its biological activity, and found genes (lbtAB) involved in its production and secretion. LbtA is homologous with siderophore synthetases from E. coli (aerobactin), Sinorhizobium (rhizobactin), and Bordetella (alcaligin), while LbtB is a member of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtAB produce 40-70% less CAS reactivity. The lbtA mutant is also defective for growth in deferrated media containing citrate, indicating that legiobactin is required in conditions of severe iron limitation. lbtAB mutants grow normally in macrophages and amoebae host cells as well as within the lungs of mice. L. pneumophila does express lbtA in macrophages, suggesting that legiobactin has a dispensable role in infection. Legiobactin is iron repressed and does not react in the Csáky and Arnow assays. Anion-exchange HPLC has been used to purify legiobactin, and thus far, structural analysis suggests that the molecule is similar but not identical to rhizobactin, rhizoferrin, and alcaligin. The residual CAS reactivity present in supernatants of the lbtAB mutants suggests that L. pneumophila might produce a second siderophore. Besides siderophores, we have determined that ferrous iron transport, encoded by feoB, is critical for L. pneumophila growth in low-iron conditions, in host cells, and in the mammalian lung. Some of our other studies have discovered a critical, yet undefined, role for the L. pneumophila cytochrome c maturation locus in low-iron growth, intracellular infection, and virulence.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611-3010, USA.
| |
Collapse
|
3
|
Allard KA, Viswanathan VK, Cianciotto NP. lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 2006; 188:1351-63. [PMID: 16452417 PMCID: PMC1367248 DOI: 10.1128/jb.188.4.1351-1363.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Under iron stress, Legionella pneumophila secretes legiobactin, a nonclassical siderophore that is reactive in the chrome azurol S (CAS) assay. Here, we have optimized conditions for legiobactin expression, shown its biological activity, and identified two genes, lbtA and lbtB, which are involved in legiobactin production. lbtA appears to be iron repressed and encodes a protein that has significant homology with siderophore synthetases, and FrgA, a previously described iron-regulated protein of L. pneumophila. lbtB encodes a protein homologous with members of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtA or lbtB were defective for legiobactin, producing 40 to 70% less CAS reactivity in deferrated chemically defined medium (CDM). In bioassays, mutant CDM culture supernatants, unlike those of the wild type, did not support growth of iron-limited wild-type bacteria in 2',2'-dipyridyl-containing buffered charcoal yeast extract (BCYE) agar and a ferrous iron transport mutant on BCYE agar without added iron. The lbtA mutant was modestly defective for growth in deferrated CDM containing the iron chelator citrate, indicating that legiobactin is required in conditions of severe iron limitation. Complementation of the lbt mutants restored both siderophore expression, as measured by the CAS assay and bioassays, and bacterial growth in deferrated, citrate-containing media. The lbtA mutant replicated as the wild type did in macrophages, amoebae, and the lungs of mice. However, L. pneumophila expresses lbtA in the macrophage, suggesting that legiobactin, though not required, may play a dispensable role in intracellular growth. The discovery of lbtAB represents the first identification of genes required for L. pneumophila siderophore expression.
Collapse
Affiliation(s)
- Kimberly A Allard
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, Illinois 60611-3010, USA
| | | | | |
Collapse
|
4
|
Møller JD, Ellis AE, Barnes AC, Dalsgaard I. Iron acquisition mechanisms of Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2005; 28:391-8. [PMID: 16083444 DOI: 10.1111/j.1365-2761.2005.00639.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Forty strains of Flavobacterium psychrophilum were tested for the production of siderophores using the universal Chrome Azurol S (CAS) assay. The majority of the strains (85%) were CAS positive (CAS+) and some (15%) were CAS negative (CAS-). The cryptic plasmid pCP1 was carried by all positive strains and was lacking from negative strains. While a weak catechol reaction was detectable in CAS+ culture supernatants, the CAS reaction was, to some extent, heat sensitive, questioning whether the positive reaction was caused only by siderophores. The ability to grow in vitro under iron-restricted conditions did not correlate with the CAS reactivity, as growth of both CAS+ and CAS- strains was similarly impaired under iron restriction induced by 2,2 dipyridyl. Suppressed growth under these conditions was restored by addition of FeCl3, haemoglobin and transferrin for both CAS+ and CAS- strains.
Collapse
Affiliation(s)
- J D Møller
- Fish Disease Laboratory, Danish Institute for Fisheries Research, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
5
|
Naylor J, Cianciotto NP. Cytochrome c maturation proteins are critical for in vivo growth of Legionella pneumophila. FEMS Microbiol Lett 2005; 241:249-56. [PMID: 15598540 DOI: 10.1016/j.femsle.2004.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 09/28/2004] [Accepted: 10/15/2004] [Indexed: 11/24/2022] Open
Abstract
Legionella pneumophila, an intracellular parasite of macrophages and protozoa, requires iron for extra- and intracellular growth. In a new screen of a mutant library of L. pneumophila for strains defective for growth on agar media lacking supplemental iron, seven mutants were obtained. All of the mutants had a disruption in the cytochrome c maturation (ccm) locus; two had insertions in ccmB, two in ccmC, and three in ccmF. The ccm mutants were unable to multiply within macrophage-like cells (i.e., U937 and THP-1 cells) and Hartmannella vermiformis amoebae. A competition assay in A/J mice revealed that ccm mutants are severely defective for growth within the lung. Taken together, these data confirm that ccm and cytochrome c maturation proteins are required for L. pneumophila growth in low iron, intracellular infection, and virulence.
Collapse
Affiliation(s)
- Jennifer Naylor
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, IL 60611, USA
| | | |
Collapse
|
6
|
Viswanathan VK, Edelstein PH, Pope CD, Cianciotto NP. The Legionella pneumophila iraAB locus is required for iron assimilation, intracellular infection, and virulence. Infect Immun 2000; 68:1069-79. [PMID: 10678909 PMCID: PMC97250 DOI: 10.1128/iai.68.3.1069-1079.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, a facultative intracellular parasite of human alveolar macrophages and protozoa, causes Legionnaires' disease. Using mini-Tn10 mutagenesis, we previously isolated a L. pneumophila mutant that was hypersensitive to iron chelators. This mutant, NU216, and its allelic equivalent, NU216R, were also defective for intracellular infection, particularly in iron-deficient host cells. To determine whether NU216R was attenuated for virulence, we assessed its ability to cause disease in guinea pigs following intratracheal inoculation. NU216R-infected animals yielded 1,000-fold fewer bacteria from their lungs and spleen compared to wild-type-130b-infected animals that had received a 50-fold-lower dose. Moreover, NU216R-infected animals subsequently cleared the bacteria from these sites. While infection with 130b resulted in high fever, weight loss, and ruffled fur, inoculation with NU216R did not elicit any signs of disease. DNA sequence analysis revealed that the transposon insertion in NU216R lies in the first open reading frame of a two-gene operon. This open reading frame (iraA) encodes a 272-amino-acid protein that shows sequence similarity to methyltransferases. The second open reading frame (iraB) encodes a 501-amino-acid protein that is highly similar to di- and tripeptide transporters from both prokaryotes and eukaryotes. Southern hybridization analyses determined that the iraAB locus was largely limited to strains of L. pneumophila, the most pathogenic of the Legionella species. A newly derived mutant containing a targeted disruption of iraB showed reduced ability to grow under iron-depleted extracellular conditions, but it did not have an infectivity defect in the macrophage-like U937 cells. These data suggest that iraA is critical for virulence of L. pneumophila while iraB is involved in a novel method of iron acquisition which may utilize iron-loaded peptides.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Microbiology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
7
|
Liles MR, Scheel TA, Cianciotto NP. Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 2000; 182:749-57. [PMID: 10633110 PMCID: PMC94339 DOI: 10.1128/jb.182.3.749-757.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which Legionella pneumophila, a facultative intracellular parasite and the agent of Legionnaires' disease, acquires iron are largely unexplained. Several earlier studies indicated that L. pneumophila does not elaborate siderophores. However, we now present evidence that supernatants from L. pneumophila cultures can contain a nonproteinaceous, high-affinity iron chelator. More specifically, when aerobically grown in a low-iron, chemically defined medium (CDM), L. pneumophila secretes a substance that is reactive in the chrome azurol S (CAS) assay. Importantly, the siderophore-like activity was only observed when the CDM cultures were inoculated to relatively high density with bacteria that had been grown overnight to log or early stationary phase in CDM or buffered yeast extract. Inocula derived from late-stationary-phase cultures, despite ultimately growing, consistently failed to result in the elaboration of siderophore-like activity. The Legionella CAS reactivity was detected in the culture supernatants of the serogroup 1 strains 130b and Philadelphia-1, as well as those from representatives of other serogroups and other Legionella species. The CAS-reactive substance was resistant to boiling and protease treatment and was associated with the <1-kDa supernatant fraction. As would also be expected for a siderophore, the addition of 0.5 or 2.0 microM iron to the cultures repressed the expression of the CAS-reactive substance. Interestingly, the supernatants were negative in the Arnow, Csáky, and Rioux assays, indicating that the Legionella siderophore was not a classic catecholate or hydroxamate and, hence, might have a novel structure. We have designated the L. pneumophila siderophore legiobactin.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
8
|
Abstract
Iron is required by most living systems. A great variety of means of acquisition, avenues of uptake, and methods of storage are used by pathogenic fungi to ensure a supply of the essential metal. Solubilization of insoluble iron polymers is the first step in iron assimilation. The two methods most commonly used by microorganisms for solubilization of iron are reduction and chelation. Reduction of ferric iron to ferrous iron by enzymatic or nonenzymatic means is a common mechanism among pathogenic yeasts. Under conditions of iron starvation, many fungi synthesize iron chelators known as siderophores. Two classes of compounds that function in iron gathering are commonly observed: hydroxamates and polycarboxylates. Two major responses to iron stress in fungi are a high-affinity ferric iron reductase and siderophore synthesis. Regulation of these two mechanisms at the molecular level has received attention. Uptake of siderophores is a diverse process, which varies among the different classes of compounds. Since free iron is toxic, it must be stored for further metabolic use. Polyphosphates, ferritins, and siderophores themselves have been described as storage molecules. The iron-gathering mechanisms used by a pathogen in an infected host are largely unknown and can only be posited on the basis of in vitro studies at present.
Collapse
Affiliation(s)
- D H Howard
- Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095-1747, USA.
| |
Collapse
|
9
|
Liles MR, Viswanathan VK, Cianciotto NP. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect Immun 1998; 66:1776-82. [PMID: 9529113 PMCID: PMC108120 DOI: 10.1128/iai.66.4.1776-1782.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1997] [Accepted: 01/27/1998] [Indexed: 02/07/2023] Open
Abstract
Previously, we had isolated by transposon mutagenesis a Legionella pneumophila mutant that appeared defective for intracellular iron acquisition. While sequencing in the proximity of the mini-Tn10 insertion, we found a locus that had a predicted protein product with strong similarity to PilB from Pseudomonas aeruginosa. PilB is a component of the type II secretory pathway, which is required for the assembly of type IV pili. Consequently, the locus was cloned and sequenced. Within this 4-kb region were three genes that appeared to be organized in an operon and encoded homologs of P. aeruginosa PilB, PilC, and PilD, proteins essential for pilus production and type II protein secretion. Northern blot analysis identified a transcript large enough to include all three genes and showed a substantial increase in expression of this operon when L. pneumophila was grown at 30 degrees C as opposed to 37 degrees C. The latter observation was then correlated with an increase in piliation when bacteria were grown at the lower temperature. Southern hybridization analysis indicated that the pilB locus was conserved within L. pneumophila serogroups and other Legionella species. These data represent the first isolation of type II secretory genes from an intracellular parasite and indicate that the legionellae express temperature-regulated type IV pili.
Collapse
Affiliation(s)
- M R Liles
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
10
|
Hickey EK, Cianciotto NP. An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 1997; 65:133-43. [PMID: 8975903 PMCID: PMC174567 DOI: 10.1128/iai.65.1.133-143.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Legionella pneumophila, a parasite of alveolar macrophages, requires iron for intra- and extracellular growth. Although its mechanisms for iron assimilation are poorly understood, this bacterium produces Fur, a protein that can repress gene transcription in response to iron concentration. Because iron- and Fur-regulated genes are important for infection in other bacteria, the identification of similar genes in L. pneumophila was undertaken. A wild-type strain of L. pneumophila was randomly mutated with a mini-Tn10' lacZ transposon, and the resulting gene fusions were tested for iron regulation by assessing beta-galactosidase production in the presence and absence of iron chelators. Of the initial six mutants with iron-repressed lacZ fusions, two strains, NU229 and NU232, possessed fusions that were stably iron regulated. To assay for Fur regulation, the levels of beta-galactosidase were measured in strains no longer producing Fur. As in a number of pathogenic bacteria, L. pneumophila fur could not be insertionally inactivated, but spontaneous Fur- derivatives were generated by selecting for manganese resistance. Strain NU229 contained a Fur-repressed fusion based on derepression of lacZ expression in its manganese-resistant derivative. Extracellular growth of NU229 in bacteriological media was similar to that of wild-type strain 130b. To assess the role of an iron- and Fur-regulated (frgA) gene in intracellular infection, the ability of NU229 to grow within U937 cell monolayers was tested. Quantitative infection assays demonstrated that intracellular growth of NU229 was impaired as much as 80-fold. Reconstruction of the mutant by allelic exchange proved that the infectivity defect in NU229 was due to the inactivation of frgA and not to a second-site mutation. Subsequently, complementation of the interrupted gene by an intact plasmid-encoded gene demonstrated that the infectivity defect was due to the loss of frgA and not to a polar effect. Nucleotide sequence analysis revealed that the 63-kDa FrgA protein has homology with the aerobactin synthetases IucA and IucC of Escherichia coli, raising the possibility that L. pneumophila encodes a siderophore which is required for optimal intracellular replication. Southern hybridization analysis determined that frgA is specific to L. pneumophila.
Collapse
Affiliation(s)
- E K Hickey
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|