1
|
Regulation of igaA and the Rcs system by the MviA response regulator in Salmonella enterica. J Bacteriol 2009; 191:2743-52. [PMID: 19218385 DOI: 10.1128/jb.01519-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IgaA is a membrane protein that prevents overactivation of the Rcs regulatory system in enteric bacteria. Here we provide evidence that igaA is the first gene in a sigma(70)-dependent operon of Salmonella enterica serovar Typhimurium that also includes yrfG, yrfH, and yrfI. We also show that the Lon protease and the MviA response regulator participate in regulation of the igaA operon. Our results indicate that MviA regulates igaA transcription in an RpoS-dependent manner, but the results also suggest that MviA may regulate RcsB activation in an RpoS- and IgaA-independent manner.
Collapse
|
2
|
Jones AM, Goodwill A, Elliott T. Limited role for the DsrA and RprA regulatory RNAs in rpoS regulation in Salmonella enterica. J Bacteriol 2006; 188:5077-88. [PMID: 16816180 PMCID: PMC1539969 DOI: 10.1128/jb.00206-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RpoS, the sigma factor of enteric bacteria that responds to stress and stationary phase, is subject to complex regulation acting at multiple levels, including transcription, translation, and proteolysis. Increased translation of rpoS mRNA during growth at low temperature, after osmotic challenge, or with a constitutively activated Rcs phosphorelay depends on two trans-acting small regulatory RNAs (sRNAs) in Escherichia coli. The DsrA and RprA sRNAs are both highly conserved in Salmonella enterica, as is their target, an inhibitory antisense element within the rpoS untranslated leader. Analysis of dsrA and rprA deletion mutants indicates that while the increased translation of RpoS in response to osmotic challenge is conserved in S. enterica, dependence on these two sRNA regulators is much reduced. Furthermore, low-temperature growth or constitutive RcsC activation had only modest effects on RpoS expression, and these increases were, respectively, independent of dsrA or rprA function. This lack of conservation of sRNA function suggests surprising flexibility in RpoS regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- Conserved Sequence
- Gene Expression Regulation, Bacterial
- Kinetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Small Cytoplasmic/chemistry
- RNA, Small Cytoplasmic/genetics
- RNA, Small Untranslated
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- Salmonella enterica/genetics
- Salmonella enterica/growth & development
- Sigma Factor/genetics
Collapse
Affiliation(s)
- Amy M Jones
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
3
|
Abstract
The sigma factor RpoS is known to regulate at least 60 genes in response to environmental sources of stress or during growth to stationary phase (SP). Accumulation of RpoS relies on integration of multiple genetic controls, including regulation at the levels of transcription, translation, protein stability, and protein activity. Growth to SP in rich medium results in a 30-fold induction of RpoS, although the mechanism of this regulation is not understood. We characterized the activity of promoters serving rpoS in Salmonella enterica serovar Typhimurium and report that regulation of transcription during growth into SP depends on Fis, a DNA-binding protein whose abundance is high during exponential growth and very low in SP. A fis mutant of S. enterica serovar Typhimurium showed a ninefold increase in expression from the major rpoS promoter (PrpoS) during exponential growth, whereas expression during SP was unaffected. Increased transcription from PrpoS in the absence of Fis eliminated the transcriptional induction as cells enter SP. The mutant phenotype can be complemented by wild-type fis carried on a single-copy plasmid. Fis regulation of rpoS requires the presence of a Fis site positioned at -50 with respect to PrpoS, and this site is bound by Fis in vitro. A model is presented in which Fis binding to this site allows repression of rpoS specifically during exponential growth, thus mediating transcriptional regulation of rpoS.
Collapse
Affiliation(s)
- Matthew Hirsch
- West Virginia University Health Science Center, MICB, HSC-N, Morgantown, WV 26506, USA
| | | |
Collapse
|
4
|
Yeh KS, Tinker JK, Clegg S. FimZ binds the Salmonella typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 2002; 46:1-10. [PMID: 11911183 DOI: 10.1111/j.1348-0421.2002.tb02670.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The FimZ protein, an activator of FimA production in Salmonella typhimurium, acts in conjunction with FimY to facilitate the expression of type 1 fimbriae. The predicted amino acid sequence of FimZ suggests that this protein may be a DNA-binding protein related to BvgA, a sensory regulator of virulence gene expression in Bordetella pertussis. Purification of FimZ following overexpression of the protein by a strong inducible promoter and gel mobility shift assays confirm that FimZ is a 25-kDa polypeptide that binds to the promoter region offimA. The region of DNA protected from DNase I digestion by FimZ binding is located between 47 and 98 nucleotides upstream from thefimA transcription initiation site. This region possesses a pair of 7-base pair tandem repeats, of which at least one is necessary for FimZ binding. One copy of the 7-base pair sequence is also located in thefimZ promoter region. In addition, expression from afimZ-lacZ reporter construct confirms that FimZ plays a role in its own expression. Both FimZ and FimY are required for high-level expression of FimZ, which suggests that these two fimbrial proteins are involved in regulating both FimA and FimZ.
Collapse
Affiliation(s)
- Kuang-Sheng Yeh
- Department of Pathobiology, Pig Research Institute Taiwan, Chunan, Miaoli.
| | | | | |
Collapse
|
5
|
Abstract
The bacterial sigma factor RpoS is strongly induced under a variety of stress conditions and during growth into stationary phase. Here, we used rpoS-lac fusions in Escherichia coli to investigate control acting at the level of RpoS synthesis, which is especially evident when cells approach stationary phase in rich medium. Previous work has shown that the small molecule ppGpp is required for normal levels of RpoS in stationary phase. Despite the attraction of a model in which the ppGpp level controls stationary-phase induction of RpoS, careful measurement of rpoS-lac expression in a mutant lacking ppGpp showed similar effects during both exponential growth and stationary phase; the main effect of ppGpp was on basal expression. In addition, a modest regulatory defect was associated with the mutant lacking ppGpp, delaying the time at which full expression was achieved by 2 to 3 h. Deletion analysis showed that the defect in basal expression was distributed over several sequence elements, while the regulatory defect mapped to the region upstream of the rpoS ribosome-binding site (RBS) that contains a cis-acting antisense element. A number of other genes that have been suggested as regulators of rpoS were tested, including dksA, dsrA, barA, ppkx, and hfq. With the exception of the dksA mutant, which had a modest defect in Luria-Bertani medium, none of these mutants was defective for rpoS stationary-phase induction. Even a short rpoS segment starting at 24 nucleotides upstream of the AUG initiation codon was sufficient to confer substantial stationary-phase regulation, which was mainly posttranscriptional. The effect of RBS-proximal sequence was independent of all known trans-acting factors, including ppGpp.
Collapse
Affiliation(s)
- Matthew Hirsch
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
6
|
Kalfayan LH, Farhat D, El-Nakat H, Matar GM, Abdelnoor AM. Immunization of mice against Salmonella typhimurium using different DNA preparations. Immunopharmacol Immunotoxicol 2001; 23:519-30. [PMID: 11792011 DOI: 10.1081/iph-100108598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Groups of female BALB/c mice were given primary and booster injections of whole genomic DNA extracted from S. typhimurium, P. aeruginosa, or S. aureus. Other groups of mice were immunized in a similar manner with the 1.57kb fragment of the mouse virulence gene (mviA), pTargeT vector (plasmid DNA)/1.57kb construct, pTargeT vector, or saline. Mice in all groups were challenged intraperitoneally with 100 LD50 of S. typhimurium. The bacterial genomic DNA was extracted using the Pure Gene extraction kit. Specific primers were used to amplify the 1.57kb fragment by PCR. The pTargeT Mammalian Expression Vector System was used to prepare the plasmid/ 1.57kb construct. Bacterial genomic DNA extracted from P. aeruginosa and S. aureus appeared to induce non-specific resistance in mice. Specific, in addition to non-specific resistance appeared to be induced when genomic DNA from S. typhimurium was used. There was a prolongation of survival in the groups of mice that received either the 1.57kb fragment or the pTargeT vector/1.57kb construct and 16.67% and 33.34% respectively, of mice in each group survived at 40 days post challenge. None of the mice in the saline control group survived by day 7 post challenge. It is suggested that the non-specific resistance observed in this study might have been due to the adjuvant effect of the non-methylated CpG and other immunostimulatory motifs in bacterial DNA. Specific resistance obtained when genomic DNA from S. typhimurium was used might have been due to minute antigenic contamination, or virulence factor genes other than the mviA gene, might have been expressed in the host, which induced specific immunity.
Collapse
Affiliation(s)
- L H Kalfayan
- Department of Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
| | | | | | | | | |
Collapse
|
7
|
Cunning C, Elliott T. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J Bacteriol 1999; 181:4853-62. [PMID: 10438755 PMCID: PMC93972 DOI: 10.1128/jb.181.16.4853-4862.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor of enteric bacteria is either required for or augments the expression of a number of genes that are induced during nutrient limitation, growth into stationary phase, or in response to stresses, including high osmolarity. RpoS is regulated at multiple levels, including posttranscriptional control of its synthesis, protein turnover, and mechanisms that affect its activity directly. Here, the control of RpoS stability was investigated in Salmonella typhimurium by the isolation of a number of mutants specifically defective in RpoS turnover. These included 20 mutants defective in mviA, the ortholog of Escherichia coli rssB/sprE, and 13 mutants defective in either clpP or clpX which encode the protease active on RpoS. An hns mutant was also defective in RpoS turnover, thus confirming that S. typhimurium and E. coli have identical genetic requirements for this process. Some current models predict the existence of a kinase to phosphorylate the response regulator MviA, but no mutants affecting a kinase were recovered. An mviA mutant carrying the D58N substitution altering the predicted phosphorylation site is substantially defective, suggesting that phosphorylation of MviA on D58 is important for its function. No evidence was obtained to support models in which acetyl phosphate or the PTS system contributes to MviA phosphorylation. However, we did find a significant (fivefold) elevation of RpoS during exponential growth on acetate as the carbon and energy source. This behavior is due to growth rate-dependent regulation which increases RpoS synthesis at slower growth rates. Growth rate regulation operates at the level of RpoS synthesis and is mainly posttranscriptional but, surprisingly, is independent of hfq function.
Collapse
Affiliation(s)
- C Cunning
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
8
|
Andersson RA, Palva ET, Pirhonen M. The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (sigma s). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:575-84. [PMID: 10478478 DOI: 10.1094/mpmi.1999.12.7.575] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The main virulence factors of Erwinia carotovora subsp. carotovora, the secreted, extracellular cell-wall-degrading enzymes, are controlled by several regulatory mechanisms. We have isolated transposon mutants with reduced virulence on tobacco. One of these mutants, with a mutation in a gene designated expM, was characterized in this study. This mutant produces slightly reduced amounts of extracellular enzymes in vitro and the secretion of the enzymes is also affected. The expM wild-type allele was cloned together with an upstream gene, designated expL, that has an unknown function. The expM gene was sequenced and found to encode a protein with similarity to the RssB/SprE protein of Escherichia coli and the MviA protein of Salmonella typhimurium. These proteins belong to a new type of two-component response regulators that negatively regulate the stability of the Sigma factor RpoS (sigma s) at the protein level. The results of this study suggest that ExpM has a similar function in E. carotovora subsp. carotovora. We also provide evidence that the overproduction of RpoS in the expM mutant is an important factor for the reduced virulence phenotype and that it partly causes the observed phenotype seen in vitro. However, an expM/rpoS double mutant is still affected in secretion of extracellular enzymes, suggesting that ExpM in addition to RpoS also acts on other targets.
Collapse
Affiliation(s)
- R A Andersson
- Department of Plant Biology, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Sweden.
| | | | | |
Collapse
|
9
|
Foster JW, Moreno M. Inducible acid tolerance mechanisms in enteric bacteria. NOVARTIS FOUNDATION SYMPOSIUM 1999; 221:55-69; discussion 70-4. [PMID: 10207913 DOI: 10.1002/9780470515631.ch5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Enteric micro-organisms have developed several inducible mechanisms for surviving transient periods of extreme acid stress. Salmonella typhimurium possesses an acid tolerance response (ATR) induced in minimal medium by short exposures to mild acid stress. More than 50 acid shock proteins (ASPs) are induced during adaptation. Eight ASPs are regulated by the major iron regulatory protein, Fur, in an unusual iron-independent manner. The two-component regulator, PhoP, is an autoinduced ASP that controls the induction of three additional ASPs. The stress sigma factor sigma S is an ASP that regulates induction of eight ASPs. Acid induction of sigma S is due to its decreased proteolytic turnover via the ClpXP protease in conjunction with the two-component-type response regulator MviA (RssB in Escherichia coli). Mutations in any of these three regulators leads to a defective ATR. Repair of pH stress-induced DNA damage appears to require the Ada protein (O6-methylguanine methyltransferase) since an ada mutant is both acid and alkaline sensitive. In contrast to S. typhimurium, E. coli and Shigella have acid resistance systems induced in complex media that include a glucose-repressed system protective at pH 2.5 without amino acid supplementation, a glutamate decarboxylase system that requires glutamate and an arginine decarboxylase system unique to E. coli.
Collapse
Affiliation(s)
- J W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688, USA
| | | |
Collapse
|
10
|
Cunning C, Brown L, Elliott T. Promoter substitution and deletion analysis of upstream region required for rpoS translational regulation. J Bacteriol 1998; 180:4564-70. [PMID: 9721296 PMCID: PMC107468 DOI: 10.1128/jb.180.17.4564-4570.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor of enteric bacteria is required for the increased expression of a number of genes that are induced during nutrient limitation and growth into stationary phase and in response to high osmolarity. RpoS is also a virulence factor for several pathogenic species, including Salmonella typhimurium. The activity of RpoS is regulated at both the level of synthesis and protein turnover. Here we investigate the posttranscriptional control of RpoS synthesis by using rpoS-lac protein and operon fusions. Substitution of the native rpoS promoters with the tac or lac UV5 promoters allowed essentially normal regulation after growth into stationary phase in rich medium or after osmotic challenge. Regulation of these fusions required the function of hfq, encoding the RNA-binding protein host factor I (HF-I). Short deletions from the 5' end of the rpoS transcript did not affect regulation very much; however, a larger deletion mutation that still retains 220 bp upstream of the rpoS ATG codon, including a proposed antisense element inhibitory for rpoS translation, was no longer regulated by HF-I. Several models for regulation of rpoS expression by HF-I are discussed.
Collapse
Affiliation(s)
- C Cunning
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
11
|
Swords WE, Cannon BM, Benjamin WH. Avirulence of LT2 strains of Salmonella typhimurium results from a defective rpoS gene. Infect Immun 1997; 65:2451-3. [PMID: 9169789 PMCID: PMC175341 DOI: 10.1128/iai.65.6.2451-2453.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In order to identify the genetic basis for the attenuation of Salmonella typhimurium LT2 strains, experiments were performed to identify a gene(s) which restores virulence to an avirulent LT2 strain. These and further experiments confirmed that an rpoS mutation is the sole determinant of the attenuation of S. typhimurium LT2.
Collapse
Affiliation(s)
- W E Swords
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|