1
|
Sudhakaran G, Kesavan D, Selvam M, Arasu A, Guru A, Arockiaraj J. Gonorrhea caused due to antimicrobial-resistant bacteria Neisseria gonorrhoeae treated using probiotic peptide. In Silico Pharmacol 2024; 12:17. [PMID: 38525049 PMCID: PMC10957827 DOI: 10.1007/s40203-023-00185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 03/26/2024] Open
Abstract
Neisseria gonorrhea is a sexually transmitted disease from gonorrhea that lacks treatment; despite the urgency, the absence of adequate drugs, lack of human correlates of protection, and inadequate animal models of infection have delayed progress toward the prevention of gonococcal infection. Lactobacillus crispatus is a lactic acid bacterium typically found in the human vaginal microbiota. Peptides from L. crispatus have shown a potential therapeutic option for targetting N. gonorrhea. Bioinformatics analysis is important for speeding up drug target acquisition, screening refinement, and evaluating adverse effects and drug resistance prediction. Therefore, this study identified an antimicrobial peptide from the bacteriocin immunity protein (BIP) of L. crispatus using the bioinformatics tool and Collection of Antimicrobial Peptide (CAMPR3). Based on the AMP score and highest ADMET properties, the peptide SM20 was chosen for docking analysis. SM20 was docked against multiple proteins from the genome of the AMR bacterium N. gonorrhea using an online tool; protein-peptide interactions were established and visualized using the PyMol visualizing tool. Molecular docking was carried out using the CABSdock tool, and multiple conformations were obtained against the membrane proteins of N. gonorrhoea. The peptide SM20 exhibited higher docking scores and ADMET properties. Therefore, SM20 could be further encapsulated with cellulose; it can be applied topically to the genital tract to target N. gonorrhea infection. The controlled release of the antimicrobial peptide from the gel can provide sustained delivery of the treatment, increasing its efficacy and reducing the risk of resistance development.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077 Tamil Nadu India
| | - D. Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203 Tamil Nadu India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203 Tamil Nadu India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, 603203 Tamil Nadu India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077 Tamil Nadu India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203 Tamil Nadu India
| |
Collapse
|
2
|
Baarda BI, Zielke RA, Le Van A, Jerse AE, Sikora AE. Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production. PLoS Pathog 2019; 15:e1007385. [PMID: 30845186 PMCID: PMC6424457 DOI: 10.1371/journal.ppat.1007385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/19/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The six-component maintenance of lipid asymmetry (Mla) system is responsible for retrograde transport of phospholipids, ensuring the barrier function of the Gram-negative cell envelope. Located within the outer membrane, MlaA (VacJ) acts as a channel to shuttle phospholipids from the outer leaflet. We identified Neisseria gonorrhoeae MlaA (ngo2121) during high-throughput proteomic mining for potential therapeutic targets against this medically important human pathogen. Our follow-up phenotypic microarrays revealed that lack of MlaA results in a complex sensitivity phenome. Herein we focused on MlaA function in cell envelope biogenesis and pathogenesis. We demonstrate the existence of two MlaA classes among 21 bacterial species, characterized by the presence or lack of a lipoprotein signal peptide. Purified truncated N. gonorrhoeae MlaA elicited antibodies that cross-reacted with a panel of different Neisseria. Little is known about MlaA expression; we provide the first evidence that MlaA levels increase in stationary phase and under anaerobiosis but decrease during iron starvation. Lack of MlaA resulted in higher cell counts during conditions mimicking different host niches; however, it also significantly decreased colony size. Antimicrobial peptides such as polymyxin B exacerbated the size difference while human defensin was detrimental to mutant viability. Consistent with the proposed role of MlaA in vesicle biogenesis, the ΔmlaA mutant released 1.7-fold more membrane vesicles. Comparative proteomics of cell envelopes and native membrane vesicles derived from ΔmlaA and wild type bacteria revealed enrichment of TadA–which recodes proteins through mRNA editing–as well as increased levels of adhesins and virulence factors. MlaA-deficient gonococci significantly outcompeted (up to 16-fold) wild-type bacteria in the murine lower genital tract, suggesting the growth advantage or increased expression of virulence factors afforded by inactivation of mlaA is advantageous in vivo. Based on these results, we propose N. gonorrhoeae restricts MlaA levels to modulate cell envelope homeostasis and fine-tune virulence. The Gram-negative outer membrane is a formidable barrier, primarily because of its asymmetric composition. A layer of lipopolysaccharide is exposed to the external environment and phospholipids are on the internal face of the outer membrane. MlaA is part of a bacterial system that prevents phospholipid accumulation within the lipopolysaccharide layer. If MlaA is removed, membrane asymmetry is disrupted and bacteria become more vulnerable to certain antimicrobials. Neisseria gonorrhoeae causes millions of infections worldwide annually. A growing number are resistant to available antibiotics. Improving our understanding of gonococcal pathogenicity and basic biological processes is required to facilitate the discovery of new weapons against gonorrhea. We investigated the role of MlaA in N. gonorrhoeae and found that when MlaA was absent, bacteria were more sensitive to antibiotics and human defensins. However, the mutant bacteria produced more membrane vesicles–packages of proteins wrapped in membrane material. Mutant vesicles and cell envelopes were enriched in proteins that contribute to disease. These alterations significantly increased mutant fitness during experimental infection of the female mouse genital tract. Our results provide new insights into the processes N. gonorrhoeae uses to fine-tune its ability to stay fit in the hostile environment of the genital tract.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Adriana Le Van
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
3
|
Rodgers K, Arvidson CG, Melville S. Expression of a Clostridium perfringens type IV pilin by Neisseria gonorrhoeae mediates adherence to muscle cells. Infect Immun 2011; 79:3096-105. [PMID: 21646450 PMCID: PMC3147591 DOI: 10.1128/iai.00909-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 05/28/2011] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens is an anaerobic, Gram-positive bacterium that causes a range of diseases in humans, including lethal gas gangrene. We have recently shown that strains of C. perfringens move across the surface of agar plates by a unique type IV pilus (TFP)-mediated social motility that had not been previously described. Based on sequence homology to pilins in Gram-negative bacteria, C. perfringens appears to have two pilin subunits, PilA1 and PilA2. Structural prediction analysis indicated PilA1 is similar to the pseudopilin found in Klebsiella oxytoca, while PilA2 is more similar to true pilins found in the Gram-negative pathogens Pseudomonas aeruginosa and Neisseria gonorrhoeae. Strains of N. gonorrhoeae that were genetically deficient in the native pilin, PilE, but supplemented with inducible expression of PilA1 and PilA2 of C. perfringens were constructed. Genetic competence, wild-type twitching motility, and attachment to human urogenital epithelial cells were not restored by expression of either pilin. However, attachment to mouse and rat myoblast (muscle) cell lines was observed with the N. gonorrhoeae strain expressing PilA2. Significantly, wild-type C. perfringens cells adhered to mouse myoblasts under anaerobic conditions, and adherence was 10-fold lower in a pilT mutant that lacked functional TFP. These findings implicate C. perfringens TFP in the ability of C. perfringens to adhere to and move along muscle fibers in vivo, which may provide a therapeutic approach to limiting this rapidly spreading and highly lethal infection.
Collapse
Affiliation(s)
- Katherine Rodgers
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | - Cindy Grove Arvidson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Stephen Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
4
|
Dietrich M, Munke R, Gottschald M, Ziska E, Boettcher JP, Mollenkopf H, Friedrich A. The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J 2009; 276:5507-20. [PMID: 19691497 DOI: 10.1111/j.1742-4658.2009.07234.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hfq is an RNA chaperone that functions as a pleiotropic regulator for RNA metabolism in bacteria. In several pathogenic bacteria, Hfq contributes indirectly to virulence by binding to riboregulators that modulate the stability or translation efficiency of RNA transcripts. To characterize the role of Hfq in the pathogenicity of Neisseria gonorrhoeae, we generated an N. gonorrhoeae hfq mutant. Infectivity and global changes in gene expression caused by the hfq mutation in N. gonorrhoeae strain MS11 were analyzed. Transcriptional analysis using a custom-made N. gonorrhoeae microarray revealed that 369 ORFs were differentially regulated in the hfq mutant, MS11hfq, in comparison with the wild-type strain (202 were upregulated, and 167 were downregulated). The loss-of-function mutation in hfq led to pleiotropic phenotypic effects, including an altered bacterial growth rate and reduced adherence to epithelial cells. Twitching motility and microcolony formation were not affected. Hfq also appears to play a minor role in inducing the inflammatory response of infected human epithelial cells. Interleukin-8 production was slightly decreased, and activation of c-Jun N-terminal kinase, a mitogen-activated protein kinase, was reduced in MS11hfq-infected epithelial cells in comparison with wild type-infected cells. However, activation of nuclear factor kappa B, extracellular signal-regulated kinase 1/2 and p38 remained unchanged. The data presented suggest that Hfq plays an important role as a post-transcriptional regulator in N. gonorrhoeae strain MS11 but does not contribute significantly to its virulence in cell culture models.
Collapse
Affiliation(s)
- Manuela Dietrich
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Spurbeck RR, Arvidson CG. Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species. Infect Immun 2008; 76:3124-30. [PMID: 18411284 PMCID: PMC2446695 DOI: 10.1128/iai.00101-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/08/2008] [Accepted: 04/06/2008] [Indexed: 11/20/2022] Open
Abstract
High levels of Lactobacillus, the dominant genus of the healthy human vaginal microbiota, have been epidemiologically linked to a reduced risk of infection following exposure to the sexually transmitted pathogen Neisseria gonorrhoeae. In this work, a cell culture model of gonococcal infection was adapted to examine the effects of lactobacilli on gonococcal interactions with endometrial epithelial cells in vitro. Precolonization of epithelial cells with Lactobacillus jensenii, Lactobacillus gasseri ATCC 33323, or L. gasseri ATCC 9857 reduced gonococcal adherence by nearly 50%. Lactobacilli also inhibited gonococcal invasion of epithelial cells by more than 60%, which was independent of the effect on adherence. Furthermore, lactobacilli were able to displace adherent gonococci from epithelial cells, suggesting that these organisms have potential as a postexposure prophylactic. Thus, vaginal lactobacilli have the ability to inhibit gonococci at two key steps of an infection, which might have a significant effect in determining whether the gonococcus will be able to successfully establish an infection following exposure in vivo.
Collapse
Affiliation(s)
- Rachel R Spurbeck
- Genetics Program, Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
6
|
Kaparakis M, Philpott DJ, Ferrero RL. Mammalian NLR proteins; discriminating foe from friend. Immunol Cell Biol 2007; 85:495-502. [PMID: 17680011 DOI: 10.1038/sj.icb.7100105] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Eukaryotic organisms of the plant and animal kingdoms have developed evolutionarily conserved systems of defence against microbial pathogens. These systems depend on the specific recognition of microbial products or structures by molecules of the host innate immune system. The first mammalian molecules shown to be involved in innate immune recognition of, and defence against, microbial pathogens were the Toll-like receptors (TLRs). These proteins are predominantly but not exclusively located in the transmembrane region of host cells. Interestingly, mammalian hosts were subsequently found to also harbour cytosolic proteins with analogous structures and functions to plant defence molecules. The members of this protein family exhibit a tripartite domain structure and are characterized by a central nucleotide-binding oligomerization domain (NOD). Moreover, in common with TLRs, most NOD proteins possess a C-terminal leucine-rich repeat (LRR) domain, which is required for the sensing of microbial products and structures. Recently, the name 'nucleotide-binding domain and LRR' (NLR) was coined to describe this family of proteins. It is now clear that NLR proteins play key roles in the cytoplasmic recognition of whole bacteria or their products. Moreover, it has been demonstrated in animal studies that NLRs are important for host defence against bacterial infection. This review will particularly focus on two subfamilies of NLR proteins, the NODs and 'NALPs', which specifically recognize bacterial products, including cell wall peptidoglycan and flagellin. We will discuss the downstream signalling events and host cell responses to NLR recognition of such products, as well as the strategies that bacterial pathogens employ to trigger NLR signalling in host cells. Cytosolic recognition of microbial factors by NLR proteins appears to be one mechanism whereby the innate immune system is able to discriminate between pathogenic bacteria ('foe') and commensal ('friendly') members of the host microflora.
Collapse
Affiliation(s)
- Maria Kaparakis
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
7
|
Friedrich A, Arvidson CG, Shafer WM, Lee EH, So M. Two ABC transporter operons and the antimicrobial resistance gene mtrF are pilT responsive in Neisseria gonorrhoeae. J Bacteriol 2007; 189:5399-402. [PMID: 17496077 PMCID: PMC1951848 DOI: 10.1128/jb.00300-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retraction of type IV pili is mediated by PilT. We show that loss of pilT function leads to upregulation of mtrF (multiple transferable resistance) and two operons encoding putative ABC transporters in Neisseria gonorrhoeae MS11. This effect occurs indirectly through the transcriptional regulator FarR, which until now has been shown to regulate only farAB. L-Glutamine can reverse pilT downregulation of the ABC transporter operons and mtrF.
Collapse
Affiliation(s)
- Alexandra Friedrich
- Department of Molecular Microbiology and Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | | | | | |
Collapse
|
8
|
Du Y, Lenz J, Arvidson CG. Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells. Infect Immun 2005; 73:4834-45. [PMID: 16040997 PMCID: PMC1201249 DOI: 10.1128/iai.73.8.4834-4845.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like many bacterial pathogens, Neisseria gonorrhoeae must adapt to environmental changes in order to successfully colonize and proliferate in a new host. Modulation of gene expression in response to environmental signals is an efficient mechanism used by bacteria to achieve this goal. Using DNA microarrays and a tissue culture model for gonococcal infection, we examined global changes in gene expression in N. gonorrhoeae in response to adherence to host cells. Among those genes induced upon adherence to human epithelial cells in culture was rpoH, which encodes a homolog of the heat shock sigma factor, sigma(32) (RpoH), as well as genes of the RpoH regulon, groEL and groES. Attempts to construct an rpoH null mutant in N. gonorrhoeae were unsuccessful, suggesting that RpoH is essential for viability of N. gonorrhoeae. The extracytoplasmic sigma factor, RpoE (sigma(E)), while known to regulate rpoH in other bacteria, was found not to be necessary for the up-regulation of rpoH in gonococci upon adherence to host cells. To examine the role of RpoH in host cell interactions, an N. gonorrhoeae strain conditionally expressing rpoH was constructed. The results of our experiments showed that while induction of rpoH expression is not necessary for adherence of gonococci to epithelial cells, it is important for the subsequent invasion step, as gonococci depleted for rpoH invade cells two- to threefold less efficiently than a wild-type strain. Taken together, these results indicate that sigma(32), but not sigma(E), is important for the response of gonococci in the initial steps of an infection.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
9
|
Deghmane AE, Larribe M, Giorgini D, Sabino D, Taha MK. Differential expression of genes that harbor a common regulatory element in Neisseria meningitidis upon contact with target cells. Infect Immun 2003; 71:2897-901. [PMID: 12704165 PMCID: PMC153214 DOI: 10.1128/iai.71.5.2897-2901.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of several genes in Neisseria meningitidis upon contact with epithelial cells was associated with the presence of the contact regulatory elements of NEISSERIA: These genes are involved in various aspects of meningococcal biology and could be coordinately regulated upon contact with target cells.
Collapse
|
10
|
Du Y, Arvidson CG. Identification of ZipA, a signal recognition particle-dependent protein from Neisseria gonorrhoeae. J Bacteriol 2003; 185:2122-30. [PMID: 12644481 PMCID: PMC151515 DOI: 10.1128/jb.185.7.2122-2130.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen designed to identify proteins that utilize the signal recognition particle (SRP) for targeting in Escherichia coli was used to screen a Neisseria gonorrhoeae plasmid library. Six plasmids were identified in this screen, and each is predicted to encode one or more putative cytoplasmic membrane (CM) proteins. One of these, pSLO7, has three open reading frames (ORFs), two of which have no similarity to known proteins in GenBank other than sequences from the closely related N. meningitidis. Further analyses showed that one of these, SLO7ORF3, encodes a protein that is dependent on the SRP for localization. This gene also appears to be essential in N. gonorrhoeae since it was not possible to generate null mutations in the gene. Although appearing unique to Neisseria at the DNA sequence level, SLO7ORF3 was found to share some features with the cell division gene zipA of E. coli. These features included similar chromosomal locations (with respect to linked genes) as well as similarities in the predicted protein domain structures. Here, we show that SLO7ORF3 can complement an E. coli conditional zipA mutant and therefore encodes a functional ZipA homolog in N. gonorrhoeae. This observation is significant in that it is the first ZipA homolog identified in a non-rod-shaped organism. Also interesting is that this is the fourth cell division protein (the others are FtsE, FtsX, and FtsQ) shown to utilize the SRP for localization, which may in part explain why the genes encoding the three SRP components are essential in bacteria.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | |
Collapse
|
11
|
Abstract
The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology & Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|