1
|
Evaluation of Protective Efficacy of Selected Immunodominant B-Cell Epitopes within Virulent Surface Proteins of Streptococcus pneumoniae. Infect Immun 2018; 86:IAI.00673-17. [PMID: 29263108 DOI: 10.1128/iai.00673-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023] Open
Abstract
Four previously identified immunodominant B-cell epitopes, located within known virulent pneumococcal proteins CbpD, PhtD, PhtE, and ZmpB, had shown promising in vivo immunological characteristics, indicating their potential to be used as vaccine antigens. In this study, we further evaluated the opsonophagocytic activity of antibodies against these epitopes and their capacity to protect mice from pneumococcal sepsis. An opsonophagocytic killing assay (OPKA) revealed that OPKA titers of human anti-peptide antibodies against pneumococcal serotypes 1, 3, and 19A were significantly higher (P < 0.001) than those of the control sera, suggesting their functional potential against virulent clinical isolates. Data obtained from mice actively immunized with any of the selected epitope analogues or with a mixture of these (G_Mix group) showed, compared to controls, enhanced survival against the highly virulent pneumococcal serotype 3 (P < 0.001). Moreover, passive transfer of hyperimmune serum from G_Mix to naive mice also conferred protection to a lethal challenge with serotype 3, which demonstrates that the observed protection was antibody mediated. All immunized murine groups elicited gradually higher antibody titers and avidity, suggesting a maturation of immune response over time. Among the tested peptides, PhD_pep19 and PhtE_pep40 peptides, which reside within the zinc-binding domains of PhtD and PhtE proteins, exhibited superior immunological characteristics. Recently it has been shown that zinc uptake is of high importance for the virulence of Streptococcus pneumoniae; thus, our findings suggest that these epitopes deserve further evaluation as novel immunoreactive components for the development of a polysaccharide-independent pneumococcal vaccine.
Collapse
|
2
|
Glushkov AN, Apal’ko SV, Bakulina AY, Matveeva VA, Khrapov EA, Kostyanko MV, Sil’nikov VN, Filipenko ML. Peculiarities of interaction of monoclonal antibody B2 with polycyclic aromatic hydrocarbons and peptide-mimotope of benzo[a]pyrene. Mol Biol 2010. [DOI: 10.1134/s0026893310040175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Wang YH, Diamond B. B cell receptor revision diminishes the autoreactive B cell response after antigen activation in mice. J Clin Invest 2008; 118:2896-907. [PMID: 18636122 DOI: 10.1172/jci35618] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 06/11/2008] [Indexed: 12/16/2022] Open
Abstract
Autoreactive B cells are regulated in the BM during development through mechanisms, including editing of the B cell receptor (BCR), clonal deletion, and anergy. Peripheral B cell tolerance is also important for protection from autoimmune damage, although the mechanisms are less well defined. Here we demonstrated, using a mouse model of SLE-like serology, that during an autoimmune response, RAG was reinduced in antigen-activated early memory or preplasma B cells. Expression of RAG was specific to antigen-reactive B cells, required the function of the IL-7 receptor (IL-7R), and contributed to maintenance of humoral tolerance. We also showed that soluble antigen could diminish a non-autoreactive antibody response through induction of BCR revision. These data suggest that tolerance induction operates in B cells at a postactivation checkpoint and that BCR revision helps regulate autoreactivity generated during an ongoing immune response.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Department of Microbiology, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
4
|
Johnson MA, Pinto BM. Structural and functional studies of Peptide-carbohydrate mimicry. Top Curr Chem (Cham) 2008; 273:55-116. [PMID: 23605459 DOI: 10.1007/128_2007_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognizedby carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processingenzymes, and lectins have been identified. These peptides are potentially useful as vaccines andtherapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthenor modify immune responses induced by carbohydrate antigens. However, peptides that bind specificallyto carbohydrate-binding proteins may not necessarily show the corresponding biological activity, andfurther selection based on biochemical studies is always required. The degree of structural mimicryrequired to generate the desired biological activity is therefore an interesting question. This reviewwill discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy,X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studiesprovide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimeticcompounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the designof new therapeutic compounds will also be presented.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB-44, 92037, La Jolla, CA, USA,
| | | |
Collapse
|
5
|
García-Suárez MDM, Vázquez F, Méndez FJ. Streptococcus pneumoniae virulence factors and their clinical impact: An update. Enferm Infecc Microbiol Clin 2007; 24:512-7. [PMID: 16987470 DOI: 10.1157/13092469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The morbidity and mortality rates associated with Streptococcus pneumoniae remain very high worldwide. The virulence of this bacterium is largely dependent on its polysaccharide capsule, which is quite heterogeneous and represents a serious obstacle for designing effective vaccines. However, it has been demonstrated that numerous protein virulence factors are involved in the pathogenesis of pneumococcal disease. An important related finding from experimental animal models is that non-capsulated strains of pneumococci are protective against capsulated ones. Hence, new vaccine designs are focused on the surface proteins (e. g., PspA and PspC) and on the cytolysin, pneumolysin. Moreover, several virulence factors have potential value for pneumococcal diagnosis by urinalysis. In this paper, we review the virulence factors involved in bacteria-host interactions, and the new developments in vaccines and diagnostic methods.
Collapse
Affiliation(s)
- María del Mar García-Suárez
- Area de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, España.
| | | | | |
Collapse
|
6
|
Torres M, May R, Scharff MD, Casadevall A. Variable-region-identical antibodies differing in isotype demonstrate differences in fine specificity and idiotype. THE JOURNAL OF IMMUNOLOGY 2005; 174:2132-42. [PMID: 15699144 DOI: 10.4049/jimmunol.174.4.2132] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A central tenet of the current understanding of the relationship between Ab structure and function is that the variable region domain is solely responsible for Ag specificity. However, this view was recently challenged by the observation that families of mouse-human chimeric Abs with identical V regions demonstrate differences in fine specificity and by reports of changes in Ab Id structure with isotype switching. Here we revisited this question by evaluating the reactivity of two families of murine IgG switch variants that differed in V region usage for Cryptococcus neoformans glucuronoxylomannan, glucuronoxylomannan peptide mimetics, and anti-Id mAbs. The results reveal isotype-related differences in fine specificities and Id for two mAb isotype switched families, thus establishing the validity of this observation with sets of homologous Abs. The results suggest that the C region affects V region protein conformation, leading to differences in fine specificity and Id. The finding that isotype can affect fine specificity has major implications for current concepts of the generation of secondary responses, idiotypic network regulation, and isotype function. Given that isotype class switching and Ig gene somatic hypermutation share molecular mechanisms, these observations unify these processes in the sense that both can alter specificity and affinity.
Collapse
Affiliation(s)
- Marcela Torres
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
7
|
Maitta RW, Datta K, Lees A, Belouski SS, Pirofski LA. Immunogenicity and efficacy of Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan peptide mimotope-protein conjugates in human immunoglobulin transgenic mice. Infect Immun 2004; 72:196-208. [PMID: 14688097 PMCID: PMC343982 DOI: 10.1128/iai.72.1.196-208.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide mimotopes of capsular polysaccharides have been proposed as antigens for vaccines against encapsulated pathogens. In this study, we determined the antibody response to and efficacy of P13, a peptide mimetic of the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM), in mice that produce human antibodies. P13 was conjugated to tetanus toxoid (TT) or diphtheria toxoid (DT) and administered subcutaneously in Alhydrogel with or without CpG to mice transgenic for human immunoglobulin loci (XenoMouse mice) and expressing either immunoglobulin G2 (IgG2) (G2 mice) or IgG4 (G4 mice). Mice were vaccinated and revaccinated two or three times. The serum antibody responses of the mice to GXM and P13 and antibody idiotype expression were analyzed by an enzyme-linked immunosorbent assay. The results showed that both P13-TT and P13-DT were antigenic, inducing a mimetic response to P13 in both G2 and G4 mice, and immunogenic, inducing a mimotope response including VH3 (idiotype)-positive antibodies to GXM in G2 but not G4 mice. CpG led to higher titers of IgG to P13 and GXM in P13-TT-vaccinated G2 mice. C. neoformans challenge of P13-protein conjugate-vaccinated and control G2 mice induced anamnestic IgG- and VH3-positive responses to GXM and was associated with a significantly decreased risk of death and a prolongation of survival in P13-DT-vaccinated mice compared to phosphate-buffered saline-treated or protein carrier-vaccinated mice. These findings reveal that P13 elicited a human antibody response with VH3 expression in human immunoglobulin transgenic mice that has been observed for human antibodies to GXM and support the concept that peptide mimotope-based vaccines may hold promise for the treatment of C. neoformans infections.
Collapse
Affiliation(s)
- Robert W Maitta
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
8
|
May RJ, Beenhouwer DO, Scharff MD. Antibodies to keyhole limpet hemocyanin cross-react with an epitope on the polysaccharide capsule of Cryptococcus neoformans and other carbohydrates: implications for vaccine development. THE JOURNAL OF IMMUNOLOGY 2004; 171:4905-12. [PMID: 14568972 DOI: 10.4049/jimmunol.171.9.4905] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptococcus neoformans causes a life-threatening meningoencephalitis in AIDS patients. Mice immunized with a glycoconjugate vaccine composed of the glucuronoxylomannan (GXM) component of the cryptococcal capsular polysaccharide conjugated to tetanus toxoid produce Abs that can be either protective or nonprotective. Because nonprotective Abs block the efficacy of protective Abs, an effective vaccine must focus the Ab response on a protective epitope. Mice immunized with peptide mimetics of GXM conjugated to keyhole limpet hemocyanin (KLH) with glutaraldehyde developed Abs to GXM. However, control peptides P315 and P24 conjugated to KLH also elicited Abs to GXM. GXM-binding Abs from mice immunized with P315-KLH were inhibited by KLH treated with glutaraldehyde (KLH-g), but not by P315. Furthermore, KLH-g inhibited binding of GXM by serum of mice immunized with GXM-TT, indicating that glutaraldehyde treatment of KLH reveals an epitope(s) that cross-reacts with GXM. Vaccination with KLH-g or unmodified KLH elicited Abs to GXM, but did not confer protection against C. neoformans, suggesting the cross-reactive epitope on KLH was not protective. This was supported by the finding that 4H3, a nonprotective mAb, cross-reacted strongly with KLH-g. Sera from mice immunized with either native KLH or KLH-g cross-reacted with several other carbohydrate Ags, many of which have been conjugated to KLH for vaccine development. This study illustrates how mAbs can be used to determine the efficacy of potential vaccines, in addition to describing the complexity of using KLH and glutaraldehyde in the development of vaccines to carbohydrate Ags.
Collapse
Affiliation(s)
- Rena J May
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
9
|
McInnes IB, Leung BP, Harnett M, Gracie JA, Liew FY, Harnett W. A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2127-33. [PMID: 12902519 DOI: 10.4049/jimmunol.171.4.2127] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Understanding modulation of the host immune system by pathogens offers rich therapeutic potential. Parasitic filarial nematodes are often tolerated in human hosts for decades with little evidence of pathology and this appears to reflect parasite-induced suppression of host proinflammatory immune responses. Consistent with this, we have previously described a filarial nematode-derived, secreted phosphorylcholine-containing glycoprotein, ES-62, with immunomodulatory activities that are broadly anti-inflammatory in nature. We sought to evaluate the therapeutic potential of ES-62 in vitro and in vivo in an autoimmune disease model, namely, collagen-induced arthritis in DBA/1 mice. ES-62 given during collagen priming significantly reduced initiation of inflammatory arthritis. Crucially, ES-62 was also found to suppress collagen-induced arthritis severity and progression when administration was delayed until after clinically evident disease onset. Ex vivo analyses revealed that in both cases, the effects were associated with inhibition of collagen-specific pro-inflammatory/Th1 cytokine (TNF-alpha, IL-6, and IFN-gamma) release. In parallel in vitro human tissue studies, ES-62 was found to significantly suppress macrophage activation via cognate interaction with activated T cells. Finally, ES-62 suppressed LPS-induced rheumatoid arthritis synovial TNF-alpha and IL-6 production. Evolutionary pressure has promoted the generation by pathogens of diverse mechanisms enabling host immune system evasion and induction of "tolerance." ES-62 represents one such mechanism. We now provide proof of concept that parasite-derived immunomodulatory strategies offer a novel therapeutic opportunity in inflammatory arthritis.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Experimental/therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Cattle
- Collagen Type II/administration & dosage
- Collagen Type II/immunology
- Dipetalonema/chemistry
- Dipetalonema/immunology
- Glycoproteins/therapeutic use
- Helminth Proteins/therapeutic use
- Humans
- Injections, Intradermal
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred DBA
- Phosphorylcholine/therapeutic use
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Iain B McInnes
- Department of Immunology and Center for Rheumatic Diseases, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
10
|
Newman J, Rice JS, Wang C, Harris SL, Diamond B. Identification of an antigen-specific B cell population. J Immunol Methods 2003; 272:177-87. [PMID: 12505722 DOI: 10.1016/s0022-1759(02)00499-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The difficulty in characterizing antigen-specific B cells that arise in the native B cell repertoire has been a formidable obstacle to understanding both protective and pathogenic antibody responses. We have developed a tetramer-based technique for identifying antigen-specific B cells. Biotin-labeled antigen is made tetrameric by interaction with streptavidin. The enhanced avidity of this antigenic compound for the B cell membrane permits the visualization, characterization and isolation of antigen-specific B cells.
Collapse
Affiliation(s)
- Jeffrey Newman
- Room 405, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forch. Building, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
11
|
Harris SL, Dagtas AS, Diamond B. Regulating the isotypic and idiotypic profile of an anti-PC antibody response: lessons from peptide mimics. Mol Immunol 2002; 39:263-72. [PMID: 12220885 DOI: 10.1016/s0161-5890(02)00116-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protection against microbial invasion depends not only on the host's ability to mount an immune response, but on its ability to mount the correct immune response. Whether an antibody response is protective or not depends on both the fine antigenic specificity, that may be associated with particular idiotypes and epitope binding characteristics, and the isotype, determining antibody effector function. Thus, both the variable and the constant region of the antibodies induced by a peptide mimotope must be considered when assessing the success of any immunization. Phosphorylcholine (PC), an epitope present on the cell-wall C-polysaccharide of all pneumococcal serotypes, is capable of eliciting a protective antibody response to pneumococcal infection in mice and provides an attractive model system for understanding the immune response generated by peptide mimics. In this system, both the idiotype and isotype of protective antibodies have been determined and the characteristics of the in vivo response are well described and highly reproducible. We describe here the immune response generated by two peptide mimics of PC. Mice immunized with the peptides developed antibodies binding PC and C-polysaccharide. The idiotypic profile of the response differed depending on the peptide, but never included canonical T15(+) antibodies. The isotype of the response to peptide mimics differed depending on a combination of peptide and adjuvant, and included both IgG2a and IgG2b antibodies which are not typically seen in the response to PC. Thus, peptide mimotopes may elicit anti-polysaccharide responses, but fail to elicit the idiotypes and isotypes observed in the protective response to the microbial antigen.
Collapse
Affiliation(s)
- Shannon L Harris
- Department of Microbiology & Immunology and Medicine, Albert Einstein College of Medicine, Room 405 Forchheimer, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
12
|
Monzavi-Karbassi B, Cunto-Amesty G, Luo P, Kieber-Emmons T. Peptide mimotopes as surrogate antigens of carbohydrates in vaccine discovery. Trends Biotechnol 2002; 20:207-14. [PMID: 11943376 DOI: 10.1016/s0167-7799(02)01940-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Carbohydrate antigens are immune targets associated with a variety of pathogens and tumor cells. Unfortunately, most carbohydrates are intrinsically T cell-independent antigens, which diminishes their efficacy as immunogens. The conversion of carbohydrate epitopes to peptide mimotopes is one means to overcome the T cell-independent nature of carbohydrate antigens because peptides have an absolute requirement for T cells. Although such conversion has great potential for the development of veterinarian and human vaccines, there are issues related to the use of peptide-based immunogens as functional surrogates. Some of these issues are fundamental, pertaining to how mimicry comes about at the molecular level, and some are application oriented, directed at elucidating important immunological mechanisms. In this article the potential and caveats of this technology regarding its application in vaccine discovery are analyzed.
Collapse
|