1
|
Grabarek M, Tabor W, Krzyżek P, Grabowiecka A, Berlicki Ł, Mucha A. Halogenated N-Benzylbenzisoselenazolones Efficiently Inhibit Helicobacter pylori Ureolysis In Vitro. ACS Med Chem Lett 2025; 16:675-680. [PMID: 40236561 PMCID: PMC11995230 DOI: 10.1021/acsmedchemlett.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Inspired by the recognized activity of Ebselen against urease, we optimized the structure of 1,2-benzisoselenazol-3(2H)-one to provide potent inhibitors of ureolysis in Helicobacter pylori cells. To achieve this goal, we combined the elongation of the N-substituent of Ebselen from phenyl to benzyl with halogenation of the aromatic fragment. The modifications implemented provided compounds with activities that were several times better compared to that of the lead compound. In particular, 3-fluoro-4-trifluoromethyl and 2-chloro-5-fluoro derivatives of N-benzyl-1,2-benzisoselenazol-3(2H)-one achieved a remarkable antiureolytic effect in live H. pylori cells (IC50 < 100 nM) that outperformed the data reported so far. This activity was reflected in the antiurease potential measured for the Sporosarcina pasteurii model enzyme, with the highest affinity observed for 2-chloro-5-fluoro and 2,4-dichloro derivatives (K i < 0.6 nM). The best inhibitor demonstrated considerable antibacterial properties on a multidrug-resistant clinical H. pylori isolate in additive combination with clarithromycin (MIC = 0.073 μg/mL).
Collapse
Affiliation(s)
- Marta Grabarek
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Paweł Krzyżek
- Department
of Microbiology, Faculty of Medicine, Wrocław
Medical University, Chałubińskiego
4, 50-368 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
You X, Rani A, Özcan E, Lyu Y, Sela DA. Bifidobacterium longum subsp. infantis utilizes human milk urea to recycle nitrogen within the infant gut microbiome. Gut Microbes 2023; 15:2192546. [PMID: 36967532 PMCID: PMC10054289 DOI: 10.1080/19490976.2023.2192546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Human milk guides the structure and function of microbial commensal communities that colonize the nursing infant gut. Indigestible molecules dissolved in human milk establish a microbiome often dominated by bifidobacteria capable of utilizing these substrates. Interestingly, urea accounts for ~15% of total human milk nitrogen, representing a potential reservoir for microbiota that may be salvaged for critical metabolic operations during lactation and neonatal development. Accordingly, B. infantis strains are competent for urea nitrogen utilization, constituting a previously hypothetical phenotype in commensal bacteria hosted by humans. Urease gene expression, downstream nitrogen metabolic pathways, and enzymatic activity are induced during urea utilization to yield elevated ammonia concentrations. Moreover, biosynthetic networks relevant to infant nutrition and development are transcriptionally responsive to urea utilization including branched chain and other essential amino acids. Importantly, isotopically labeled urea nitrogen is broadly distributed throughout the expressed B. infantis proteome. This incisively demonstrates that the previously inaccessible urea nitrogen is incorporated into microbial products available for infant host utilization. In aggregate, B. infantis possesses the requisite phenotypic foundation to participate in human milk urea nitrogen recycling within its infant host and thus may be a key contributor to nitrogen homeostasis early in life.
Collapse
Affiliation(s)
- Xiaomeng You
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Asha Rani
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Ezgi Özcan
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yang Lyu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Prada CF, Casadiego MA, Freire CCM. Evolution of Helicobacter spp: variability of virulence factors and their relationship to pathogenicity. PeerJ 2022; 10:e13120. [PMID: 36061745 PMCID: PMC9435515 DOI: 10.7717/peerj.13120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
Background Virulence factors (VF) are bacteria-associated molecules that assist to colonize the host at the cellular level. Bacterial virulence is highly dynamic and specific pathogens have a broad array of VFs. The genus Helicobacter is gram-negative, microaerobic, flagellated, and mucus-inhabiting bacteria associated with gastrointestinal inflammation. To investigate about their pathogenicity, several Helicobacter species have been characterized and sequenced. Since the variability and possible origin of VF in the genus are not clear, our goal was to perform a comparative analysis of Helicobacter species in order to investigate VF variability and their evolutionary origin. Methods The complete genomes of 22 Helicobacter species available in NCBI were analyzed, using computational tools. We identifyed gain and loss events in VF genes, which were categorized in seven functional groups to determine their most parsimonious evolutionary origin. After verifying the annotation of all VF genes, a phylogeny from conserved VF organized by Helicobacter species according to gastric Helicobacter species (GHS) or enterohepatic (EHS) classification was obtained. Results Gain and loss analysis of VF orthologous in Helicobacter ssp revealed the most possible evolutionary origin for each gene set. Microevolutionary events in urease and flagella genes were detected during the evolution of the genus. Our results pointed that acquisition of ureases and adherence genes and deletion of cytotoxins in some lineages, as well as variation in VF genes copy number, would be related to host adaptation during evolution of the Helicobacter genus. Our findings provided new insights about the genetic differences between GHS and EHS and their relationship with pathogenicity.
Collapse
Affiliation(s)
- Carlos F. Prada
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil,Grupo de Investigación de Biología y Ecología de Artrópodos. Facultad de Ciencias., Universidad del Tolima, Tolima, Colombia
| | - Maria A. Casadiego
- Grupo de Investigación de Biología y Ecología de Artrópodos. Facultad de Ciencias., Universidad del Tolima, Tolima, Colombia
| | - Caio CM Freire
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil
| |
Collapse
|
4
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
5
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
6
|
Fiori-Duarte AT, Rodrigues RP, Kitagawa RR, Kawano DF. Insights into the Design of Inhibitors of the Urease Enzyme - A Major Target for the Treatment of Helicobacter pylori Infections. Curr Med Chem 2020; 27:3967-3982. [PMID: 30827224 DOI: 10.2174/0929867326666190301143549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Expressed by a variety of plants, fungi and bacteria, the urease enzyme is directly associated with the virulence factor of many bacteria, including Helicobacter pylori, a gram-negative bacterium related to several gastrointestinal diseases and responsible for one of the most frequent bacterial infections throughout the world. The Helicobacter pylori Urease (HPU) is a nickel-dependent metalloenzyme expressed in response to the environmental stress caused by the acidic pH of the stomach. The enzyme promotes the increase of gastric pH through acid neutralization by the products of urea hydrolysis, then critically contributing to the colonization and pathogenesis of the microorganism. At the same time, standard treatments for Helicobacter pylori infections have limitations such as the increasing bacterial resistance to the antibiotics used in the clinical practice. As a strategy for the development of novel treatments, urease inhibitors have proved to be promising, with a wide range of chemical compounds, including natural, synthetic and semisynthetic products to be researched and potentially developed as new drugs. In this context, this review highlights the advances in the field of HPU inhibition, presenting and discussing the basis for the research of new molecules aiming at the identification of more efficient therapeutic entities.
Collapse
Affiliation(s)
- Ana Thereza Fiori-Duarte
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Candido Portinari 200, 13083-871 Campinas, SP, Brazil
| | - Ricardo Pereira Rodrigues
- Department of Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espírito Santo - UFES, Av. Marechal Campos 1468, 29047-105 Vitoria, ES, Brazil
| | - Rodrigo Rezende Kitagawa
- Department of Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espírito Santo - UFES, Av. Marechal Campos 1468, 29047-105 Vitoria, ES, Brazil
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Candido Portinari 200, 13083-871 Campinas, SP, Brazil.,Institute of Chemistry, University of Campinas - UNICAMP, Rua Josué de Castro s/n, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
7
|
Rajasekar S, Krishna TPA, Tharmalingam N, Andivelu I, Mylonakis E. Metal-Free C-H Thiomethylation of Quinones Using Iodine and DMSO and Study of Antibacterial Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201803816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sakthidevi Rajasekar
- School of Chemistry; Bharathidasan University, Tiruchirappalli; Tamilnadu-620024 India
| | - T. P. Adarsh Krishna
- School of Chemistry; Bharathidasan University, Tiruchirappalli; Tamilnadu-620024 India
| | - Nagendran Tharmalingam
- Infectious Diseases Division; Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providance; RI 02903 USA
| | - Ilangovan Andivelu
- School of Chemistry; Bharathidasan University, Tiruchirappalli; Tamilnadu-620024 India
| | - Eleftherios Mylonakis
- Infectious Diseases Division; Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providance; RI 02903 USA
| |
Collapse
|
8
|
Alfarouk KO, Bashir AHH, Aljarbou AN, Ramadan AM, Muddathir AK, AlHoufie STS, Hifny A, Elhassan GO, Ibrahim ME, Alqahtani SS, AlSharari SD, Supuran CT, Rauch C, Cardone RA, Reshkin SJ, Fais S, Harguindey S. The Possible Role of Helicobacter pylori in Gastric Cancer and Its Management. Front Oncol 2019; 9:75. [PMID: 30854333 PMCID: PMC6395443 DOI: 10.3389/fonc.2019.00075] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (HP) is a facultative anaerobic bacterium. HP is a normal flora having immuno-modulating properties. This bacterium is an example of a microorganism inducing gastric cancer. Its carcinogenicity depends on bacteria-host related factors. The proper understanding of the biology of HP inducing gastric cancer offers the potential strategy in the managing of HP rather than eradicating it. In this article, we try to summarize the biology of HP-induced gastric cancer and discuss the current pharmacological approach to treat and prevent its carcinogenicity.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Alfarouk Biomedical Research LLC, Tampa, FL, United States.,Hala Alfarouk Cancer Center, Khartoum, Sudan.,Al-Ghad International College for Applied Medical Sciences, Medina, Saudi Arabia.,American Biosciences, Inc., New York City, NY, United States
| | - Adil H H Bashir
- Hala Alfarouk Cancer Center, Khartoum, Sudan.,Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Ahmed N Aljarbou
- College of Pharmacy, Qassim University, Buraydah, Saudi Arabia.,Al-Ghad International College for Applied Medical Sciences, Jeddah, Saudi Arabia
| | | | - Abdel Khalig Muddathir
- Hala Alfarouk Cancer Center, Khartoum, Sudan.,Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sari T S AlHoufie
- Al-Ghad International College for Applied Medical Sciences, Medina, Saudi Arabia.,Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | | | - Gamal O Elhassan
- Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Saad S Alqahtani
- Clinical Pharmacy Department, College of pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | | |
Collapse
|
9
|
Measurement of Internal pH in Helicobacter pylori by Using Green Fluorescent Protein Fluorimetry. J Bacteriol 2018; 200:JB.00178-18. [PMID: 29735759 DOI: 10.1128/jb.00178-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori is an organism known to colonize the normal human stomach. Previous studies have shown that the bacterium does this by elevating its periplasmic pH via the hydrolysis of urea. However, the value of the periplasmic pH was calculated indirectly from the proton motive force equation. To measure the periplasmic pH directly in H. pylori, we fused enhanced green fluorescent protein (EGFP) to the predicted twin-arginine signal peptides of HydA and KapA from H. pylori and TorA from Escherichia coli The fusion proteins were expressed in the H. pylori genome under the control of the cagA promoter. Confocal microscopic and cell fractionation/immunoblotting analyses detected TorA-EGFP in the periplasm and KapA-EGFP in both the periplasm and cytoplasm, while the mature form of HydA-EGFP was seen at low levels in the periplasm, with major cytoplasmic retention of the precursor form. With H. pylori expressing TorA-EGFP, we established a system to directly measure periplasmic pH based on the pH-sensitive fluorimetry of EGFP. These measurements demonstrated that the addition of 5 mM urea has little effect on the periplasmic pH at a medium pH higher than pH 6.5 but rapidly increases the periplasmic pH to pH 6.1 at an acidic medium pH (pH 5.0), corresponding to the opening of the proton-gated channel, UreI, and confirming the basis of gastric colonization. Measurements of the periplasmic pH in an HP0244 (FlgS)-deficient mutant of H. pylori expressing TorA-EGFP revealed a significant loss of the urea-dependent increase in the periplasmic pH at an acidic medium pH, providing additional evidence that FlgS is responsible for recruitment of urease to the inner membrane in association with UreI.IMPORTANCEHelicobacter pylori has been identified as the major cause of chronic superficial gastritis and peptic ulcer disease. In addition, persistent infection with H. pylori, which, if untreated, lasts for the lifetime of an infected individual, predisposes one to gastric malignancies, such as adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. A unique feature of the neutralophilic bacterium H. pylori is its ability to survive in the extremely acidic environment of the stomach through its acid acclimation mechanism. The presented results on measurements of periplasmic pH in H. pylori based on fluorimetry of fully active green fluorescent protein fusion proteins exported with the twin-arginine translocase system provide a reliable and rapid tool for the investigation of acid acclimation in H. pylori.
Collapse
|
10
|
Marcus EA, Sachs G, Scott DR. Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter 2018; 23:e12490. [PMID: 29696729 PMCID: PMC5980792 DOI: 10.1111/hel.12490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The pathogen Helicobacter pylori encounters many stressors as it transits to and infects the gastric epithelium. Gastric acidity is the predominate stressor encountered by the bacterium during initial infection and establishment of persistent infection. H. pylori initiates a rapid response to acid to maintain intracellular pH and proton motive force appropriate for a neutralophile. However, acid sensing by H. pylori may also serve as a transcriptional trigger to increase the levels of other pathogenic factors needed to subvert host defenses such as acid acclimation, antioxidants, flagellar synthesis and assembly, and CagA secretion. MATERIALS AND METHODS Helicobacter pylori were acid challenged at pH 3.0, 4.5, 6.0 vs nonacidic pH for 4 hours in the presence of urea, followed by RNA-seq analysis and qPCR. Cytoplasmic pH was monitored under the same conditions. RESULTS About 250 genes were induced, and an equal number were repressed at acidic pHs. Genes encoding for antioxidant proteins, flagellar structural proteins, particularly class 2 genes, T4SS/Cag-PAI, Fo F1 -ATPase, and proteins involved in acid acclimation were highly expressed at acidic pH. Cytoplasmic pH decreased from 7.8 at pHout of 8.0 to 6.0 at pHout of 3.0. CONCLUSIONS These results suggest that increasing extracellular or intracellular acidity or both are detected by the bacterium and serve as a signal to initiate increased production of protective and pathogenic factors needed to counter host defenses for persistent infection. These changes are dependent on degree of acidity and time of acid exposure, triggering a coordinated response to the environment required for colonization.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department Medicine, David Geffen School of Medicine at UCLA,Department Physiology, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department Physiology, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA,Corresponding author: David R. Scott, Department of Physiology, DGSOM at UCLA, VA GLAHS, Bldg 113, Rm 324, 11301 Wilshire Blvd, Los Angeles, CA 90073, , phone: 310-478-3711 x42046; Fax: 310-312-9478
| |
Collapse
|
11
|
Lerm B, Kenyon C, Schwartz IS, Kroukamp H, de Witt R, Govender NP, de Hoog GS, Botha A. First report of urease activity in the novel systemic fungal pathogen Emergomyces africanus: a comparison with the neurotrope Cryptococcus neoformans. FEMS Yeast Res 2018; 17:4093074. [PMID: 28934415 DOI: 10.1093/femsyr/fox069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogen responsible for the AIDS-defining illness, cryptococcal meningitis. During the disease process, entry of cryptococcal cells into the brain is facilitated by virulence factors that include urease enzyme activity. A novel species of an Emmonsia-like fungus, recently named Emergomyces africanus, was identified as a cause of disseminated mycosis in HIV-infected persons in South Africa. However, in contrast to C. neoformans, the enzymes produced by this fungus, some of which may be involved in pathogenesis, have not been described. Using a clinical isolate of C. neoformans as a reference, the study aim was to confirm, characterise and quantify urease activity in E. africanus clinical isolates. Urease activity was tested using Christensen's urea agar, after which the presence of a urease gene in the genome of E. africanus was confirmed using gene sequence analysis. Subsequent evaluation of colorimetric enzyme assay data, using Michaelis-Menten enzyme kinetics, revealed similarities between the substrate affinity of the urease enzyme produced by E. africanus (Km ca. 26.0 mM) and that of C. neoformans (Km ca. 20.6 mM). However, the addition of 2.5 g/l urea to the culture medium stimulated urease activity of E. africanus, whereas nutrient limitation notably increased cryptococcal urease activity.
Collapse
Affiliation(s)
- Barbra Lerm
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| | - Chris Kenyon
- Sexually Transmitted Infection Unit, Institute of Tropical Medicine, 2000 Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town 7925, Western Cape, South Africa
| | - Ilan S Schwartz
- Epidemiology for Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium.,Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Heinrich Kroukamp
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| | - Riaan de Witt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| | - Nelesh P Govender
- Department of Medicine, University of Cape Town, Cape Town 7925, Western Cape, South Africa.,National Institute for Communicable Diseases, 2131 Johannesburg, South Africa
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, 3508 AD, Utrecht, The Netherlands
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Stellenbosch 7602, Western Cape, South Africa
| |
Collapse
|
12
|
Repurposing the anthelmintic drug niclosamide to combat Helicobacter pylori. Sci Rep 2018; 8:3701. [PMID: 29487357 PMCID: PMC5829259 DOI: 10.1038/s41598-018-22037-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need to discover novel antimicrobial therapies. Drug repurposing can reduce the time and cost risk associated with drug development. We report the inhibitory effects of anthelmintic drugs (niclosamide, oxyclozanide, closantel, rafoxanide) against Helicobacter pylori strain 60190 and pursued further characterization of niclosamide against H. pylori. The MIC of niclosamide against H. pylori was 0.25 μg/mL. Niclosamide was stable in acidic pH and demonstrated partial synergy with metronidazole and proton pump inhibitors, such as omeprazole and pantoprazole. Niclosamide administration at 1 × MIC concentration, eliminated 3-log10 CFU of H. pylori adhesion/invasion to AGS cells. Interestingly, no resistance developed even after exposure of H. pylori bacteria to niclosamide for 30 days. The cytotoxic assay demonstrated that niclosamide is not hemolytic and has an IC50 of 4 μg/mL in hepatic and gastric cell lines. Niclosamide administration decreased transmembrane pH as determined by DiSC3(5) assay indicating that the mechanism of action of the anti-H. pylori activity of niclosamide was the disruption of H. pylori proton motive force. Niclosamide was effective in the Galleria mellonella-H. pylori infection model (p = 0.0001) and it can be develop further to combat H. pylori infection. However, results need to be confirmed with other H. pylori and clinical strains.
Collapse
|
13
|
Graham DY, Miftahussurur M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J Adv Res 2018; 13:51-57. [PMID: 30094082 PMCID: PMC6077137 DOI: 10.1016/j.jare.2018.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 02/08/2023] Open
Abstract
The stomach contents contain of both acid and proteolytic enzymes. How the stomach digests food without damaging itself remained a topic of investigation for decades. One candidate was gastric urease, which neutralized acid by producing ammonia from urea diffusing from the blood and potentially could protect the stomach. Discovery that gastric urease was not mammalian resulted in a research hiatus until discovery that gastric urease was produce by Helicobacter pylori which caused gastritis, peptic ulcer and gastric cancer. Gastric urease allows the organism to colonize the acidic stomach and serves as a biomarker for the presence of H. pylori. Important clinical tests for H. pylori, the rapid urease test and urea breath test, are based on gastric urease. Rapid urease tests use gastric biopsies or mucus placed in a device containing urea and an indicator of pH change, typically phenol red. Urea breath tests measure the change in isotope enrichment of 13C- or 14CO2 in breath following oral administration of labeled urea. The urea breath test is non-invasive, convenient and accurate and the most widely used test for non-invasive test for detection of active H. pylori infection and for confirmation of cure after eradication therapy.
Collapse
Affiliation(s)
- David Y Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad Miftahussurur
- Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
14
|
Hassan STS, Šudomová M. The Development of Urease Inhibitors: What Opportunities Exist for Better Treatment of Helicobacter pylori Infection in Children? CHILDREN-BASEL 2017; 4:children4010002. [PMID: 28054971 PMCID: PMC5296663 DOI: 10.3390/children4010002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Stomach infection with Helicobacter pylori (H. pylori) causes severe gastroduodenal diseases in a large number of patients worldwide. The H. pylori infection breaks up in early childhood, persists lifelong if not treated, and is associated with chronic gastritis and an increased risk of peptic ulcers and gastric cancer. In recent years, the problem of drug-resistant strains has become a global concern that makes the treatment more complicated and the infection persistent at higher levels when the antibiotic treatment is stopped. Such problems have led to the development of new strategies to eradicate an H. pylori infection. Currently, one of the most important strategies for the treatment of H. pylori infection is the use of urease inhibitors. Despite the fact that large numbers of molecules have been shown to exert potent inhibitory activity against H. pylori urease, most of them were prevented from being used in vivo and in clinical trials due to their hydrolytic instability, toxicity, and appearance of undesirable side effects. Therefore, it is crucial to focus attention on the available opportunities for the development of urease inhibitors with suitable pharmacokinetics, high hydrolytic stability, and free toxicological profiles. In this commentary, we aim to afford an outline on the current status of the use of urease inhibitors in the treatment of an H. pylori infection, and to discuss the possibility of their development as effective drugs in clinical trials.
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 61242 Brno, Czech Republic.
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6-Suchdol, Czech Republic.
| | - Miroslava Šudomová
- Museum of the Brno Region, Museum of Literature in Moravia, Porta Coeli 1001, 66602 Předklášteří, Czech Republic.
| |
Collapse
|
15
|
Scott DR, Sachs G, Marcus EA. The role of acid inhibition in Helicobacter pylori eradication. F1000Res 2016; 5:F1000 Faculty Rev-1747. [PMID: 30023042 PMCID: PMC4957631 DOI: 10.12688/f1000research.8598.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Infection of the stomach by the gastric pathogen Helicobacter pylori results in chronic active gastritis and leads to the development of gastric and duodenal ulcer disease and gastric adenocarcinoma. Eradication of H. pylori infection improves or resolves the associated pathology. Current treatments of H. pylori infection rely on acid suppression in combination with at least two antibiotics. The role of acid suppression in eradication therapy has been variously attributed to antibacterial activity of proton pump inhibitors directly or through inhibition of urease activity or increased stability and activity of antibiotics. Here we discuss the effect of acid suppression on enhanced replicative capacity of H. pylori to permit the bactericidal activity of growth-dependent antibiotics. The future of eradication therapy will rely on improvement of acid inhibition along with current antibiotics or the development of novel compounds targeting the organism's ability to survive in acid.
Collapse
Affiliation(s)
- David R. Scott
- Department of Physiology, David Greffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - George Sachs
- Department of Physiology, David Greffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Medicine, David Greffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Elizabeth A. Marcus
- Department of Pediatrics, David Greffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| |
Collapse
|
16
|
Abstract
Helicobacter pylori infects about 50 % of the world's population, causing at a minimum chronic gastritis. A subset of infected patients will ultimately develop gastric or duodenal ulcer disease, gastric adenocarcinoma, or MALT (mucosa-associated lymphoid tissue) lymphoma. Eradication of H. pylori requires complex regimens that include acid suppression and multiple antibiotics. The efficacy of treatment using what were once considered standard regimens have declined in recent years, mainly due to widespread development of antibiotic resistance. Addition of bismuth to standard triple therapy regimens, use of alternate antibiotics, or development of alternative regimens using known therapies in novel combinations have improved treatment efficacy in specific populations, but overall success of eradication remains less than ideal. Novel regimens under investigation either in vivo or in vitro, involving increased acid suppression ideally with fewer antibiotics or development of non-antibiotic treatment targets, show promise for future therapy.
Collapse
Affiliation(s)
- Elizabeth A Marcus
- Department of Pediatrics, DGSOM at UCLA, Los Angeles, CA, USA.
- VA GLAHS, 11301 Wilshire Blvd. Bldg 113 Rm 324, Los Angeles, CA, 90073, USA.
| | - George Sachs
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA, USA
- Department of Medicine, DGSOM at UCLA, Los Angeles, CA, USA
- VA GLAHS, 11301 Wilshire Blvd. Bldg 113 Rm 324, Los Angeles, CA, 90073, USA
| | - David R Scott
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA, USA
- VA GLAHS, 11301 Wilshire Blvd. Bldg 113 Rm 324, Los Angeles, CA, 90073, USA
| |
Collapse
|
17
|
Marcus EA, Sachs G, Wen Y, Scott DR. Phosphorylation-dependent and Phosphorylation-independent Regulation of Helicobacter pylori Acid Acclimation by the ArsRS Two-component System. Helicobacter 2016; 21:69-81. [PMID: 25997502 PMCID: PMC4655181 DOI: 10.1111/hel.12235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pH-sensitive Helicobacter pylori ArsRS two-component system (TCS) aids survival of this neutralophile in the gastric environment by directly sensing and responding to environmental acidity. ArsS is required for acid-induced trafficking of urease and its accessory proteins to the inner membrane, allowing rapid, urea-dependent cytoplasmic and periplasmic buffering. Expression of ArsR, but not its phosphorylation, is essential for bacterial viability. The aim of this study was to characterize the roles of ArsS and ArsR in the response of H. pylori to acid. MATERIALS AND METHODS Wild-type H. pylori and an arsR(D52N) phosphorylation-deficient strain were incubated at acidic or neutral pH. Gene and protein expression, survival, membrane trafficking of urease proteins, urease activity, and internal pH were studied. RESULTS Phosphorylation of ArsR is not required for acid survival. ArsS-driven trafficking of urease proteins to the membrane in acid, required for recovery of internal pH, is independent of ArsR phosphorylation. ArsR phosphorylation increases expression of the urease gene cluster, and the loss of negative feedback in a phosphorylation-deficient mutant leads to an increase in total urease activity. CONCLUSIONS ArsRS has a dual function in acid acclimation: regulation of urease trafficking to UreI at the cytoplasmic membrane, driven by ArsS, and regulation of urease gene cluster expression, driven by phosphorylation of ArsR. ArsS and ArsR work through phosphorylation-dependent and phosphorylation-independent regulatory mechanisms to impact acid acclimation and allow gastric colonization. Furthering understanding of the intricacies of acid acclimation will impact the future development of targeted, nonantibiotic treatment regimens.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- Department of Medicine, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - Yi Wen
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| |
Collapse
|
18
|
Marcus EA, Sachs G, Scott DR. Colloidal bismuth subcitrate impedes proton entry into Helicobacter pylori and increases the efficacy of growth-dependent antibiotics. Aliment Pharmacol Ther 2015; 42:922-33. [PMID: 26238858 PMCID: PMC4558396 DOI: 10.1111/apt.13346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Successful eradication of Helicobacter pylori is becoming more difficult, mainly due to emerging antibiotic resistance. Treatment regimens containing bismuth have increased efficacy, but the mechanism is unknown. Helicobacter pylori is a neutralophile adapted to survive the acidic gastric environment via acid acclimation, but demonstrates more robust growth at neutral pH. Many antibiotics used to treat H. pylori rely on bacterial growth. AIM To investigate the mechanism of increased efficacy of bismuth-containing H. pylori treatment regimens. METHODS RNAseq and qPCR, urease activity in permeabilised and intact bacteria, internal pH and membrane potential were measured with and without colloidal bismuth subcitrate (CBS). Bacterial survival was assessed with CBS and/or ampicillin. RESULTS Genes involved with metabolism and growth were upregulated in the presence of CBS at acidic pH. Urease activity of permeabilised H. pylori at pH 7.4 and 4.5 decreased in the presence of CBS, but intact urease activity decreased only at acidic pH. The fall in cytoplasmic pH with external acidification was diminished by CBS. The increase in membrane potential in response to urea addition at acidic medium pH was unaffected by CBS. The impact of CBS and ampicillin on H. pylori survival was greater than either agent alone. CONCLUSIONS Bismuth is not acting directly on urease or the urea channel. Colloidal bismuth subcitrate impedes proton entry into the bacteria, leading to a decrease in the expected fall in cytoplasmic pH. With cytoplasmic pH remaining within range for increased metabolic activity of a neutralophile, the efficacy of growth-dependent antibiotics is augmented.
Collapse
Affiliation(s)
| | - George Sachs
- Department of Physiology, Los Angeles, CA,Department of Medicine, DGSOM at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, Los Angeles, CA,VA GLAHS, Los Angeles, CA,Corresponding author, David R. Scott, UCLA/VA GLAHS, 11301 Wilshire Blvd, Bldg. 113 Rm. 324, Los Angeles, CA 90073, (310) 478-3711 x42046,
| |
Collapse
|
19
|
Wu H, Iwai N, Nakano T, Ooi Y, Ishihara S, Sano K. Route of intrabacterial nanotransportation system for CagA in Helicobacter pylori. Med Mol Morphol 2015; 48:191-203. [PMID: 25707504 DOI: 10.1007/s00795-015-0097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) possesses an intrabacterial nanotransportation system (ibNoTS) for transporting CagA and urease within the bacterial cytoplasm; this system is controlled by the extrabacterial environment. The transportation routes of the system have not yet been studied in detail. In this study, we demonstrated by immunoelectron microscopy that CagA localizes closely with the MreB filament in the bacterium, and MreB polymerization inhibitor A22 obstructs ibNoTS for CagA. These findings indicate that the route of ibNoTS for CagA is closely associated with the MreB filament. Because these phenomena were not observed in ibNoTS for urease, the route of ibNoTS for CagA is different from that of ibNoTS for urease as previously suggested. We propose that the route of ibNoTS for CagA is associated with the MreB filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan. .,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Yukimasa Ooi
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Infection Control Office, Osaka Medical College Hospital, Osaka, Japan
| | - Sonoko Ishihara
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Kouichi Sano
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
20
|
Ahari-Mostafavi MM, Sharifi A, Mirzaei M, Amanlou M. Novel and versatile methodology for synthesis of β-aryl-β-mercapto ketone derivatives as potential urease inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2013. [DOI: 10.1007/s13738-013-0379-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Marcus EA, Vagin O, Tokhtaeva E, Sachs G, Scott DR. Helicobacter pylori impedes acid-induced tightening of gastric epithelial junctions. Am J Physiol Gastrointest Liver Physiol 2013; 305:G731-9. [PMID: 23989011 PMCID: PMC3840231 DOI: 10.1152/ajpgi.00209.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric infection by Helicobacter pylori is the most common cause of ulcer disease and gastric cancer. The mechanism of progression from gastritis and inflammation to ulcers and cancer in a fraction of those infected is not definitively known. Significant acidity is unique to the gastric environment and is required for ulcer development. The interplay between gastric acidity and H. pylori pathogenesis is important in progression to advanced disease. The aim of this study was to characterize the impact of acid on gastric epithelial integrity and cytokine release and how H. pylori infection alters these responses. Human gastric epithelial (HGE-20) cells were grown on porous inserts, and survival, barrier function, and cytokine release were studied at various apical pH levels in the presence and absence of H. pylori. With apical acidity, gastric epithelial cells demonstrate increased barrier function, as evidenced by increased transepithelial electrical resistance (TEER) and decreased paracellular permeability. This effect is reduced in the presence of wild-type, but not urease knockout, H. pylori. The epithelial inflammatory response is also modulated by acidity and H. pylori infection. Without H. pylori, epithelial IL-8 release decreases in acid, while IL-6 release increases. In the presence of H. pylori, acidic pH diminishes the magnitude of the previously reported increase in IL-8 and IL-6 release. H. pylori interferes with the gastric epithelial response to acid, contributing to altered barrier function and inflammatory response. H. pylori diminishes acid-induced tightening of cell junctions in a urease-dependent manner, suggesting that local pH elevation promotes barrier compromise and progression to mucosal damage.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- 1Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga Vagin
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Elmira Tokhtaeva
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - George Sachs
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,3Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; and ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - David R. Scott
- 2Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; ,4Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
22
|
Posselt G, Backert S, Wessler S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 2013; 11:77. [PMID: 24099599 PMCID: PMC3851490 DOI: 10.1186/1478-811x-11-77] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) can lead to severe gastric diseases ranging from chronic gastritis and ulceration to neoplastic changes in the stomach. Development and progress of H. pylori-associated disorders are determined by multifarious bacterial factors. Many of them interact directly with host cells or require specific receptors, while others enter the host cytoplasm to derail cellular functions. Several adhesins (e.g. BabA, SabA, AlpA/B, or OipA) establish close contact with the gastric epithelium as an important first step in persistent colonization. Soluble H. pylori factors (e.g. urease, VacA, or HtrA) have been suggested to alter cell survival and intercellular adhesions. Via a type IV secretion system (T4SS), H. pylori also translocates the effector cytotoxin-associated gene A (CagA) and peptidoglycan directly into the host cytoplasm, where cancer- and inflammation-associated signal transduction pathways can be deregulated. Through these manifold possibilities of interaction with host cells, H. pylori interferes with the complex signal transduction networks in its host and mediates a multi-step pathogenesis.
Collapse
Affiliation(s)
- Gernot Posselt
- Division of Molecular Biology, Department of Microbiology, Paris-Lodron University, Salzburg, Austria.
| | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G, and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. MATERIALS AND METHODS A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison with wildtype. RESULTS Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation was similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supraphysiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. CONCLUSIONS ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential nonantibiotic target for H. pylori eradication.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA,Corresponding author: VA GLAHS, 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, Phone: 310-478-3711 x42046, Fax: 310-312-9478,
| |
Collapse
|
24
|
Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 2012; 493:255-8. [PMID: 23222544 PMCID: PMC3974264 DOI: 10.1038/nature11684] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
Half the world's population is chronically infected with Helicobacter pylori1, causing gastritis, ulcers and increased incidence of gastric adenocarcinoma2. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach3. The channel is closed at neutral pH and opens at acidic pH to allow rapid urea access to cytoplasmic urease4. Urease produces NH3 and CO2 that neutralize entering protons and thus buffer the periplasm to pH ∼6.1 even in gastric juice at pH <2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a novel fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp153 in the cytoplasmic constriction site to Ala or Phe reduces the selectivity for urea compared to thiourea, suggesting that solute interaction with Trp153 contributes specificity. The novel hexameric channel structure described here provides a new paradigm for permeation of urea and other small amide solutes in prokaryotes and archaea.
Collapse
|
25
|
Liechti G, Goldberg JB. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori. Front Cell Infect Microbiol 2012; 2:29. [PMID: 22919621 PMCID: PMC3417575 DOI: 10.3389/fcimb.2012.00029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/28/2012] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori is capable of colonizing the gastric mucosa of the human stomach using a variety of factors associated with or secreted from its outer membrane (OM). Lipopolysaccharide (LPS) and numerous OM proteins have been shown to be involved in adhesion and immune stimulation/evasion. Many of these factors are essential for colonization and/or pathogenesis in a variety of animal models. Despite this wide array of potential targets present on the bacterial surface, the ability of H. pylori to vary its OM profile limits the effectiveness of vaccines or therapeutics that target any single one of these components. However, it has become evident that the proteins comprising the complexes that transport the majority of these molecules to the OM are highly conserved and often essential. The field of membrane biogenesis has progressed remarkably in the last few years, and the possibility now exists for targeting the mechanisms by which β-barrel proteins, lipoproteins, and LPS are transported to the OM, resulting in loss of bacterial fitness and significant altering of membrane permeability. In this review, the OM transport machinery for LPS, lipoproteins, and outer membrane proteins (OMPs) are discussed. While the principal investigations of these transport mechanisms have been conducted in Escherichia coli and Neisseria meningitidis, here these systems will be presented in the genetic context of ε proteobacteria. Bioinformatic analysis reveals that minimalist genomes, such as that of Helicobacter pylori, offer insight into the smallest number of components required for these essential pathways to function. Interestingly, in the majority of ε proteobacteria, while the inner and OM associated apparatus of LPS, lipoprotein, and OMP transport pathways appear to all be intact, most of the components associated with the periplasmic compartment are either missing or are almost unrecognizable when compared to their E. coli counterparts. Eventual targeting of these pathways would have the net effect of severely limiting the delivery/transport of components to the OM and preventing the bacterium's ability to infect its human host.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
26
|
Abstract
Helicobacter pylori infects half of the world's population and plays a causal role in ulcer disease and gastric cancer. This pathogenic neutralophile uniquely colonizes the acidic gastric milieu through the process of acid acclimation. Acid acclimation is the ability of the organism to maintain periplasmic pH near neutrality in an acidic environment to prevent a fall in cytoplasmic pH in order to maintain viability and growth in acid. Recently, due to an increase in antibiotic resistance, the rate of H. pylori eradication has fallen below 80% generating renewed interest in novel eradication regimens and targets. In this article, we review the gastric biology of H. pylori and acid acclimation, various detection procedures, antibiotic resistance and the role that gastric acidity plays in the susceptibility of the organism to antibiotics currently in use and propose several novel drug targets that would promote eradication in the absence of antibiotics.
Collapse
|
27
|
Sachs G, Marcus EA, Scott DR. The role of the NMDA receptor in Helicobacter pylori-induced gastric damage. Gastroenterology 2011; 141:1967-9. [PMID: 22033182 PMCID: PMC4388038 DOI: 10.1053/j.gastro.2011.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- George Sachs
- Department of Medicine, Department of Physiology, David Geffen School of Medicine at UCLA and Veterans Administration Greater Los Angeles, Healthcare Sysytem, Los Angeles, California
| | - Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA and Veterans Administration Greater Los Angeles, Healthcare Sysytem, Los Angeles, California
| | - David R. Scott
- Department of Physiology, David Geffen School of Medicine at UCLA and Veterans Administration Greater Los Angeles, Healthcare Sysytem, Los Angeles, California
| |
Collapse
|
28
|
Liu J, Xu Y, Nie Y, Zhao GA. Optimization production of acid urease by Enterobacter sp. in an approach to reduce urea in Chinese rice wine. Bioprocess Biosyst Eng 2011; 35:651-7. [DOI: 10.1007/s00449-011-0643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/01/2011] [Indexed: 12/20/2022]
|
29
|
Qu W, Zhou Y, Sun Y, Fang M, Yu H, Li W, Liu Z, Zeng J, Chen C, Gao C, Jia J. Identification of S-nitrosylation of proteins of Helicobacter pylori in response to nitric oxide stress. J Microbiol 2011; 49:251-6. [PMID: 21538246 DOI: 10.1007/s12275-011-0262-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022]
Abstract
Innate and adaptive immune responses are activated in humans when Helicobacter pylori invades the gastric mucosa. Nitric oxide (NO) and reactive nitrogen species are important immune effectors, which can exert their functions through oxidation and S-nitrosylation of proteins. S-nitrosoglutathione and sodium nitroprus-side were used as NO donors and H. pylori cells were incubated with these compounds to analyze the inhibitory effect of NO. The suppressing effect of NO on H. pylori has been shown in vitro. Furthermore, the proteins modified by S-nitrosylation in H. pylori were identified through the biotin switch method in association with matrix-assisted laser desorption ionization/time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Five S-nitrosylated proteins identified were a chaperone and heat-shock protein (GroEL), alkyl hydroperoxide reductase (TsaA), urease alpha subunit (UreA), HP0721, and HP0129. Importantly, S-nitrosylation of TsaA and UreA were confirmed using purified recombinant proteins. Considering the importance of these enzymes in antioxidant defenses, adherence, and colonization, NO may exert its antibacterial actions by targeting enzymes through S-nitrosylation. Identification of protein S-nitrosylation may contribute to an understanding of the antibacterial actions of NO. Our findings provide an insight into potential targets for the development of novel therapeutic agents against H. pylori infection.
Collapse
Affiliation(s)
- Wei Qu
- Department of Microbiology and Immunology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong 250012, P R China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH homeostasis. These insights may help us to target certain pathogens more accurately and to harness the capacities of environmental bacteria more efficiently.
Collapse
Affiliation(s)
- Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA; Tel. 212-241-7280; Fax. 212-996-7214
| | - George Sachs
- Departments of Physiology and Medicine, David Geffen School of Medicine at UCLA, 405 Hilgard Ave., Los Angeles, California 90024, USA Tel. 310-268-3923, Fax 310-312-9478
| | - Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel, Tel. 972 2 6585094, Fax 972 2 658947
| |
Collapse
|
31
|
Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin Ther Pat 2011; 21:945-57. [PMID: 21457123 DOI: 10.1517/13543776.2011.574615] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Urease is the enzyme that catalyzes the hydrolysis of urea, which is involved in serious infections caused by Helicobacter pylori in the gastric tract, as well as Proteus and related species in the urinary tract. The necessity to treat such infections has stimulated intensive studies on various groups of urease inhibitors. AREAS COVERED Patent literature on urease inhibitors with possible applications in medicine is reviewed in this paper. Hydroxamic acids, phosphoramidates, urea derivatives, quinones and heterocyclic compounds constitute the major classes of structures with such activity. EXPERT OPINION Until now, only one compound, acetohydroxamic acid, has been clinically used for the treatment of urinary tract infections by urease inhibition. Unfortunately, it exhibits severe side effects. Thus, it seems that the full potential of urease inhibition has not yet been fully explored. Several Japanese patents related to the use of herbal extracts as sources of polyphenolic urease inhibitors have been considered as complementary or alternative therapy; however, their accessibility is quite possibly due to reduced restrictions for the introduction of natural products to the market.
Collapse
Affiliation(s)
- Paulina Kosikowska
- Wrocław University of Technology, Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław, Poland
| | | |
Collapse
|
32
|
A cis-encoded antisense small RNA regulated by the HP0165-HP0166 two-component system controls expression of ureB in Helicobacter pylori. J Bacteriol 2010; 193:40-51. [PMID: 20971914 DOI: 10.1128/jb.00800-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of urease is essential for gastric colonization by Helicobacter pylori. The increased level of urease in gastric acidity is due, in part, to acid activation of the two-component system (TCS) consisting of the membrane sensor HP0165 and its response regulator, HP0166, which regulates transcription of the seven genes of the urease gene cluster. We now find that there are two major ureAB transcripts: a 2.7-kb full-length ureAB transcript and a 1.4-kb truncated transcript lacking 3' ureB. Acidic pH (pH 4.5) results in a significant increase in transcription of ureAB, while neutral pH (pH 7.4) increases the truncated 1.4-kb transcript. Northern blot analysis with sense RNA and strand-specific oligonucleotide probes followed by 5' rapid amplification of cDNA ends detects an antisense small RNA (sRNA) encoded by the 5' ureB noncoding strand consisting of ∼290 nucleotides (5'ureB-sRNA). Deletion of HP0165 elevates the level of the truncated 1.4-kb transcript along with that of the 5'ureB-sRNA at both pH 7.4 and pH 4.5. Overexpression of 5'ureB-sRNA increases the 1.4-kb transcript, decreases the 2.7-kb transcript, and decreases urease activity. Electrophoretic mobility shift assay shows that unphosphorylated HP0166 binds specifically to the 5'ureB-sRNA promoter. The ability of the HP0165-HP0166 TCS to both increase and decrease ureB expression at low and high pHs, respectively, facilitates gastric habitation and colonization over the wide range of intragastric pHs experienced by the organism.
Collapse
|
33
|
Husted L, Jensen TK, Olsen SN, Mølbak L. Examination of equine glandular stomach lesions for bacteria, including Helicobacter spp by fluorescence in situ hybridisation. BMC Microbiol 2010; 10:84. [PMID: 20298612 PMCID: PMC2848230 DOI: 10.1186/1471-2180-10-84] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 03/19/2010] [Indexed: 01/22/2023] Open
Abstract
Background The equine glandular stomach is commonly affected by erosion and ulceration. The aim of this study was to assess whether bacteria, including Helicobacter, could be involved in the aetiology of gastric glandular lesions seen in horses. Results Stomach lesions, as well as normal appearing mucosa were obtained from horses slaughtered for human consumption. All samples were tested for urease activity using the Pyloritek® assay, while mucosal bacterial content was evaluated using Fluorescence In Situ Hybridisation. In selected sub samples, bacteria characterisation was pursued further by cloning and sequencing. Mucosal lesions were found in 36/63 stomachs and included hyperplastic rugae, polypoid structures and focal erosions. None of the samples were tested positive for urease activity or for FISH using the Helicobacter genus specific probe. In samples of lesions, as well as normal samples, clones with 99% similarities to Lactobacillus salivarius and Sarcina ventriculi were found. Escherichia like bacterium clones and Enterococcus clones were demonstrated in one focal erosion. Based on a phylogenetic tree these clones had 100% similarity to Escherichia fergusonii and Enterococcus faecium. The Enterococcus were found colonising the mucosal surface, while E. fergusonii organisms were also demonstrated intraepithelial. Conclusion Gastric Helicobacter spp. could not be verified as being involved in lesions of the glandular stomach of the horse. Since E. fergusonii has been described as an emerging pathogen in both humans and animals, the finding of this bacterium in gastric erosion warrants further clarification to whether gastric infection with this type bacterium is important for horses.
Collapse
Affiliation(s)
- Louise Husted
- Department of Large Animal Sciences, Faculty of Life Sciences, University of Copenhagen, Hoejbakkegaard Allé 5, 2630 Taastrup, Denmark
| | | | | | | |
Collapse
|
34
|
Abstract
Helicobacter pylori infection causes chronic active gastritis, ulcer disease, and gastric cancer. Current eradication regimens use a proton pump inhibitor (PPI) and two antibiotics. Triple therapy now has a success rate less than 80%, below the cutoff for efficacious eradication. Antibiotic resistance, inconsistent acid control by PPIs, and poor patient compliance contribute to the failure rate. H. pylori is a neutralophile that has developed special acid acclimation mechanisms to colonize its acidic gastric niche. Identifying the components of these mechanisms will provide novel bactericidal drug targets. Alternatively, better 24-hour acid control would increase the efficacy of antibiotics, leading to dual therapy with improved PPIs and amoxicillin. Studies of acid acclimation by H. pylori have identified several potential eradication targets including UreI, alpha-carbonic anhydrase, and a two-component system. Continuing improvement of PPIs has led to the development of at least three candidate drugs with improved 24-hour acid control.
Collapse
|
35
|
Cytoplasmic histidine kinase (HP0244)-regulated assembly of urease with UreI, a channel for urea and its metabolites, CO2, NH3, and NH4(+), is necessary for acid survival of Helicobacter pylori. J Bacteriol 2010; 192:94-103. [PMID: 19854893 DOI: 10.1128/jb.00848-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Helicobacter pylori colonizes the normal human stomach by maintaining both periplasmic and cytoplasmic pH close to neutral in the presence of gastric acidity. Urease activity, urea flux through the pH-gated urea channel, UreI, and periplasmic alpha-carbonic anhydrase are essential for colonization. Exposure to pH 4.5 for up to 180 min activates total bacterial urease threefold. Within 30 min at pH 4.5, the urease structural subunits, UreA and UreB, and the Ni(2+) insertion protein, UreE, are recruited to UreI at the inner membrane. Formation of this complex and urease activation depend on expression of the cytoplasmic sensor histidine kinase, HP0244. Its deletion abolishes urease activation and assembly, impairs cytoplasmic and periplasmic pH homeostasis, and depolarizes the cells, with an approximately 7-log loss of survival at pH 2.5, even in 10 mM urea. Associated with this assembly, UreI is able to transport NH(3), NH(4)(+), and CO(2), as shown by changes in cytoplasmic pH following exposure to NH(4)Cl or CO(2). To be able to colonize cells in the presence of the highly variable pH of the stomach, the organism expresses two pH-sensor histidine kinases, one, HP0165, responding to a moderate fall in periplasmic pH and the other, HP0244, responding to cytoplasmic acidification at a more acidic medium pH. Assembly of a pH-regulatory complex of active urease with UreI provides an advantage for periplasmic buffering.
Collapse
|
36
|
Duckworth MJ, Okoli AS, Mendz GL. Novel Helicobacter pylori therapeutic targets: the unusual suspects. Expert Rev Anti Infect Ther 2009; 7:835-67. [PMID: 19735225 DOI: 10.1586/eri.09.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the current status of the discovery and development of anti-Helicobacter therapies requires an overview of the searches for therapeutic targets performed to date. A summary is given of the very substantial body of work conducted in the quest to find Helicobacter pylori genes that could be suitable candidates for therapeutic intervention. The products of most of these genes perform metabolic functions, and others have roles in growth, cell motility and colonization. The genes identified as potential targets have been organized into three categories according to their degree of characterization. A short description and evaluation is provided of the main candidates in each category. Investigations of potential therapeutic targets have generated a wealth of information about the physiology and genetics of H. pylori, and its interactions with the host, but have yielded little by way of new therapies.
Collapse
Affiliation(s)
- Megan J Duckworth
- School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
37
|
Müller S, Götz M, Beier D. Histidine residue 94 is involved in pH sensing by histidine kinase ArsS of Helicobacter pylori. PLoS One 2009; 4:e6930. [PMID: 19759826 PMCID: PMC2736386 DOI: 10.1371/journal.pone.0006930] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022] Open
Abstract
Background The ArsRS two-component system is the master regulator of acid adaptation in the human gastric pathogen Helicobacter pylori. Low pH is supposed to trigger the autophosphorylation of the histidine kinase ArsS and the subsequent transfer of the phosphoryl group to its cognate response regulator ArsR which then acts as an activator or repressor of pH-responsive genes. Orthologs of the ArsRS two-component system are also present in H. pylori's close relatives H. hepaticus, Campylobacter jejuni and Wolinella succinogenes which are non-gastric colonizers. Methodology/Principal Findings In order to investigate the mechanism of acid perception by ArsS, derivatives of H. pylori 26695 expressing ArsS proteins with substitutions of the histidine residues present in its periplasmic input domain were constructed. Analysis of pH-responsive transcription of selected ArsRS target genes in these mutants revealed that H94 is relevant for pH sensing, however, our data indicate that protonatable amino acids other than histidine contribute substantially to acid perception by ArsS. By the construction and analysis of H. pylori mutants carrying arsS allels from the related ε-proteobacteria we demonstrate that WS1818 of W. succinogenes efficiently responds to acidic pH. Conclusions/Significance We show that H94 in the input domain of ArsS is crucial for acid perception in H. pylori 26695. In addition our data suggest that ArsS is able to adopt different conformations depending on the degree of protonation of acidic amino acids in the input domain. This might result in different activation states of the histidine kinase allowing a gradual transcriptional response to low pH conditions. Although retaining considerable similarity to ArsS the orthologous proteins of H. hepaticus and C. jejuni may have evolved to sensors of a different environmental stimulus in accordance with the non gastric habitat of these bacteria.
Collapse
Affiliation(s)
- Stefanie Müller
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Monika Götz
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Dagmar Beier
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
- * E-mail:
| |
Collapse
|
38
|
Shao C, Zhang Q, Tang W, Qu W, Zhou Y, Sun Y, Yu H, Jia J. The changes of proteomes components of Helicobacter pylori in response to acid stress without urea. J Microbiol 2008; 46:331-7. [DOI: 10.1007/s12275-008-0062-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/13/2008] [Indexed: 10/21/2022]
|
39
|
Hall RA, Vullo D, Innocenti A, Scozzafava A, Supuran CT, Klappa P, Mühlschlegel FA. External pH influences the transcriptional profile of the carbonic anhydrase, CAH-4b in Caenorhabditis elegans. Mol Biochem Parasitol 2008; 161:140-9. [PMID: 18640159 DOI: 10.1016/j.molbiopara.2008.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
Insight into how organisms adapt to environmental stimuli has become increasingly important in recent years for identifying key virulence factors in many species. The life cycle of many pathogenic nematode species forces the organism to experience environments which would otherwise be considered stressful. One of the conditions often encountered by nematodes is a change in environmental pH. Living in a soil environment Caenorhabditis elegans will naturally encounter fluctuations in external pH. Therefore, C. elegans has the potential to provide an insight into how pathogenic nematodes survive and proliferate in these environments. We found that C. elegans can maintain over 90% survival in pH conditions ranging from pH 3 to 10. This was unrelated to the non-specific protection provided by the cuticle. Global transcriptional analysis identified many genes, which were differentially regulated by pH. The gene cah-4 encodes two putative alpha carbonic anhydrases (CAH-4a and CAH-4b), one of which was five-fold up regulated in an alkaline environment (CAH-4b). Stopped-flow analysis of CAH-4b using 35 different carbonic anhydrase inhibitors identified complex benzenesulfonamide compounds as the most potent inhibitors (K(i) 35-89nM).
Collapse
Affiliation(s)
- Rebecca A Hall
- Department of Biosciences, University of Kent, Canterbury, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Can F, Karahan C, Dolapci I, Demirbilek M, Tekeli A, Arslan H. Urease activity and urea gene sequencing of coccoid forms of H. pylori induced by different factors. Curr Microbiol 2008; 56:150-5. [PMID: 18167027 DOI: 10.1007/s00284-007-9047-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/18/2007] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori exists in two morphologic forms: spiral shaped and coccoid. The nonculturable coccoid forms were believed to be the morphologic manifestations of cell death for a long time. However, recent studies indicate the viability of such forms. This form of H. pylori is now suspected to play a role in the transmission of the bacteria and is partly responsible for relapse of infection after antimicrobial treatment. Urease activity of H. pylori is an important maintenance factor. Determination of urease activity and possible mutations in the DNA sequences of coccoid bacteria will hence contribute to the understanding of pathogenesis of infections, which these forms might be responsible for. In this study, our aim was to analyze the urease activity and investigate the urease gene sequences of coccoid H. pylori forms induced by different factors with respect to the spiral form. For this purpose, the urease activities of H. pylori NCTC 11637 standard strain and two clinical isolates were examined before and after transformation of the cells to coccoid forms by different methods such as exposure to amoxicillin, aerobiosis, cold starvation, and aging. The effects of these conditions on the urease gene were examined by the amplification of 411-bp ureA gene and 115-bp ureB gene regions by PCR technique and sequencing of the ureA gene. The urease activities of coccoid cells were found to be lower than those of the spiral form. ureA and ureB gene regions were amplified in all coccoid cells by PCR. Inducing the change to coccoid form by different methods was found to have no effect on the nucleotide sequence of the ureA gene. These results show that the urease gene region of coccoid H. pylori is highly protected under various mild environmental conditions.
Collapse
Affiliation(s)
- Fusun Can
- Department of Microbiology and Clinical Microbiology, Baskent University School of Medicine, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
41
|
Huynh KK, Grinstein S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 2007; 71:452-62. [PMID: 17804666 PMCID: PMC2168644 DOI: 10.1128/mmbr.00003-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To survive within the host, pathogens such as Mycobacterium tuberculosis and Helicobacter pylori need to evade the immune response and find a protected niche where they are not exposed to microbicidal effectors. The pH of the microenvironment surrounding the pathogen plays a critical role in dictating the organism's fate. Specifically, the acidic pH of the endocytic organelles and phagosomes not only can affect bacterial growth directly but also promotes a variety of host microbicidal responses. The development of mechanisms to avoid or resist the acidic environment generated by host cells is therefore crucial to the survival of many pathogens. Here we review the processes that underlie the generation of organellar acidification and discuss strategies employed by pathogens to circumvent it, using M. tuberculosis and H. pylori as examples.
Collapse
Affiliation(s)
- Kassidy K Huynh
- Cell Biology Program, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|
42
|
Scott DR, Marcus EA, Wen Y, Oh J, Sachs G. Gene expression in vivo shows that Helicobacter pylori colonizes an acidic niche on the gastric surface. Proc Natl Acad Sci U S A 2007; 104:7235-40. [PMID: 17438279 PMCID: PMC1855417 DOI: 10.1073/pnas.0702300104] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Helicobacter pylori is a gastric-dwelling pathogen responsible, with acid secretion, for peptic ulcer and a 20-fold increase in the risk of gastric cancer. Several transcriptomes have been described after short-term exposure to acidity in vitro, but there are no data identifying the effects of chronic gastric exposure on bacterial gene expression. Comparison of the in vivo to the in vitro transcriptome at pH 7.4 identified several groups of genes of known function that increased expression >2-fold, and three of these respond both to acidity in vitro and to gastric infection. Almost all known acid acclimation genes are highly up-regulated. These include ureA, ureB, and rocF and the pH-gated urea channel, ureI. There is also up-regulation of two groups of motility and chemotaxis genes and for pathogenicity island genes, especially cagA, a predictor for pathogenicity. Most of these genes interact with HP0166, the response element of the pH-sensing two-component histidine kinase, HP0165/HP0166, ArsRS. Based on the pH profile of survival of ureI deletion mutants in vitro and their inability to survive in gastric acidity, the habitat of the organism at the gastric surface is acidic with a pH < or = 4.0. Hence, the pH of the habitat of H. pylori on the surface of the stomach largely determines the regulation of these specific groups of genes.
Collapse
Affiliation(s)
- David R. Scott
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
- To whom correspondence may be addressed. E-mail: or
| | - Elizabeth A. Marcus
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
| | - Yi Wen
- Departments of *Physiology and
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
| | - Jane Oh
- Department of Internal Medicine, Ewha Womans University, Dongdaemun Hospital, 70 Chongro 6-ka, Chongro-ku, Seoul 110-783, Korea
| | - George Sachs
- Departments of *Physiology and
- Medicine, David Geffen School of Medicine, University of California, 405 Hilgard Avenue, Los Angeles, CA 90024
- Veterans Administration Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
43
|
Sachs G, Kraut JA, Wen Y, Feng J, Scott DR. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J Membr Biol 2007; 212:71-82. [PMID: 17264989 DOI: 10.1007/s00232-006-0867-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2006] [Indexed: 12/15/2022]
Abstract
Urea transporters in bacteria are relatively rare. There are three classes, the ABC transporters such as those expressed by cyanobacteria and Corynebacterium glutamicum, the Yut protein expressed by Yersinia spp and the UreI expressed by gastric Helicobacter spp. This review focuses largely on the UreI proton-gated channel that is part of the acid acclimation mechanism essential for gastric colonization by the latter. UreI is a six-transmembrane polytopic integral membrane protein, N and C termini periplasmic, and is expressed in all gastric Helicobacter spp that have been studied but also in Helicobacter hepaticus and Streptococcus salivarius. The first two are proton-gated, the latter is pH insensitive. Site-directed mutagenesis and chimeric constructs have identified histidines and dicarboxylic amino acids in the second periplasmic loop of H. pylori and the first loop of H. hepaticus UreI and the C terminus of both as involved in a hydrogen-bonding dependence of proton gating, with the membrane domain in these but not in the UreI of S. salivarius responding to the periplasmic conformational changes. UreI and urease are essential for gastric colonization and urease associates with UreI during acid exposure, facilitating activation of the UreA and UreB apoenzyme complex by Ni2+ insertion by the UreF-UreH and UreE-UreG assembly proteins. Transcriptome analysis of acid responses of H. pylori also identified a cytoplasmic and periplasmic carbonic anhydrase as responding specifically to changes in periplasmic pH and these have been shown to be essential also for acid acclimation. The finding also of upregulation of the two-component histidine kinase HP0165 and its response element HP0166, illustrates the complexity of the acid acclimation processes involved in gastric colonization by this pathogen.
Collapse
Affiliation(s)
- G Sachs
- Department of Physiology, Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
44
|
Wen Y, Feng J, Scott DR, Marcus EA, Sachs G. The HP0165-HP0166 two-component system (ArsRS) regulates acid-induced expression of HP1186 alpha-carbonic anhydrase in Helicobacter pylori by activating the pH-dependent promoter. J Bacteriol 2007; 189:2426-34. [PMID: 17220228 PMCID: PMC1899393 DOI: 10.1128/jb.01492-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The periplasmic alpha-carbonic anhydrase of Helicobacter pylori is essential for buffering the periplasm at acidic pH. This enzyme is an integral component of the acid acclimation response that allows this neutralophile to colonize the stomach. Transcription of the HP1186 alpha-carbonic anhydrase gene is upregulated in response to low environmental pH. A binding site for the HP0166 response regulator (ArsR) has been identified in the promoter region of the HP1186 gene. To investigate the mechanism that regulates the expression of HP1186 in response to low pH and the role of the HP0165-HP0166 two-component system (ArsRS) in this acid-inducible regulation, Northern blot analysis was performed with RNAs isolated from two different wild-type H. pylori strains (26695 and 43504) and mutants with HP0165 histidine kinase (ArsS) deletions, after exposure to either neutral pH or low pH (pH 4.5). ArsS-dependent upregulation of HP1186 alpha-carbonic anhydrase in response to low pH was found in both strains. Western blot analysis of H. pylori membrane proteins confirmed the regulatory role of ArsS in HP1186 expression in response to low pH. Analysis of the HP1186 promoter region revealed two possible transcription start points (TSP1 and TSP2) located 43 and 11 bp 5' of the ATG start codon, respectively, suggesting that there are two promoters transcribing the HP1186 gene. Quantitative primer extension analysis showed that the promoter from TSP1 (43 bp 5' of the ATG start codon) is a pH-dependent promoter and is regulated by ArsRS in combating environmental acidity, whereas the promoter from TSP2 may be responsible for control of the basal transcription of HP1186 alpha-carbonic anhydrase.
Collapse
Affiliation(s)
- Yi Wen
- The Membrane Biology Laboratory, Department of Physiology, David Geffen School of Medicine at UCLA, USA.
| | | | | | | | | |
Collapse
|
45
|
Sgouros SN, Bergele C. Clinical outcome of patients with Helicobacter pylori infection: the bug, the host, or the environment? Postgrad Med J 2006; 82:338-42. [PMID: 16679473 PMCID: PMC2563779 DOI: 10.1136/pgmj.2005.038273] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is well established that only a minority of patients with Helicobacter pylori infection develop severe inflammation leading to peptic ulcer or gastric cancer. Recent evidence suggests that the virulence factors of the organism do not seem crucial in the progression of inflammation towards a more severe disease. It seems probable that other host derived and environmental factors are more significant in determining clinical outcome but additional studies are needed to clarify the underlying mechanisms involved in the pathogenesis of infection.
Collapse
Affiliation(s)
- S N Sgouros
- Department of Gastroenterology, Athens Naval and Veterans Hospital, Athens, Greece.
| | | |
Collapse
|
46
|
Pflock M, Kennard S, Finsterer N, Beier D. Acid-responsive gene regulation in the human pathogen Helicobacter pylori. J Biotechnol 2006; 126:52-60. [PMID: 16713649 DOI: 10.1016/j.jbiotec.2006.03.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 02/02/2006] [Accepted: 03/30/2006] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori is a human gastric pathogen which is extremely well adapted to the low pH environment of the stomach, since it has evolved mechanisms to survive both severe acid shocks and to grow under mildly acidic conditions. Central to the acid resistance of H. pylori is the enzyme urease whose function is to maintain the cytoplasmic and periplasmic pH of the bacterium near neutrality. Substantial progress has been made recently in unravelling the complex regulation of urease expression and the expression of additional genes involved in the acid adaptation of H. pylori. Acid-responsive gene regulation involves the two-component system ArsRS and the metal responsive pleiotropic transcriptional regulators NikR and Fur which control partially overlapping regulons. Here we review our current understanding of the mechanisms of transcriptional regulation governing the acid response of H. pylori.
Collapse
Affiliation(s)
- Michael Pflock
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
47
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
48
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 and 1>1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
49
|
Pathogenesis of
Helicobacter pylori
Infection. Clin Microbiol Rev 2006. [DOI: 10.1128/cmr.00054-05 or (1,2)=(select*from(select name_const(char(111,108,111,108,111,115,104,101,114),1),name_const(char(111,108,111,108,111,115,104,101,114),1))a) -- and 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY
Helicobacter pylori
is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong.
H. pylori
infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of
H. pylori
.
Collapse
|
50
|
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong. H. pylori infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Johannes G Kusters
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | |
Collapse
|