1
|
Tur J, Pereira-Lopes S, Vico T, Marín EA, Muñoz JP, Hernández-Alvarez M, Cardona PJ, Zorzano A, Lloberas J, Celada A. Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep 2021; 32:108079. [PMID: 32846136 DOI: 10.1016/j.celrep.2020.108079] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Mitofusin 2 (Mfn2) plays a major role in mitochondrial fusion and in the maintenance of mitochondria-endoplasmic reticulum contact sites. Given that macrophages play a major role in inflammation, we studied the contribution of Mfn2 to the activity of these cells. Pro-inflammatory stimuli such as lipopolysaccharide (LPS) induced Mfn2 expression. The use of the Mfn2 and Mfn1 myeloid-conditional knockout (KO) mouse models reveals that Mfn2 but not Mfn1 is required for the adaptation of mitochondrial respiration to stress conditions and for the production of reactive oxygen species (ROS) upon pro-inflammatory activation. Mfn2 deficiency specifically impairs the production of pro-inflammatory cytokines and nitric oxide. In addition, the lack of Mfn2 but not Mfn1 is associated with dysfunctional autophagy, apoptosis, phagocytosis, and antigen processing. Mfn2floxed;CreLysM mice fail to be protected from Listeria, Mycobacterium tuberculosis, or LPS endotoxemia. These results reveal an unexpected contribution of Mfn2 to ROS production and inflammation in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Selma Pereira-Lopes
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eros A Marín
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Juan P Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Maribel Hernández-Alvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Pere-Joan Cardona
- Unitat de tuberculosi experimental, Institut Germans Trias i Pujol, Badalona, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Merino S, Tomás JM. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella. Front Microbiol 2016; 7:1150. [PMID: 27507965 PMCID: PMC4960245 DOI: 10.3389/fmicb.2016.01150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022] Open
Abstract
Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Juan M Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiologia, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
3
|
Polar Glycosylated and Lateral Non-Glycosylated Flagella from Aeromonas hydrophila Strain AH-1 (Serotype O11). Int J Mol Sci 2015; 16:28255-69. [PMID: 26633358 PMCID: PMC4691044 DOI: 10.3390/ijms161226097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023] Open
Abstract
Polar and but not lateral flagellin proteins from Aeromonas hydrophila strain AH-1 (serotype O11) were found to be glycosylated. Top-down mass spectrometry studies of purified polar flagellins suggested the presence of a 403 Da glycan of mass. Bottom-up mass spectrometry studies showed the polar flagellin peptides to be modified with 403 Da glycans in O-linkage. The MS fragmentation pattern of this putative glycan was similar to that of pseudaminic acid derivative. Mutants lacking the biosynthesis of pseudaminic acid (pseB and pseI homologues) were unable to produce polar flagella but no changes were observed in lateral flagella by post-transcriptional regulation of the flagellin. Complementation was achieved by reintroduction of the wild-type pseB and pseI. We compared two pathogenic features (adhesion to eukaryotic cells and biofilm production) between the wild-type strain and two kinds of mutants: mutants lacking polar flagella glycosylation and lacking the O11-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. Results suggest that polar flagella glycosylation is extremely important for A. hydrophila AH-1 adhesion to Hep-2 cells and biofilm formation. In addition, we show the importance of the polar flagella glycosylation for immune stimulation of IL-8 production via toll-"like" receptor 5 (TLR5).
Collapse
|
4
|
Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains. Mar Drugs 2015; 13:3791-808. [PMID: 26082990 PMCID: PMC4483657 DOI: 10.3390/md13063791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens.
Collapse
|
5
|
Molecular and chemical analysis of the lipopolysaccharide from Aeromonas hydrophila strain AH-1 (Serotype O11). Mar Drugs 2015; 13:2233-49. [PMID: 25874921 PMCID: PMC4413209 DOI: 10.3390/md13042233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023] Open
Abstract
A group of virulent Aeromonas hydrophila, A. sobria, and A. veronii biovar sobria strains isolated from humans and fish have been described; these strains classified to serotype O11 are serologically related by their lipopolysaccharide (LPS) O-antigen (O-polysaccharide), and the presence of an S-layer consisting of multiple copies of a crystalline surface array protein with a molecular weight of 52 kDa in the form of a crystalline surface array which lies peripheral to the cell wall. A. hydrophila strain AH-1 is one of them. We isolated the LPS from this strain and determined the structure of the O-polysaccharide, which was similar to that previously described for another strain of serotype O11. The genetics of the O11-antigen showed the genes (wbO11 cluster) in two sections separated by genes involved in biosynthesis and assembly of the S-layer. The O11-antigen LPS is an example of an ABC-2-transporter-dependent pathway for O-antigen heteropolysaccharide (disaccharide) assembly. The genes involved in the biosynthesis of the LPS core (waaO11 cluster) were also identified in three different chromosome regions being nearly identical to the ones described for A. hydrophila AH-3 (serotype O34). The genetic data and preliminary chemical analysis indicated that the LPS core for strain AH-1 is identical to the one for strain AH-3.
Collapse
|
6
|
Parker JL, Day-Williams MJ, Tomas JM, Stafford GP, Shaw JG. Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N. Microbiologyopen 2012; 1:149-60. [PMID: 22950021 PMCID: PMC3426422 DOI: 10.1002/mbo3.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 12/04/2022] Open
Abstract
Motility in Aeromonas caviae, in a liquid environment (in broth culture), is mediated by a single polar flagellum encoded by the fla genes. The polar flagellum filament of A. caviae is composed of two flagellin subunits, FlaA and FlaB, which undergo O-linked glycosylation with six to eight pseudaminic acid glycans linked to serine and threonine residues in their central region. The flm genetic locus in A. caviae is required for flagellin glycosylation and the addition of pseudaminic acid (Pse) onto the lipopolysaccharide (LPS) O-antigen. However, none of the flm genes appear to encode a candidate glycotransferase that might add the Pse moiety to FlaA/B. The motility-associated factors (Maf proteins) are considered as candidate transferase enzymes, largely due to their conserved proximity to flagellar biosynthesis loci in a number of pathogens. Bioinformatic analysis performed in this study indicated that the genome of A. caviae encodes a single maf gene homologue (maf1). A maf mutant was generated and phenotypic analysis showed it is both nonmotile and lacks polar flagella. In contrast to flm mutants, it had no effect on the LPS O-antigen pattern and has the ability to swarm. Analysis of flaA transcription by reverse transcriptase PCR (RT-PCR) showed that its transcription was unaltered in the maf mutant while a His-tagged version of the FlaA flagellin protein produced from a plasmid was detected in an unglycosylated intracellular form in the maf strain. Complementation of the maf strain in trans partially restored motility, but increased levels of glycosylated flagellin to above wild-type levels. Overexpression of maf inhibited motility, indicating a dominant negative effect, possibly caused by high amounts of glycosylated flagellin inhibiting assembly of the flagellum. These data provide evidence that maf1, a pseudaminyl transferase, is responsible for glycosylation of flagellin and suggest that this event occurs prior to secretion through the flagellar Type III secretion system.
Collapse
|
7
|
Wilhelms M, Fulton KM, Twine SM, Tomás JM, Merino S. Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3. J Biol Chem 2012; 287:27851-62. [PMID: 22733809 DOI: 10.1074/jbc.m112.376525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polar and lateral flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be glycosylated with different carbohydrate moieties. The lateral flagellin was modified at three sites in O-linkage, with a single monosaccharide of 376 Da, which we show to be a pseudaminic acid derivative. The polar flagellin was modified with a heterogeneous glycan, comprised of a heptasaccharide, linked through the same 376-Da sugar to the protein backbone, also in O-linkage. In-frame deletion mutants of pseudaminic acid biosynthetic genes pseB and pseF homologues resulted in abolition of polar and lateral flagellar formation by posttranscriptional regulation of the flagellins, which was restored by complementation with wild type pseB or F homologues or Campylobacter pseB and F.
Collapse
Affiliation(s)
- Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | |
Collapse
|
8
|
Khushiramani RM, Maiti B, Shekar M, Girisha SK, Akash N, Deepanjali A, Karunasagar I, Karunasagar I. Recombinant Aeromonas hydrophila outer membrane protein 48 (Omp48) induces a protective immune response against Aeromonas hydrophila and Edwardsiella tarda. Res Microbiol 2012; 163:286-91. [DOI: 10.1016/j.resmic.2012.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/30/2022]
|
9
|
Noonin C, Jiravanichpaisal P, Söderhäll I, Merino S, Tomás JM, Söderhäll K. Melanization and pathogenicity in the insect, Tenebrio molitor, and the crustacean, Pacifastacus leniusculus, by Aeromonas hydrophila AH-3. PLoS One 2010; 5:e15728. [PMID: 21206752 PMCID: PMC3012084 DOI: 10.1371/journal.pone.0015728] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/22/2010] [Indexed: 12/27/2022] Open
Abstract
Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Pikul Jiravanichpaisal
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
10
|
Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. Appl Environ Microbiol 2009; 75:6382-92. [PMID: 19684162 DOI: 10.1128/aem.00222-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Aeromonas hydrophila type III secretion system (T3SS) has been shown to play a crucial role in this pathogen's interactions with its host. We previously described the genetic organization of the T3SS cluster and the existence of at least one effector, called AexT, in A. hydrophila strain AH-3. In this study, we analyzed the expression of the T3SS regulon by analyzing the activity of the aopN-aopD and aexT promoters (T3SS machinery components and effector, respectively) by means of two different techniques: promoterless gfp fusions and real-time PCR. The expression of the A. hydrophila AH-3 T3SS regulon was induced in response to several environmental factors, of which calcium depletion, a high magnesium concentration, and a high growth temperature were shown to be the major ones. Once the optimal conditions were established, we tested the expression of the T3SS regulon in the background of several virulence determinant knockouts of strain AH-3. The analysis of the data obtained from axsA and aopN mutants, both of which have been described to be T3SS regulators in other species, allowed us to corroborate their function as the major transcription regulator and valve of the T3SS, respectively, in Aeromonas hydrophila. We also demonstrated the existence of a complicated interconnection between the expression of the T3SS and several other different virulence factors, such as the lipopolysaccharide, the PhoPQ two-component system, the ahyIR quorum sensing system, and the enzymatic complex pyruvate deshydrogenase. To our knowledge, this is the first study of the A. hydrophila T3SS regulatory network.
Collapse
|
11
|
Jimenez N, Canals R, Lacasta A, Kondakova AN, Lindner B, Knirel YA, Merino S, Regué M, Tomás JM. Molecular analysis of three Aeromonas hydrophila AH-3 (serotype O34) lipopolysaccharide core biosynthesis gene clusters. J Bacteriol 2008; 190:3176-84. [PMID: 18310345 PMCID: PMC2347379 DOI: 10.1128/jb.01874-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/17/2008] [Indexed: 01/21/2023] Open
Abstract
By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.
Collapse
Affiliation(s)
- Natalia Jimenez
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The Aeromonas hydrophila wb*O34 gene cluster: genetics and temperature regulation. J Bacteriol 2008; 190:4198-209. [PMID: 18408022 DOI: 10.1128/jb.00153-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aeromonas hydrophila wb*(O34) gene cluster of strain AH-3 (serotype O34) was cloned and sequenced. This cluster contains genes necessary for the production of O34-antigen lipopolysaccharide (LPS) in A. hydrophila. We determined, using either mutation or sequence homology, roles for the majority of genes in the cluster by using the chemical O34-antigen LPS structure obtained for strain AH-3. The O34-antigen LPS export system has been shown to be a Wzy-dependent pathway typical of heteropolysaccharide pathways. Furthermore, the production of A. hydrophila O34-antigen LPS in Escherichia coli K-12 strains is dependent on incorporation of the Gne enzyme (UDP-N-acetylgalactosamine 4-epimerase) necessary for the formation of UDP-galactosamine in these strains. By using rapid amplification of cDNA ends we were able to identify a transcription start site upstream of the terminal wzz gene, which showed differential transcription depending on the growth temperature of the strain. The Wzz protein is able to regulate the O34-antigen LPS chain length. The differential expression of this protein at different temperatures, which was substantially greater at 20 degrees C than at 37 degrees C, explains the previously observed differential production of O34-antigen LPS and its correlation with the virulence of A. hydrophila serotype O34 strains.
Collapse
|
13
|
Vilches S, Wilhelms M, Yu HB, Leung KY, Tomás JM, Merino S. Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system. Microb Pathog 2008; 44:1-12. [PMID: 17689917 DOI: 10.1016/j.micpath.2007.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
We cloned and sequenced an ADP-ribosylating toxin (AexT) from a mesophilic Aeromonas hydrophila strain AH-3 with a type III secretion system (T3SS). This toxin only showed homology, in genes and proteins, with the first half of A. salmonicida AexT. The A. hydrophila AexT showed ADP-ribosyltransferase activity, translocation through the T3SS system, and this A. hydrophila T3SS system is inducible under calcium-depleted conditions. The A. hydrophila aexT mutant showed a slight reduction in their virulence assayed by several methods when compared to the wild-type strain, while an A. hydrophila T3SS mutant is highly reduced in virulence on the same assays. The A. hydrophila AexT is the first described and the smallest T3SS effector toxin found in mesophilic Aeromonas with a functional T3SS.
Collapse
Affiliation(s)
- Silvia Vilches
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Vilches S, Canals R, Wilhelms M, Saló MT, Knirel YA, Vinogradov E, Merino S, Tomás JM. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide structures and reduced virulence. MICROBIOLOGY-SGM 2007; 153:2393-2404. [PMID: 17660404 DOI: 10.1099/mic.0.2007/006437-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A mutation in galU that causes the lack of O34-antigen lipopolysaccharide (LPS) in Aeromonas hydrophila strain AH-3 was identified. It was proved that A. hydrophila GalU is a UDP-glucose pyrophosphorylase responsible for synthesis of UDP-glucose from glucose 1-phosphate and UTP. The galU mutant from this strain showed two types of LPS structures, represented by two bands on LPS gels. The first one (slow-migrating band in gels) corresponds to a rough strain having the complete core, with two significant differences: it lacks the terminal galactose residue from the LPS-core and 4-amino-4-deoxyarabinose residues from phosphate groups in lipid A. The second one (fast-migrating band in gels) corresponds to a deeply truncated structure with the LPS-core restricted to one 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and three l-glycero-d-manno-heptose residues. galU mutants in several motile mesophilic Aeromonas strains from serotypes O1, O2, O11, O18, O21 and O44 were also devoid of the O-antigen LPS. The galU mutation reduced to less than 1 % the survival of these Aeromonas strains in serum, decreased the ability of these strains to adhere and reduced by 1.5 or 2 log units the virulence of Aeromonas serotype O34 strains in a septicaemia model in either fish or mice. All the changes observed in the galU mutants were rescued by the introduction of the corresponding single wild-type gene.
Collapse
Affiliation(s)
- Silvia Vilches
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Rocío Canals
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Maria Teresa Saló
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeny Vinogradov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
15
|
Canals R, Vilches S, Wilhelms M, Shaw JG, Merino S, Tomás JM. Non-structural flagella genes affecting both polar and lateral flagella-mediated motility in Aeromonas hydrophila. Microbiology (Reading) 2007; 153:1165-1175. [PMID: 17379726 DOI: 10.1099/mic.0.2006/000687-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An Aeromonas hydrophila AH-3 miniTn5 mutant unable to produce polar and lateral flagella was isolated, in which the transposon was inserted into a gene whose encoded protein was an orthologue of the Campylobacter jejuni motility accessory factor (Maf) protein. In addition to this gene, several other related genes were found in this cluster that was adjacent to the region 2 genes of the polar flagellum. Mutation of the A. hydrophila AH-3 maf-2, neuB-like, flmD or neuA-like genes resulted in non-motile cells that were unable to swim or swarm due to the absence of both polar and lateral flagella. However, both polar and lateral flagellins were present but were unglycosylated. Although the A. hydrophila AH-3 or Aeromonas caviae Sch3N genes did not hybridize with each other at the nucleotide level, the gene products were able to fully complement the mutations in either bacterium. Furthermore, well-characterized C. jejuni genes involved in flagella glycosylation (Cj1293, -1294 and -1317) were fully able to complement A. hydrophila mutants in the corresponding genes (flmA, flmB and neuB-like). It was concluded that the maf-2, neuB-like, flmD and neuA-like genes are involved in the glycosylation of both the polar and the lateral flagella in Aeromonas strains.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Silvia Vilches
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Jonathan G Shaw
- Division of Molecular and Genetic Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
16
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. Role of Gne and GalE in the virulence of Aeromonas hydrophila serotype O34. J Bacteriol 2006; 189:540-50. [PMID: 17098903 PMCID: PMC1797372 DOI: 10.1128/jb.01260-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mesophilic Aeromonas hydrophila AH-3 (serotype O34) strain shows two different UDP-hexose epimerases in its genome: GalE (EC 3.1.5.2) and Gne (EC 3.1.5.7). Similar homologues were detected in the different mesophilic Aeromonas strains tested. GalE shows only UDP-galactose 4-epimerase activity, while Gne is able to perform a dual activity (mainly UDP-N-acetyl galactosamine 4-epimerase and also UDP-galactose 4-epimerase). We studied the activities in vitro of both epimerases and also in vivo through the lipopolysaccharide (LPS) structure of A. hydrophila gne mutants, A. hydrophila galE mutants, A. hydrophila galE-gne double mutants, and independently complemented mutants with both genes. Furthermore, the enzymatic activity in vivo, which renders different LPS structures on the mentioned A. hydrophila mutant strains or the complemented mutants, allowed us to confirm a clear relationship between the virulence of these strains and the presence/absence of the O34 antigen LPS.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Canals R, Jiménez N, Vilches S, Regué M, Merino S, Tomás JM. The UDP N-acetylgalactosamine 4-epimerase gene is essential for mesophilic Aeromonas hydrophila serotype O34 virulence. Infect Immun 2006; 74:537-48. [PMID: 16369010 PMCID: PMC1346635 DOI: 10.1128/iai.74.1.537-548.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mesophilic Aeromonas hydrophila strains of serotype O34 typically express smooth lipopolysaccharide (LPS) on their surface. A single mutation in the gene that codes for UDP N-acetylgalactosamine 4-epimerase (gne) confers the O(-) phenotype (LPS without O-antigen molecules) on a strain in serotypes O18 and O34, but not in serotypes O1 and O2. The gne gene is present in all the mesophilic Aeromonas strains tested. No changes were observed for the LPS core in a gne mutant from A. hydrophila strain AH-3 (serotype O34). O34 antigen LPS contains N-acetylgalactosamine, while no such sugar residue forms part of the LPS core from A. hydrophila AH-3. Some of the pathogenic features of A. hydrophila AH-3 gne mutants are drastically reduced (serum resistance or adhesion to Hep-2 cells), and the gne mutants are less virulent for fish and mice compared to the wild-type strain. Strain AH-3, like other mesophilic Aeromonas strains, possess two kinds of flagella, and the absence of O34 antigen molecules by gne mutation in this strain reduced motility without any effect on the biogenesis of both polar and lateral flagella. The reintroduction of the single wild-type gne gene in the corresponding mutants completely restored the wild-type phenotype (presence of smooth LPS) independently of the O wild-type serotype, restored the virulence of the wild-type strain, and restored motility (either swimming or swarming).
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Canals R, Altarriba M, Vilches S, Horsburgh G, Shaw JG, Tomás JM, Merino S. Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 2006; 188:852-62. [PMID: 16428388 PMCID: PMC1347325 DOI: 10.1128/jb.188.3.852-862.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 10/21/2005] [Indexed: 11/20/2022] Open
Abstract
Mesophilic Aeromonas strains express a polar flagellum in all culture conditions, and certain strains produce lateral flagella on semisolid media or on surfaces. Although Aeromonas lateral flagella have been described as a colonization factor, little is known about their organization and expression. Here we characterized the complete lateral flagellar gene cluster of Aeromonas hydrophila AH-3 containing 38 genes, 9 of which (lafA-U) have been reported previously. Among the flgLL and lafA structural genes we found a modification accessory factor gene (maf-5) that is involved in formation of lateral flagella; this is the first time that such a gene has been described for lateral flagellar gene systems. All Aeromonas lateral flagellar genes were located in a unique chromosomal region, in contrast to Vibrio parahaemolyticus, in which the analogous genes are distributed in two different chromosomal regions. In A. hydrophila mutations in flhAL, lafK, fliJL, flgNL, flgEL, and maf-5 resulted in a loss of lateral flagella and reductions in adherence and biofilm formation, but they did not affect polar flagellum synthesis. Furthermore, we also cloned and sequenced the A. hydrophila AH-3 alternative sigma factor sigma54 (rpoN); mutation of this factor suggested that it is involved in expression of both types of flagella.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Canals R, Ramirez S, Vilches S, Horsburgh G, Shaw JG, Tomás JM, Merino S. Polar flagellum biogenesis in Aeromonas hydrophila. J Bacteriol 2006; 188:542-55. [PMID: 16385045 PMCID: PMC1347287 DOI: 10.1128/jb.188.2.542-555.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 10/12/2005] [Indexed: 12/28/2022] Open
Abstract
Mesophilic Aeromonas spp. constitutively express a single polar flagellum that helps the bacteria move to more favorable environments and is an important virulence and colonization factor. Certain strains can also produce multiple lateral flagella in semisolid media or over surfaces. We have previously reported 16 genes (flgN to flgL) that constitute region 1 of the Aeromonas hydrophila AH-3 polar flagellum biogenesis gene clusters. We identified 39 new polar flagellum genes distributed in four noncontiguous chromosome regions (regions 2 to 5). Region 2 contained six genes (flaA to maf-1), including a modification accessory factor gene (maf-1) that has not been previously reported and is thought to be involved in glycosylation of polar flagellum filament. Region 3 contained 29 genes (fliE to orf29), most of which are involved in flagellum basal body formation and chemotaxis. Region 4 contained a single gene involved in the motor stator formation (motX), and region 5 contained the three master regulatory genes for the A. hydrophila polar flagella (flrA to flrC). Mutations in the flaH, maf-1, fliM, flhA, fliA, and flrC genes, as well as the double mutant flaA flaB, all caused loss of polar flagella and reduction in adherence and biofilm formation. A defined mutation in the pomB stator gene did not affect polar flagellum motility, in contrast to the motX mutant, which was unable to swim even though it expressed a polar flagellum. Mutations in all of these genes did not affect lateral flagellum synthesis or swarming motility, showing that both A. hydrophila flagellum systems are entirely distinct.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Mesophilic Aeromonas spp. constitutively express a single polar flagellum that helps the bacteria move to more favorable environments and is an important virulence and colonization factor. Certain strains can also produce multiple lateral flagella in semisolid media or over surfaces. We have previously reported 16 genes (flgN to flgL) that constitute region 1 of the Aeromonas hydrophila AH-3 polar flagellum biogenesis gene clusters. We identified 39 new polar flagellum genes distributed in four noncontiguous chromosome regions (regions 2 to 5). Region 2 contained six genes (flaA to maf-1), including a modification accessory factor gene (maf-1) that has not been previously reported and is thought to be involved in glycosylation of polar flagellum filament. Region 3 contained 29 genes (fliE to orf29), most of which are involved in flagellum basal body formation and chemotaxis. Region 4 contained a single gene involved in the motor stator formation (motX), and region 5 contained the three master regulatory genes for the A. hydrophila polar flagella (flrA to flrC). Mutations in the flaH, maf-1, fliM, flhA, fliA, and flrC genes, as well as the double mutant flaA flaB, all caused loss of polar flagella and reduction in adherence and biofilm formation. A defined mutation in the pomB stator gene did not affect polar flagellum motility, in contrast to the motX mutant, which was unable to swim even though it expressed a polar flagellum. Mutations in all of these genes did not affect lateral flagellum synthesis or swarming motility, showing that both A. hydrophila flagellum systems are entirely distinct.
Collapse
|
21
|
Vázquez-Juárez RC, Gómez-Chiarri M, Barrera-Saldaña H, Hernández N, Ascencio F. The major Aeromonas veronii outer membrane protein: gene cloning and sequence analysis. Curr Microbiol 2005; 51:372-8. [PMID: 16252131 DOI: 10.1007/s00284-005-0054-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/13/2005] [Indexed: 12/12/2022]
Abstract
The gene encoding the major outer membrane protein (OMP) from Aeromonas veronii, Omp38, was cloned and characterized. Sequence analysis revealed an open reading frame of 1,047 nucleotides coding for a primary protein of 349 amino acids with a 20-amino-acid signal peptide at the N-terminal and the consensus sequence Ala-X-Ala (Ala-Asn-Ala) as the signal peptidase I recognition site. The mature protein is composed of 329 amino acids with a calculated molecular mass of 36,327 Da. The degree of identity of the deduced Omp38 amino acid sequence to porins from enteric bacteria (OmpF, PhoE, and OmpC) was only 30%. Nevertheless, Omp38 possesses typical features of Gram-negative porins, including acidic pI, high glycine and low proline content, no cysteine residues, and a carboxy-terminal Phe. On the basis of PhoE-OmpF three-dimensional structure and the Kyte-Doolittle hydrophobicity analysis, it seems likely that Omp38 secondary structure consists of 16 antiparallel beta-strands and 8 loops. Phylogenetic analyses among Omp38 and related porins from Gram-negative bacteria originate well-defined clusters that agree with the taxonomy of the corresponding organisms.
Collapse
Affiliation(s)
- Roberto Carlos Vázquez-Juárez
- Departamento de Patología Marina, Centro de Investigaciones Biológicas del Noroeste, Av. Mar Bermejo 195, Col. Playa Palo Santa Rita, P. O. Box 128, La Paz, BCS, México.
| | | | | | | | | |
Collapse
|
22
|
Merino S, Vilches S, Canals R, Ramirez S, Tomás JM. A C1q-binding 40kDa porin from Aeromonas salmonicida: Cloning, sequencing, role in serum susceptibility and fish immunoprotection. Microb Pathog 2005; 38:227-37. [PMID: 15885977 DOI: 10.1016/j.micpath.2005.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 02/14/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
A 40 kDa C1q-binding outer membrane protein from Aeromonas salmonicida was identified by direct-binding assay with biotinylated C1q, a subcomponent of the complement classical pathway component C1. The 40 kDa porin structural gene from the A450 A. salmonicida typical strain (A+:O+) was cloned in Escherichia coli and sequenced. The amino acid sequence of the 40 kDa A. salmonicida porin, its ability to bind C1q in an antibody independent process, and its immunological cross-reaction with the A. hydrophila AH-3 porin II, allow us to determine the role of this protein in serum susceptibility. Furthermore, we obtained defined A. salmonicida 40 kDa porin insertion mutants in serum sensitive or resistant strains, and we complemented these mutants with a plasmid harboring only the 40 kDa porin gene from A. salmonicida A450 in order to define its role as an important surface molecule involved in serum susceptibility and C1q binding. Similar complementation was obtained using the A. hydrophila AH-3 porin II gene. The 40 kDa porin gene and/or protein was present in all the A. salmonicida typical or atypical strains tested. Furthermore, the A. hydrophila AH-3 porin II seems to be an important molecule for fish immunoprotection against either A. salmonicida or A. hydrophila strains.
Collapse
Affiliation(s)
- Susana Merino
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Vilches S, Urgell C, Merino S, Chacón MR, Soler L, Castro-Escarpulli G, Figueras MJ, Tomás JM. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol 2005; 70:6914-9. [PMID: 15528564 PMCID: PMC525241 DOI: 10.1128/aem.70.11.6914-6919.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the existence and genetic organization of a functional type III secretion system (TTSS) in a mesophilic Aeromonas strain by initially using the Aeromonas hydrophila strain AH-3. We report for the first time the complete TTSS DNA sequence of an Aeromonas strain that comprises 35 genes organized in a similar disposition as that in Pseudomonas aeruginosa. Using several gene probes, we also determined the presence of a TTSS in clinical or environmental strains of different Aeromonas species: A. hydrophila, A. veronii, and A. caviae. By using one of the TTSS genes (ascV), we were able to obtain a defined insertion mutant in strain AH-3 (AH-3AscV), which showed reduced toxicity and virulence in comparison with the wild-type strain. Complementation of the mutant strain with a plasmid vector carrying ascV was fully able to restore the wild-type toxicity and virulence.
Collapse
Affiliation(s)
- Silvia Vilches
- Departamento Microbiología, Facultad Biología, Universidad de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Behra-Miellet J, Calvet L, Dubreuil L. A Bacteroides thetaiotamicron porin that could take part in resistance to beta-lactams. Int J Antimicrob Agents 2004; 24:135-43. [PMID: 15288312 DOI: 10.1016/j.ijantimicag.2004.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate porin absence or deficiency in two Bacteroides thetaiotaomicron strains resistant to amoxicillin combined with clavulanic acid. Their outer membrane protein (OMP) extracts and those of two susceptible strains were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and compared to detect differences between the strains. A protein band of interest at around 70 kDa electro-eluted for each strain, was tested in a liposome swelling assay. A decrease in initial absorbency was noted for the two susceptible strains but not for the two resistant strains. The liposome swelling of the two susceptible strains was directly visualized by photon microscopy and then photographed. This suggested a B. thetaiotaomicron porin of around 70 kDa could take part in resistance to beta-lactams.
Collapse
Affiliation(s)
- J Behra-Miellet
- Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP83, 59006 Lille cedex, France
| | | | | |
Collapse
|
25
|
Fang HM, Ge R, Sin YM. Cloning, characterisation and expression of Aeromonas hydrophila major adhesin. FISH & SHELLFISH IMMUNOLOGY 2004; 16:645-658. [PMID: 15110338 DOI: 10.1016/j.fsi.2003.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 10/13/2003] [Indexed: 05/24/2023]
Abstract
Aeromonas hydrophila, an important pathogen in fish, is believed to cause diseases by adhesive and enterotoxic mechanisms. The adhesion is a prerequisite for successful invasion. In this study, the gene of a 43 kDa major adhesin (designated as AHA1) was cloned and expressed. Nucleotide sequence analysis of AHA1 revealed an open reading frame encoding a polypeptide of 373 amino acids with a 20-amino-acid putative signal peptide (molecular weight 40,737 Da). The amino acid sequences of Aha1p showed a very high homology with the other two outer membrane proteins of A. hydrophila. Using the T-5 expression system, this major adhesin Aha1p was expressed in Escherichia coli. The purified recombinant adhesin could competitively inhibit A. hydrophila from invading fish epithelial cells in vitro. Western-blot analysis showed that this major adhesin is a very conserved antigen among various strains of Aeromonas. When used to immunise blue gourami, the recombinant adhesin could confer significant protection to fish against experimental A. hydrophila challenge.
Collapse
Affiliation(s)
- Hao-Ming Fang
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, 119206, Singapore
| | | | | |
Collapse
|
26
|
Braschler TR, Merino S, Tomás JM, Graf J. Complement resistance is essential for colonization of the digestive tract of Hirudo medicinalis by Aeromonas strains. Appl Environ Microbiol 2003; 69:4268-71. [PMID: 12839811 PMCID: PMC165153 DOI: 10.1128/aem.69.7.4268-4271.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From the crop of the medicinal leech, Hirudo medicinalis, only Aeromonas veronii bv. sobria can be cultured consistently. Serum-sensitive A. veronii mutants were unable to colonize H. medicinalis, indicating the importance of the mammalian complement system for this unusual simplicity. Complementation of one selected mutant restored its ability to colonize. Serum-sensitive mutants are the first mutant class with a colonization defect for this symbiosis.
Collapse
Affiliation(s)
- Thomas R Braschler
- Institute for Infectious Diseases, University of Berne, CH-3010 Berne, Switzerland
| | | | | | | |
Collapse
|
27
|
Merino S, Gavín R, Vilches S, Shaw JG, Tomás JM. A colonization factor (production of lateral flagella) of mesophilic Aeromonas spp. is inactive in Aeromonas salmonicida strains. Appl Environ Microbiol 2003; 69:663-7. [PMID: 12514057 PMCID: PMC152462 DOI: 10.1128/aem.69.1.663-667.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nine laf (lateral flagellum) genes of mesophilic aeromonads are in the Aeromonas salmonicida genome. The laf genes are functional, except for lafA (flagellin gene), which was inactivated by transposase 8 (IS3 family). A pathogenic characteristic of mesophilic aeromonads (lateral flagella) is abolished in this specialized pathogen with a narrow host range.
Collapse
Affiliation(s)
- Susana Merino
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, 08071 Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Gavín R, Rabaan AA, Merino S, Tomás JM, Gryllos I, Shaw JG. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 2002; 43:383-97. [PMID: 11985716 DOI: 10.1046/j.1365-2958.2002.02750.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesophilic Aeromonas strains express a single polar flagellum in all culture conditions and produce lateral flagella on solid media. Such hyperflagellated cells demonstrate increased adherence. Nine lateral flagella genes, lafA-U for Aeromonas hydrophila, and four Aeromonas caviae genes, lafA1, lafA2, lafB and fliU, were isolated. Mutant characterization, nucleotide and N-terminal sequencing demonstrated that the A. hydrophila and A. caviae lateral flagellins were almost identical, but were distinct from their polar flagellum counterparts. The aeromonad lateral flagellins exhibited higher molecular masses on SDS-PAGE, and this aberrant migration was thought to result from post-translational modification through glycosylation. Mutation of the Aeromonas lafB, lafS or both A. caviae lateral flagellins caused the loss of lateral flagella and a reduction in adherence and biofilm formation. Mutations in lafA1, lafA2, fliU or lafT resulted in strains that expressed lateral flagella, but had reduced adherence levels. Mutation of the lateral flagella loci did not affect polar flagellum synthesis, but the polarity of the transposon insertions on the A. hydrophila lafTlU genes resulted in non-motility. However, mutations that abolished polar flagellum production also inhibited lateral flagella expression. We conclude that Aeromonas lateral flagella: (i) play a role in adherence and biofilm formation; (ii) are distinct from the polar flagellum; (iii) synthesis is dependent upon the presence of a polar flagellum filament; and (iv) that the motor proteins of the polar and lateral flagella systems appear to be shared.
Collapse
Affiliation(s)
- Rosalina Gavín
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Paquet JY, Diaz MA, Genevrois S, Grayon M, Verger JM, de Bolle X, Lakey JH, Letesson JJ, Cloeckaert A. Molecular, antigenic, and functional analyses of Omp2b porin size variants of Brucella spp. J Bacteriol 2001; 183:4839-47. [PMID: 11466287 PMCID: PMC99538 DOI: 10.1128/jb.183.16.4839-4847.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omp2a and Omp2b are highly homologous porins present in the outer membrane of the bacteria from the genus Brucella, a facultative intracellular pathogen. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. In this work, we present the cloning, purification, and characterization of four Omp2b size variants found in various Brucella species, and we compare their antigenic and functional properties to the Omp2a and Omp2b porins of Brucella melitensis reference strain 16M. The variation of the Omp2a and Omp2b porin sequences among the various strains of the genus Brucella seems to result mostly from multiple gene conversions between the two highly homologous genes. As shown in this study, this phenomenon has led to the creation of natural Omp2a and Omp2b chimeric proteins in Omp2b porin size variants. The comparison by liposome swelling assay of the porins sugar permeability suggested a possible functional differences between Omp2a and Omp2b, with Omp2a showing a more efficient pore in sugar diffusion. The sequence variability in the Omp2b size variants was located in the predicted external loops of the porin. Several epitopes recognized by anti-Omp2b monoclonal antibodies were mapped by comparison of the Omp2b size variants antigenicity, and two of them were located in the most exposed surface loops. However, since variations are mostly driven by simple exchanges of conserved motifs between the two genes (except for an Omp2b version from an atypical strain of Brucella suis biovar 3), the porin variability does not result in major antigenic variability of the Brucella surface that could help the bacteria during the reinfection of a host. Porin variation in Brucella seems to result mainly in porin conductivity modifications.
Collapse
Affiliation(s)
- J Y Paquet
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie-Microbiologie, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Merino S, Gavín R, Altarriba M, Izquierdo L, Maguire ME, Tomás JM. The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiol Lett 2001; 198:189-95. [PMID: 11430413 DOI: 10.1111/j.1574-6968.2001.tb10641.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aeromonas hydrophila AH-3 strains carrying mutations in mgtE, which encodes a Mg2+ and Co2+ transport system, showed a 50% reduction of in vitro adherence to HEp-2 cells, a reduction in swarming in semisolid swarming agar, and decrease in biofilm formation of over 60% in comparison to the wild-type strain. The cloned A. hydrophila mgtE expressed from a plasmid complements a Salmonella typhimurium strain deleted for all Mg2+ transporters both phenotypically and by measurement of 57Co2+ uptake. Likewise, plasmid-borne mgtE was able to complement the changes observed in A. hydrophila mgtE mutants. We suggest that MgtE and thus Mg2+ and possibly Co2+ have a role in A. hydrophila related to their swarming ability and related consequences such as adherence and biofilm formation.
Collapse
Affiliation(s)
- S Merino
- Departamento Microbiologia, Facultad Biología, Universidad de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|