1
|
Luo J, Jin H, Tian W, Niu Z, Zhang J, Wang T, Zhou M. The enhanced effect and mechanism of endogenous sigma factor RpoF on bioelectricity generation in Pseudomonas aeruginosa-inoculated Microbial fuel cells (MFCs). Biosens Bioelectron 2025; 278:117380. [PMID: 40112519 DOI: 10.1016/j.bios.2025.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microbial fuel cells (MFCs) has attracted tremendous attention due to integrating clean energy generation and wastewater treatment. Electricigens are in charge of electron transfer and energy conversion, and therefore strain improvement is crucial for MFCs performance. Herein, the overexpression of sigma factor RpoF and the combined manipulation with other regulators (PmpR and RpoS) reinforced electricity generation of a model strain Pseudomonas aeruginosa PAO1. Next, RpoF was introduced into an isolate P. aeruginosa P2-A-12 with higher electroactivity, which not only yielded 3.2-fold increase in the maximal power density under non stress, but also generated 21.4 % improvement under 1.5 % NaCl. The comprehensive analysis at the levels of cells, metabolites and genes transcription ascertained its global regulatory mechanism, mainly including the enhanced biofilm formation by promoting cell attachment and cell-to-cell adhesion on the anode, more c-di-GMP and quorum sensing (QS) signal molecules accumulation, and the increase in phenazine-1-carboxamide (PCN), pyocyanin (PYO) and 1-hydroxyphenazine (1-OHPHZ) by controlling the expression levels of multiple genes involved in core biosynthesis and QS system. It was the first time to demonstrate the direct activation of RpoF on phzH responsible for PCN production and rhlR regulating N-butanoyl-HSL (C4-HSL) synthesis. Bioinformatic analysis indicated that the complex biological function of RpoF was closely linked with the conservation and diversity of sequences from various microorganisms. These findings strongly substantiated that RpoF acted as an efficient element to simultaneously optimize P. aeruginosa traits (such as electroactivity and stress tolerance) suitable for the practical MFCs, also broadened the theoretical recognition on its regulatory mechanism.
Collapse
Affiliation(s)
- Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Hongchen Jin
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Wanjun Tian
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhengshu Niu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jingmei Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tingting Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
2
|
Pinto L, Shastry RP, Alva S, Rao RSP, Ghate SD. Functional network analysis identifies multiple virulence and antibiotic resistance targets in Stenotrophomonas maltophilia. Microb Pathog 2023; 183:106314. [PMID: 37619913 DOI: 10.1016/j.micpath.2023.106314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Stenotrophomonas maltophilia, an emerging multidrug-resistant opportunistic bacterium in humans is of major concern for immunocompromised individuals for causing pneumonia and bloodborne infections. This bacterial pathogen is associated with a considerable fatality/case ratio, with up to 100%, when presented as hemorrhagic fever. It is resistant to commonly used drugs as well as to antibiotic combinations. In-silico based functional network analysis is a key approach to get novel insights into virulence and resistance in pathogenic organisms. This study included the protein-protein interaction (PPI) network analysis of 150 specific genes identified for antibiotic resistance mechanism and virulence pathways. Eight proteins, namely, PilL, FliA, Smlt2260, Smlt2267, CheW, Smlt2318, CheZ, and FliM were identified as hub proteins. Further docking studies of 58 selected phytochemicals were performed against the identified hub proteins. Deoxytubulosine and corosolic acid were found to be potent inhibitors of hub proteins of pathogenic S. maltophilia based on protein-ligand interactive study. Further pharmacophore studies are warranted with these molecules to develop them as novel antibiotics against S. maltophilia.
Collapse
Affiliation(s)
- Larina Pinto
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Shivakiran Alva
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India; Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to Be University, Mangaluru, 575018, India.
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India; Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to Be University, Mangaluru, 575018, India.
| |
Collapse
|
3
|
Kurniyati K, Chang Y, Guo W, Liu J, Malkowski MG, Li C. Anti-σ 28 Factor FlgM Regulates Flagellin Gene Expression and Flagellar Polarity of Treponema denticola. J Bacteriol 2023; 205:e0046322. [PMID: 36715541 PMCID: PMC9945498 DOI: 10.1128/jb.00463-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
FlgM, an antagonist of FliA (also known as σ28), inhibits transcription of bacterial class 3 flagellar genes. It does so primarily through binding to free σ28 to prevent it from forming a complex with core RNA polymerase. We recently identified an FliA homolog (FliATd) in the oral spirochete Treponema denticola; however, its antagonist FlgM remained uncharacterized. Herein, we provide several lines of evidence that TDE0201 functions as an antagonist of FliATd. TDE0201 is structurally similar to FlgM proteins, although its sequence is not conserved. Heterologous expression of TDE0201 in Escherichia coli inhibits its flagellin gene expression and motility. Biochemical and mutational analyses demonstrate that TDE0201 binds to FliATd and prevents it from binding to the σ28-dependent promoter. Deletions of flgM genes typically enhance bacterial class 3 flagellar gene expression; however, deletion of TDE0201 has an opposite effect (e.g., the mutant has a reduced level of flagellins). Follow-up studies revealed that deletion of TDE0201 leads to FliATd turnover, which in turn impairs the expression of flagellin genes. Swimming plate, cell tracking, and cryo-electron tomography analyses further disclosed that deletion of TDE0201 impairs spirochete motility and alters flagellar number and polarity: i.e., instead of having bipolar flagella, the mutant has flagella only at one end of cells. Collectively, these results indicate that TDE0201 is a FlgM homolog but acts differently from its counterparts in other bacteria. IMPORTANCE Spirochetes are a group of bacteria that cause several human diseases. A unique aspect of spirochetes is that they have bipolar periplasmic flagella (PFs), which bestow on the spirochetes a unique spiral shape and distinct swimming behaviors. While the structure and function of PFs have been extensively studied in spirochetes, the molecular mechanism that regulates the PFs' morphogenesis and assembly is poorly understood. In this report, FlgM, an anti-σ28 factor, is identified and functionally characterized in the oral spirochete Treponema denticola. Our results show that FlgM regulates the number and polarity of PFs via a unique mechanism. Identification of FliA and FlgM in T. denticola sets a benchmark to investigate their roles in other spirochetes.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Transcriptome sequencing reveals the difference in the expression of biofilm and planktonic cells between two strains of Salmonella Typhimurium. Biofilm 2022; 4:100086. [PMID: 36254114 PMCID: PMC9568869 DOI: 10.1016/j.bioflm.2022.100086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonela enterica serovar Typhimurium (S. Typhimurium) is a food-borne pathogen that can form biofilms to increase its resistance to the external environment. Through the detection of biofilm of several S. Typhimurium strains in this study, strain CDC3 with strong biofilm forming capacity and strain CVCC3384 with weak biofilm forming capacity were identified. The genes expressed in planktonic and biofilm cells of two S. Typhimurium strains were analysed by transcriptome sequencing. Results showed that the genes related to the signal transduction pathway were upregulated and genes related to motility were downregulated in strain CDC3. By comparing biofilms and planktonic cells of the two strains, we found that CDC3 regulates biofilm formation mainly through the two-component system kdpABC, while strain CVCC3384 does so mainly through motility and quorum sensing. This study revealed regulation mechanism of biofilms formation between different biofilm forming capacity strains, and provided a theoretical basis for subsequent research.
Collapse
|
5
|
Identification and Characterization of the Alternative σ 28 Factor in Treponema denticola. J Bacteriol 2022; 204:e0024822. [PMID: 36043861 PMCID: PMC9487585 DOI: 10.1128/jb.00248-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FliA (also known as σ28), a member of the bacterial σ70 family of transcription factors, directs RNA polymerase to flagellar late (class 3) promoters and initiates transcription. FliA has been studied in several bacteria, yet its role in spirochetes has not been established. In this report, we identify and functionally characterize a FliA homolog (TDE2683) in the oral spirochete Treponema denticola. Computational, genetic, and biochemical analyses demonstrated that TDE2683 has a structure similar to that of the σ28 of Escherichia coli, binds to σ28-dependent promoters, and can functionally replace the σ28 of E. coli. However, unlike its counterparts from other bacteria, TDE2683 cannot be deleted, suggesting its essential role in the survival of T. denticola. In vitro site-directed mutagenesis revealed that E221 and V231, two conserved residues in the σ4 region of σ28, are indispensable for the binding activity of TDE2683 to the σ28-dependent promoter. We then mutated these two residues in T. denticola and found that the mutations impair the expression of flagellin and chemotaxis genes and bacterial motility as well. Cryo-electron tomography analysis further revealed that the mutations disrupt the flagellar symmetry (i.e., number and placement) of T. denticola. Collectively, these results indicate that TDE2683 is a σ28 transcription factor that regulates the class 3 gene expression and controls the flagellar symmetry of T. denticola. To the best of our knowledge, this is the first report establishing the functionality of FliA in spirochetes. IMPORTANCE Spirochetes are a group of medically important but understudied bacteria. One of the unique aspects of spirochetes is that they have periplasmic flagella (PF, also known as endoflagella) which give rise to their unique spiral shape and distinct swimming behaviors and play a critical role in the pathophysiology of spirochetes. PF are structurally similar to external flagella, but the underpinning mechanism that regulates PF biosynthesis and assembly remains largely unknown. By using the oral spirochete Treponema denticola as a model, this report provides several lines of evidence that FliA, a σ28 transcriptional factor, regulates the late flagellin gene (class 3) expression, PF assembly, and flagellar symmetry as well, which provides insights into flagellar regulation and opens an avenue to investigate the role of σ28 in spirochetes.
Collapse
|
6
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Stella NA, Brothers KM, Shanks RMQ. Differential susceptibility of airway and ocular surface cell lines to FlhDC-mediated virulence factors PhlA and ShlA from Serratia marcescens. J Med Microbiol 2021; 70:001292. [PMID: 33300860 PMCID: PMC8131021 DOI: 10.1099/jmm.0.001292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction. Serratia marcescens is a bacterial pathogen that causes ventilator-associated pneumonia and ocular infections. The FlhD and FlhC proteins complex to form a heteromeric transcription factor whose regulon, in S. marcescens, regulates genes for the production of flagellum, phospholipase A and the cytolysin ShlA. The previously identified mutation, scrp-31, resulted in highly elevated expression of the flhDC operon. The scrp-31 mutant was observed to be more cytotoxic to human airway and ocular surface epithelial cells than the wild-type bacteria and the present study sought to identify the mechanism underlying the increased cytotoxicity phenotype.Hypothesis/Gap Statement. Although FlhC and FlhD have been implicated as virulence determinants, the mechanisms by which these proteins regulate bacterial cytotoxicity to different cell types remains unclear.Aim. This study aimed to evaluate the mechanisms of FlhDC-mediated cytotoxicity to human epithelial cells by S. marcescens.Methodology. Wild-type and mutant bacteria and bacterial secretomes were used to challenge airway and ocular surface cell lines as evaluated by resazurin and calcein AM staining. Pathogenesis was further tested using a Galleria mellonella infection model.Results. The increased cytotoxicity of scrp-31 bacteria and secretomes to both cell lines was eliminated by mutation of flhD and shlA. Mutation of the flagellin gene had no impact on cytotoxicity under any tested condition. Elimination of the phospholipase gene, phlA, had no effect on bacteria-induced cytotoxicity to either cell line, but reduced cytotoxicity caused by secretomes to airway epithelial cells. Mutation of flhD and shlA, but not phlA, reduced bacterial killing of G. mellonella larvae.Conclusion. This study indicates that the S. marcescens FlhDC-regulated secreted proteins PhlA and ShlA, but not flagellin, are cytotoxic to airway and ocular surface cells and demonstrates differences in human epithelial cell susceptibility to PhlA.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Hashiguchi Y, Tezuka T, Ohnishi Y. Involvement of three FliA-family sigma factors in the sporangium formation, spore dormancy and sporangium dehiscence in Actinoplanes missouriensis. Mol Microbiol 2020; 113:1170-1188. [PMID: 32052506 DOI: 10.1111/mmi.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
The rare actinomycete Actinoplanes missouriensis forms sporangia, which open up and release zoospores in response to water. Here, we report a genetic and functional analysis of four FliA-family sigma factors, FliA1, FliA2, FliA3 and FliA4. Transcription of fliA1, fliA2 and fliA3 was directly activated by the global transcriptional activator TcrA during sporangium formation and dehiscence, while fliA4 was almost always transcribed at low levels. Gene disruption analysis showed that (a) deletion of fliA2 reduced the zoospore swimming speed by half, (b) the fliA1-fliA2 double-deletion mutant formed abnormal sporangia in which mutant spores ectopically germinated and (c) deletion of fliA3 induced no phenotypic changes in the wild-type and mutant strains of fliA1 and/or fliA2. Comparative RNA-Seq analyses among the wild-type and gene deletion mutant strains showed probable targets of each FliA-family sigma factor, indicating that FliA1- and FliA2-dependent promoters are quite similar to each other, while the FliA3-dependent promoter is somewhat different. Gene complementation experiments also indicated that the FliA1 regulon overlaps with the FliA2 regulon. These results demonstrate that A. missouriensis has developed a complex transcriptional regulatory network involving multiple FliA-family sigma factors for the accomplishment of its characteristic reproduction process, including sporangium formation, spore dormancy and sporangium dehiscence.
Collapse
Affiliation(s)
- Yuichiro Hashiguchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Naberhaus SA, Krull AC, Bradner LK, Harmon KM, Arruda P, Arruda BL, Sahin O, Burrough ER, Schwartz KJ, Kreuder AJ. Emergence of Salmonella enterica serovar 4,[5],12:i:- as the primary serovar identified from swine clinical samples and development of a multiplex real-time PCR for improved Salmonella serovar-level identification. J Vet Diagn Invest 2019; 31:818-827. [PMID: 31646949 DOI: 10.1177/1040638719883843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rapid identification of the infecting Salmonella serovar from porcine diagnostic samples is vital to allow implementation of appropriate on-farm treatment and management decisions. Although identification at the serogroup level can be rapidly achieved at most veterinary diagnostic laboratories, final Salmonella serovar identification often takes several weeks because of the limited number of reference laboratories performing the complex task of serotyping. Salmonella serogroup B, currently the dominant serogroup identified from swine clinical samples in the United States, contains serovars that vary from highly pathogenic to minimally pathogenic in swine. We determined the frequency of detection of individual group B serovars at the Iowa State Veterinary Diagnostic Laboratory from 2008 to 2017, and validated a multiplex real-time PCR (rtPCR) to distinguish pathogenic serogroup B serovars from those of lesser pathogenicity. Our results indicate that, since 2014, Salmonella enterica ssp. enterica serovar 4,[5],12:i:- has been the dominant serovar identified from swine clinical samples at the ISU-VDL, with S. Typhimurium now the second most common serovar identified. We developed a rtPCR to allow rapid differentiation of samples containing S. 4,[5],12:i:- and S. Typhimurium from samples containing serovars believed to be of less pathogenicity, such as S. Agona and S. Derby. When combined with enrichment culture, this rtPCR has the ability to significantly improve the time to final serovar identification of the 2 most commonly identified pathogenic Salmonella serovars in swine, and allows rapid implementation of serovar-specific intervention strategies.
Collapse
Affiliation(s)
- Samantha A Naberhaus
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Adam C Krull
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Laura K Bradner
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Karen M Harmon
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Paulo Arruda
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Bailey L Arruda
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Orhan Sahin
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Eric R Burrough
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Kent J Schwartz
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Amanda J Kreuder
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| |
Collapse
|
10
|
HilD induces expression of a novel Salmonella Typhimurium invasion factor, YobH, through a regulatory cascade involving SprB. Sci Rep 2019; 9:12725. [PMID: 31484980 PMCID: PMC6726612 DOI: 10.1038/s41598-019-49192-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022] Open
Abstract
HilD is an AraC-like transcriptional regulator encoded in the Salmonella pathogenicity island 1 (SPI-1), which actives transcription of many genes within and outside SPI-1 that are mainly required for invasion of Salmonella into host cells. HilD controls expression of target genes directly or by acting through distinct regulators; three different regulatory cascades headed by HilD have been described to date. Here, by analyzing the effect of HilD on the yobH gene in Salmonella enterica serovar Typhimurium (S. Typhimurium), we further define an additional regulatory cascade mediated by HilD, which was revealed by previous genome-wide analyses. In this regulatory cascade, HilD acts through SprB, a LuxR-like regulator encoded in SPI-1, to induce expression of virulence genes. Our data show that HilD induces expression of sprB by directly counteracting H-NS-mediated repression on the promoter region upstream of this gene. Then, SprB directly activates expression of several genes including yobH, slrP and ugtL. Interestingly, we found that YobH, a protein of only 79 amino acids, is required for invasion of S. Typhimurium into HeLa cells and mouse macrophages. Thus, our results reveal a novel S. Typhimurium invasion factor and provide more evidence supporting the HilD-SprB regulatory cascade.
Collapse
|
11
|
Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol Res 2019; 223-225:63-71. [PMID: 31178053 DOI: 10.1016/j.micres.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/23/2019] [Accepted: 04/11/2019] [Indexed: 11/22/2022]
Abstract
The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) catalyzes the translocation of sugar substrates with their concomitant phosphorylation in bacteria. In addition to its intrinsic role in sugar transport and metabolism, numerous recent studies report the versatility of the PTS to interconnect energy and signal transduction in response to sugar availability. In this study, the role of PTS in Salmonella virulence regulation was explored. To decipher the regulatory network coordinated by the PTS during Salmonella infection, a transcriptomic approach was applied to a transposon insertion mutant with defective expression of ptsI and crr, which encode enzyme I and enzyme IIAGlc of the PTS, respectively. There were 114 differentially expressed genes (DEGs) exhibiting two-fold or higher expression changes in the transposon mutant strain, with 13 up-regulated genes versus 101 down-regulated genes. One-third of the DEGs were associated with energy production and carbohydrate/amino acid metabolism pathways, implicating the prominent role of the PTS in carbohydrate transport. With regard to regulation of virulence, the tested mutant decreased the expression of genes associated with quorum sensing, Salmonella pathogenicity islands, flagella, and the PhoPQ regulon. We investigated the possibility of PTS-mediated regulation of virulence determinants identified in the transcriptomic analysis and proposed a regulatory circuit orchestrated by the PTS in Salmonella infection of host cells. These results suggest that Salmonella divergently controls virulence attributes in accordance with the availability of carbohydrates in the environment.
Collapse
|
12
|
Chowdhury R, Das S, Ta A, Das S. Epithelial invasion by Salmonella Typhi using STIV-Met interaction. Cell Microbiol 2018; 21:e12982. [PMID: 30426648 DOI: 10.1111/cmi.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
13
|
Flores C, Santos M, Pereira SB, Mota R, Rossi F, De Philippis R, Couto N, Karunakaran E, Wright PC, Oliveira P, Tamagnini P. The alternative sigma factor SigF is a key player in the control of secretion mechanisms inSynechocystissp. PCC 6803. Environ Microbiol 2018; 21:343-359. [DOI: 10.1111/1462-2920.14465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos Flores
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; ICBAS - Instituto de Ciências Biomédicas Abel Salazar; Porto Portugal
| | - Marina Santos
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; ICBAS - Instituto de Ciências Biomédicas Abel Salazar; Porto Portugal
| | - Sara B. Pereira
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Rita Mota
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Federico Rossi
- Department of Agrifood Production and Environmental Sciences; University of Florence; Florence Italy
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences; University of Florence; Florence Italy
| | - Narciso Couto
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering; ChELSI Institute, University of Sheffield; Sheffield UK
| | - Paulo Oliveira
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
| | - Paula Tamagnini
- Bioengineering and Synthetic Microbiology Group; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- Bioengineering and Synthetic Microbiology Group; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto; Porto Portugal
- Faculdade de Ciências, Departamento de Biologia; Universidade do Porto; Porto Portugal
| |
Collapse
|
14
|
Lo YL, Chen CL, Shen L, Chen YC, Wang YH, Lee CC, Wang LC, Chuang CH, Janapatla RP, Chiu CH, Chang HY. Characterization of the role of global regulator FliA in the pathophysiology of Pseudomonas aeruginosa infection. Res Microbiol 2018; 169:135-144. [PMID: 29432810 DOI: 10.1016/j.resmic.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
FliA is known to be a sigma factor that regulates bacterial flagella gene expression. Accumulating evidence suggests that FliA is involved in bacterial behavior other than motility. To elucidate the contribution of FliA to Pseudomonas aeruginosa pathophysiology, we analyzed the biological properties and gene expression profiles of a ΔfliA mutant. Transcriptome analysis results demonstrated that the expression levels of flagella biogenesis genes decreased dramatically in the mutant; consequently, the ΔfliA mutant failed to synthesize flagella and exhibited reduced motility. The ΔfliA mutant displayed stronger hemolytic and caseinolytic activities, as well as pyocyanin production. The expression of type 6 secretion system-II genes and interbacterial competition activity was decreased in the ΔfliA mutant. Direct evidence of fliA participation in virulence was obtained from analysis of hypervirulent strain B136-33. Adhesion to and cytotoxicity toward mammalian cells and penetration through cell layers were noted; furthermore, the colonization ability of the fliA::Tn5 mutant in the intestines of laboratory mice was compromised. Notably, the fliA-overexpressing strain displayed phenotypes similar to that of the fliA-defective strain, indicating that optimal FliA levels are critical to bacterial physiology. Our findings indicate that FliA plays diverse roles in P. aeruginosa, not only in flagella biosynthesis, but also in pathophysiology.
Collapse
Affiliation(s)
- Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lunda Shen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Ching Chen
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Hsin Wang
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Chan Lee
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Division of Parasitology, Chang Gung University, Taoyuan, Taiwan
| | | | - Rajendra Prasad Janapatla
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Ye Y, Zhang X, Zhang M, Ling N, Zeng H, Gao J, Jiao R, Wu Q, Zhang J. Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. J Dairy Sci 2017; 100:8826-8837. [PMID: 28888603 DOI: 10.3168/jds.2017-12801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Cronobacter species are important foodborne pathogens causing severe infections in neonates through consumption of contaminated powdered infant formula. However, the virulence-associated factors in Cronobacter are largely unknown. In this study, the transcriptome analysis between highly virulent Cronobacter sakazakii G362 and attenuated L3101 strains was used to reveal the potential factors involved in virulence. The total transcripts were grouped into 20 clusters of orthologous group categories and summarized in 3 gene ontology categories (biological process, cellular component, and molecular function). In addition, the differentially expressed genes (DEG) between these isolates were analyzed using Volcano plots and gene ontology enrichment. The predominant DEG were flagella-associated genes such as flhD, motA, flgM, flgB, and fliC. Furthermore, the expression abundance of outer membrane protein or lipoprotein genes (ompW, slyB, blc, tolC, and lolA), potential virulence-related factors (hlyIII and hha), and regulation factors (sdiA, cheY, Bss, fliZ) was also significantly different between G362 and L3101. Interestingly, 3 hypothetical protein genes (ESA_01022, ESA_01609, and ESA_00609) were found to be expressed only in G362. Our findings provide valuable transcriptomic information about potential virulence factor genes, which will be needed in future molecular biology studies designed to understand the pathogenic mechanism of Cronobacter.
Collapse
Affiliation(s)
- Yingwang Ye
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China.
| | - Xiyan Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Maofeng Zhang
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jina Gao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Rui Jiao
- School of Food Science and Technology, Hefei University of Technology, Hefei, 230009, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, South China (the Ministry-Province Joint Development), Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| |
Collapse
|
16
|
Pérez-Morales D, Banda MM, Chau NYE, Salgado H, Martínez-Flores I, Ibarra JA, Ilyas B, Coombes BK, Bustamante VH. The transcriptional regulator SsrB is involved in a molecular switch controlling virulence lifestyles of Salmonella. PLoS Pathog 2017; 13:e1006497. [PMID: 28704543 PMCID: PMC5562331 DOI: 10.1371/journal.ppat.1006497] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/18/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
The evolution of bacterial pathogenicity, heavily influenced by horizontal gene transfer, provides new virulence factors and regulatory connections that alter bacterial phenotypes. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) are chromosomal regions that were acquired at different evolutionary times and are essential for Salmonella virulence. In the intestine of mammalian hosts, Salmonella expresses the SPI-1 genes that mediate its invasion to the gut epithelium. Once inside the cells, Salmonella down-regulates the SPI-1 genes and induces the expression of the SPI-2 genes, which favor its intracellular replication. The mechanism by which the invasion machinery is deactivated following successful invasion of host cells is not known. Here, we show that the SPI-2 encoded transcriptional regulator SsrB, which positively controls SPI-2, acts as a dual regulator that represses expression of SPI-1 during intracellular stages of infection. The mechanism of this SPI-1 repression by SsrB was direct and acts upon the hilD and hilA regulatory genes. The phenotypic effect of this molecular switch activity was a significant reduction in invasion ability of S. enterica serovar Typhimurium while promoting the expression of genes required for intracellular survival. During mouse infections, Salmonella mutants lacking SsrB had high levels of hilA (SPI-1) transcriptional activity whereas introducing a constitutively active SsrB led to significant hilA repression. Thus, our results reveal a novel SsrB-mediated mechanism of transcriptional crosstalk between SPI-1 and SPI-2 that helps Salmonella transition to the intracellular lifestyle. Salmonella infect humans and a wide range of mammalian hosts. Successful infection requires the bacteria to sense their surroundings and regulate gene expression in a way that maximizes fitness in that particular environment. The two major lifestyles of Salmonella include extracellular stages and intracellular stages of host cell infection; however, the molecular mechanisms of how Salmonella transitions between these two lifestyles are not completely understood. Here we show that the transcriptional regulator SsrB functions in a dual capacity, activating genes required for intracellular survival while simultaneously repressing genes needed for extracellular stages of infection. Our data highlight how regulatory crosstalk is selective during infection, presumably because it helps facilitate rapid transitions in bacterial lifestyles that ultimately promote bacterial survival and replication.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - María M. Banda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - N. Y Elizabeth Chau
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - J. Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Bushra Ilyas
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
17
|
Martínez-Flores I, Pérez-Morales D, Sánchez-Pérez M, Paredes CC, Collado-Vides J, Salgado H, Bustamante VH. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD. Sci Rep 2016; 6:37858. [PMID: 27886269 PMCID: PMC5122947 DOI: 10.1038/srep37858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes.
Collapse
Affiliation(s)
- Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Mishael Sánchez-Pérez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia C Paredes
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
18
|
Genome-wide identification of genes necessary for biofilm formation by nosocomial pathogen Stenotrophomonas maltophilia reveals that orphan response regulator FsnR is a critical modulator. Appl Environ Microbiol 2016; 81:1200-9. [PMID: 25480754 DOI: 10.1128/aem.03408-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative bacterial pathogen of increasing concern to human health. Most clinical isolates of S. maltophilia efficiently form biofilms on biotic and abiotic surfaces, making this bacterium resistant to a number of antibiotic treatments and therefore difficult to eliminate. To date, very few studies have investigated the molecular and regulatory mechanisms responsible for S. maltophilia biofilm formation. Here we constructed a random transposon insertion mutant library of S. maltophilia ATCC 13637 and screened 14,028 clones. A total of 46 nonredundant genes were identified. Mutants of these genes exhibited marked changes in biofilm formation, suggesting that multiple physiological pathways, including extracellular polysaccharide production, purine synthesis, transportation, and peptide and lipid synthesis, are involved in bacterial cell aggregation. Of these genes, 20 putatively contributed to flagellar biosynthesis, indicating a critical role for cell motility in S.maltophilia biofilm formation. Genetic and biochemical evidence demonstrated that an orphan response regulator, FsnR, activated transcription of at least two flagellum-associated operons by directly binding to their promoters. This regulatory protein plays a fundamental role in controlling flagellar assembly, cell motility, and biofilm formation. These results provide a genetic basis to systematically study biofilm formation of S. maltophilia.
Collapse
|
19
|
Ballesté-Delpierre C, Fàbrega A, Ferrer-Navarro M, Mathur R, Ghosh S, Vila J. Attenuation of in vitro host-pathogen interactions in quinolone-resistant Salmonella Typhi mutants. J Antimicrob Chemother 2015; 71:111-22. [PMID: 26446080 DOI: 10.1093/jac/dkv299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1β production and decreased NF-κB activation. CONCLUSIONS In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.
Collapse
Affiliation(s)
- Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Ramkumar Mathur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| |
Collapse
|
20
|
Gong M, Xu S, Jin Y, Zhang Y, Dadzie I, Zhang X, Wang Z, Zhu Y, Ni B, Sheng X, Huang X. 5′-UTR of malS increases the invasive capacity of Salmonella enterica serovar Typhi by influencing the expression of bax. Future Microbiol 2015; 10:941-54. [DOI: 10.2217/fmb.15.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ABSTRACT Aim: An RNA-seq analysis recently identified a 236-nucleotide transcript upstream from malS in Salmonella enterica serovar Typhi. Here, we investigated its molecular characteristics and function. Materials & methods: RACE and northern blotting were used to determine the molecular characteristics of the sequence, and mutagenesis, microarray, immunoblotting and an invasion assay were used to investigate the functions of the transcript. Results: The transcript was identified as the malS 5′-untranslated region (UTR), which could influence the expression of the flagellar and SPI-1 genes and the invasion of HeLa cells by S. Typhi. Deletion of bax increased the expression of the invasion genes and the invasive capacity of S. Typhi, whereas the expression of the malS 5′-UTR reduced the expression of bax. Conclusion: The malS 5′-UTR reduces the expression of bax and increases the invasive capacity of S. Typhi.
Collapse
Affiliation(s)
- Mingyu Gong
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Biochemistry, Chengde Medical College, Chengde, Hebei 067000, China
| | - Shungao Xu
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Jin
- Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, 223002, China
| | - Ying Zhang
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Isaac Dadzie
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaolei Zhang
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhexin Wang
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunxia Zhu
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Ni
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiumei Sheng
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, School of Medical Science & Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
21
|
Lim S, Han A, Kim D, Seo HS. Transcriptional Profiling of an AttenuatedSalmonellaTyphimuriumptsIMutant Strain Under Low-oxygen Conditions using Microarray Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ahreum Han
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Dongho Kim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
22
|
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52. [PMID: 23471616 DOI: 10.1128/mmbr.00043-12] [Citation(s) in RCA: 1268] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years have passed since the discovery of cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger.
Collapse
|
23
|
Ahmad I, Wigren E, Le Guyon S, Vekkeli S, Blanka A, El Mouali Y, Anwar N, Chuah ML, Lünsdorf H, Frank R, Rhen M, Liang ZX, Lindqvist Y, Römling U. The EAL-like protein STM1697 regulates virulence phenotypes, motility and biofilm formation in Salmonella typhimurium. Mol Microbiol 2013; 90:1216-32. [PMID: 24127899 DOI: 10.1111/mmi.12428] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Abstract
The ubiquitous second messenger c-di-GMP regulates the switching of bacterial lifestyles from motility to sessility and acute to chronic virulence to adjust bacterial fitness to altered environmental conditions. Conventionally, EAL proteins being c-di-GMP phosphodiesterases promote motility and acute virulence phenotypes such as invasion into epithelial cells and inhibit biofilm formation. We report here that in contradiction, the EAL-like protein STM1697 of Salmonella typhimurium suppresses motility, invasion into HT-29 epithelial cell line and secretion of the type three secretion system 1 effector protein SipA, whereas it promotes rdar biofilm formation and CsgD expression. STM1697 can, however, functionally replace the EAL-like protein STM1344 and vice versa, whereby both proteins neither degrade nor bind c-di-GMP. Like STM1344, STM1697 suppresses the transcription of class 2 and class 3 flagella regulon genes by binding to FlhD, a component of the master regulator of the flagella regulon FlhD4 C2 and act additively under numerous conditions. Interestingly, the interaction interface of STM1697 with FlhD2 is distinct from its paralogue STM1344. We predict that the stand alone EAL domain proteins STM1697 and STM1344 belong to a subclass of EAL domain proteins in S. typhimurium, which are all involved in motility, biofilm and virulence regulation through interaction with proteins that regulate flagella function.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Transposon mutagenesis of Salmonella enterica serovar Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infect Immun 2012; 80:4203-15. [PMID: 22988017 DOI: 10.1128/iai.00790-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is an important food-borne pathogen, and chickens are a primary reservoir of human infection. While most knowledge about Salmonella pathogenesis is based on research conducted on Salmonella enterica serovar Typhimurium, S. Enteritidis is known to have pathobiology specific to chickens that impacts epidemiology in humans. Therefore, more information is needed about S. Enteritidis pathobiology in comparison to that of S. Typhimurium. We used transposon mutagenesis to identify S. Enteritidis virulence genes by assay of invasiveness in human intestinal epithelial (Caco-2) cells and chicken liver (LMH) cells and survival within chicken (HD-11) macrophages as a surrogate marker for virulence. A total of 4,330 transposon insertion mutants of an invasive G1 Nal(r) strain were screened using Caco-2 cells. This led to the identification of attenuating mutations in a total of 33 different loci, many of which include genes previously known to contribute to enteric infection (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-4, SPI-5, CS54, fliH, fljB, csgB, spvR, and rfbMN) in S. Enteritidis and other Salmonella serovars. Several genes or genomic islands that have not been reported previously (e.g., SPI-14, ksgA, SEN0034, SEN2278, and SEN3503) or that are absent in S. Typhimurium or in most other Salmonella serovars (e.g., pegD, SEN1152, SEN1393, and SEN1966) were also identified. Most mutants with reduced Caco-2 cell invasiveness also showed significantly reduced invasiveness in chicken liver cells and impaired survival in chicken macrophages and in egg albumen. Consequently, these genes may play an important role during infection of the chicken host and also contribute to successful egg contamination by S. Enteritidis.
Collapse
|
25
|
Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog 2012; 8:e1002810. [PMID: 22911370 PMCID: PMC3406100 DOI: 10.1371/journal.ppat.1002810] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022] Open
Abstract
Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently, physical forces trapped the pathogen for ∼1.5–3 s in “near surface swimming”. This increased the local pathogen density and facilitated “scanning” of the host surface topology. We observed transient TTSS-1 and fim-independent “stopping” and irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are attributable to near surface swimming. This mechanism might be of general importance for understanding infection by flagellated bacteria. The animal body is protected by physical, chemical and immunological barriers. Identification of “promising” target sites is therefore of importance for any pathogen. This crucial step of the infection is still poorly understood. Here, we have studied target site selection by the flagellated Gram-negative gut pathogen Salmonella Typhimurium. Using a well-established tissue culture model system, we found that flagella-driven motility forces the bacterium into a “near surface swimming” mode which facilitates “scanning” of the host cell surface. The near surface swimming was found to target the pathogen towards sites with particular topological features, i.e., rounded cells and membrane ruffles. This explains how S. Typhimurium “identifies” particular target sites and infects membrane ruffles in a cooperative manner. Interestingly, the near surface swimming is attributable to generic physical principles acting on moving particles. Therefore, our findings might be of general importance for the infection by motile pathogens.
Collapse
|
26
|
Misselwitz B, Barrett N, Kreibich S, Vonaesch P, Andritschke D, Rout S, Weidner K, Sormaz M, Songhet P, Horvath P, Chabria M, Vogel V, Spori DM, Jenny P, Hardt WD. Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog 2012; 8:e1002810. [PMID: 22911370 DOI: 10.1371/journal.ppat.10022810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/05/2012] [Indexed: 05/27/2023] Open
Abstract
Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently, physical forces trapped the pathogen for ∼1.5-3 s in "near surface swimming". This increased the local pathogen density and facilitated "scanning" of the host surface topology. We observed transient TTSS-1 and fim-independent "stopping" and irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are attributable to near surface swimming. This mechanism might be of general importance for understanding infection by flagellated bacteria.
Collapse
|
27
|
Erwin DP, Nydam SD, Call DR. Vibrio parahaemolyticus ExsE is requisite for initial adhesion and subsequent type III secretion system 1-dependent autophagy in HeLa cells. MICROBIOLOGY-SGM 2012; 158:2303-2314. [PMID: 22767546 DOI: 10.1099/mic.0.059931-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vibrio parahaemolyticus pandemic serotype O3 : K6 causes acute gastroenteritis, wound infections and septicaemia in humans. This organism encodes two type III secretion systems (T3SS1 and T3SS2); host-cell cytotoxicity has been attributed to T3SS1. Synthesis and secretion of T3SS1 proteins is positively regulated by ExsA, which is presumptively regulated by the ExsCDE pathway, similar to Pseudomonas aeruginosa. Herein we deleted the putative exsE from V. parahaemolyticus and found constitutive expression of the T3SS1 in broth culture as expected. More importantly, however, in a cell culture model, the ΔexsE strain was unable to induce cytotoxicity, as measured by release of lactate dehydrogenase (LDH), or autophagy, as measured by LC3 conversion. This is markedly different from P. aeruginosa, where deletion of exsE has no effect on host-cell cytolysis. Swarming and cytoadhesion were reduced for the deletion mutant and could be recovered along with T3SS1-induced HeLa cell cytotoxicity by in cis expression of exsE in the ΔexsE strain. Loss of adhesion and swarming motility was associated with the loss of flagella biogenesis in the exsE-deficient strain. Mouse mortality was unaffected by the deletion of exsE compared with a wild-type control, suggesting that additional adhesins are important for intoxication in vivo. Based on these data, we conclude that ExsE contributes to the negative regulation of T3SS1 and, in addition, contributes to regulation of an adherence phenotype that is requisite for translocation of effector proteins into HeLa cells.
Collapse
Affiliation(s)
- Daniel P Erwin
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Seth D Nydam
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
28
|
Choi J, Shin D, Kim M, Park J, Lim S, Ryu S. LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes. PLoS One 2012; 7:e37059. [PMID: 22623980 PMCID: PMC3356404 DOI: 10.1371/journal.pone.0037059] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell-to-cell communication, termed quorum sensing (QS), controls bacterial behavior by using various signal molecules. Despite the fact that the LuxS/autoinducer-2 (AI-2) QS system is necessary for normal expression of Salmonella pathogenicity island-1 (SPI-1), the mechanism remains unknown. Here, we report that the LsrR protein, a transcriptional regulator known to be involved in LuxS/AI-2-mediated QS, is also associated with the regulation of SPI-1-mediated Salmonella virulence. We determined that LsrR negatively controls SPI-1 and flagella gene expressions. As phosphorylated AI-2 binds to and inactivates LsrR, LsrR remains active and decreases expression of SPI-1 and flagella genes in the luxS mutant. The reduced expression of those genes resulted in impaired invasion of Salmonella into epithelial cells. Expression of SPI-1 and flagella genes was also reduced by overexpression of the LsrR regulator from a plasmid, but was relieved by exogenous AI-2, which binds to and inactivates LsrR. These results imply that LsrR plays an important role in selecting infectious niche of Salmonella in QS dependent mode.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Dongwoo Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Minjeong Kim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Joowon Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
29
|
Jennings ME, Quick LN, Ubol N, Shrom S, Dollahon N, Wilson JW. Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation. PLoS One 2012; 7:e33080. [PMID: 22412985 PMCID: PMC3297627 DOI: 10.1371/journal.pone.0033080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/07/2012] [Indexed: 01/06/2023] Open
Abstract
We have previously reported the cloning of the Salmonella enterica serovar Typhimurium SPI-1 secretion system and the use of this clone to functionally complement a ΔSPI-1 strain for type III secretion activity. In the current study, we discovered that S. Typhimurium cultures containing cloned SPI-1 display an adherent biofilm and cell clumps in the media. This phenotype was associated with hyper-expression of SPI-1 type III secretion functions. The biofilm and cell clumps were associated with copious amounts of secreted SPI-1 protein substrates SipA, SipB, SipC, SopB, SopE, and SptP. We used a C-terminally FLAG-tagged SipA protein to further demonstrate SPI-1 substrate association with the cell aggregates using fluorescence microscopy and immunogold electron microscopy. Different S. Typhimurium backgrounds and both flagellated and nonflagellated strains displayed the biofilm phenotype. Mutations in genes essential for known bacterial biofilm pathways (bcsA, csgBA, bapA) did not affect the biofilms formed here indicating that this phenomenon is independent of established biofilm mechanisms. The SPI-1-mediated biofilm was able to massively recruit heterologous non-biofilm forming bacteria into the adherent cell community. The results indicate a bacterial aggregation phenotype mediated by elevated SPI-1 type III secretion activity with applications for engineered biofilm formation, protein purification strategies, and antigen display.
Collapse
Affiliation(s)
- Matthew E. Jennings
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Laura N. Quick
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Nicha Ubol
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Sally Shrom
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Norman Dollahon
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - James W. Wilson
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Integrating global regulatory input into the Salmonella pathogenicity island 1 type III secretion system. Genetics 2011; 190:79-90. [PMID: 22021388 DOI: 10.1534/genetics.111.132779] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses the Salmonella pathogenicity island 1 (SPI1) type III secretion system to induce inflammatory diarrhea and bacterial uptake into intestinal epithelial cells. The expression of hilA, encoding the transcriptional activator of the SPI1 structural genes, is directly controlled by three AraC-like regulators, HilD, HilC, and RtsA, each of which can activate the hilD, hilC, rtsA, and hilA genes, forming a complex feed-forward regulatory loop. A large number of factors and environmental signals have been implicated in SPI1 regulation. We have developed a series of genetic tests that allows us to determine where these factors feed into the SPI1 regulatory circuit. Using this approach, we have grouped 21 of the known SPI1 regulators and environmental signals into distinct classes on the basis of observed regulatory patterns, anchored by those few systems where the mechanism of regulation is best understood. Many of these factors are shown to work post-transcriptionally at the level of HilD, while others act at the hilA promoter or affect all SPI1 promoters. Analysis of the published transcriptomic data reveals apparent coregulation of the SPI1 and flagellar genes in various conditions. However, we show that in most cases, the factors that affect both systems control SPI1 independently of the flagellar protein FliZ, despite its role as an important SPI1 regulator and coordinator of the two systems. These results provide a comprehensive model for SPI1 regulation that serves as a framework for future molecular analyses of this complex regulatory network.
Collapse
|
31
|
Impairment of swimming motility by antidiarrheic Lactobacillus acidophilus strain LB retards internalization of Salmonella enterica serovar Typhimurium within human enterocyte-like cells. Antimicrob Agents Chemother 2011; 55:4810-20. [PMID: 21825295 DOI: 10.1128/aac.00418-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells.
Collapse
|
32
|
FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar typhimurium. J Bacteriol 2010; 192:6261-70. [PMID: 20889744 DOI: 10.1128/jb.00635-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A prerequisite for Salmonella enterica to cause both intestinal and systemic disease is the direct injection of effector proteins into host intestinal epithelial cells via a type three secretion system (T3SS); the T3SS genes are carried on Salmonella pathogenicity island 1 (SPI1). These effector proteins induce inflammatory diarrhea and bacterial invasion. Expression of the SPI1 T3SS is tightly regulated in response to environmental signals through a variety of global regulatory systems. We have previously shown that three AraC-like regulators, HilD, HilC, and RtsA, act in a complex feed-forward regulatory loop to control the expression of the hilA gene, which encodes the direct regulator of the SPI1 structural genes. In this work, we characterize a major positive regulator of this system, the flagellar protein FliZ. Through genetic and biochemical analyses, we show that FliZ posttranslationally controls HilD to positively regulate hilA expression. This mechanism is independent of other flagellar components and is not mediated through the negative regulator HilE or through FliZ-mediated RpoS regulation. We demonstrate that FliZ controls HilD protein activity and not stability. FliZ regulates HilD in the absence of Lon protease, previously shown to degrade HilD. Indeed, it appears that FliZ, rather than HilD, is the most relevant target of Lon as it relates to SPI1 expression. Mutants lacking FliZ are significantly attenuated in their ability to colonize the intestine but are unaffected during systemic infection. The intestinal attenuation is partially dependent on SPI1, but FliZ has additional pleiotropic effects.
Collapse
|
33
|
Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol 2010; 192:6025-38. [PMID: 20851895 DOI: 10.1128/jb.00654-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here, we probe the response to calcium during growth on a surface and show that calcium influences the transcriptome and stimulates motility and virulence of Vibrio parahaemolyticus. Swarming (but not swimming) gene expression and motility were enhanced by calcium. Calcium also elevated transcription of one of the organism's two type III secretion systems (T3SS1 but not T3SS2) and heightened cytotoxicity toward host cells in coculture. Calcium stimulation of T3SS gene expression has not been reported before, although low calcium is an inducing signal for the T3SS of many organisms. EGTA was also found to increase T3SS1 gene expression and virulence; however, this was demonstrated to be the consequence of iron rather than calcium chelation. Ectopic expression of exsA, encoding the T3SS1 AraC-type regulator, was used to define the extent of the T3SS1 regulon and verify its coincident induction by calcium and EGTA. To begin to understand the regulatory mechanisms modulating the calcium response, a calcium-repressed, LysR-type transcription factor named CalR was identified and shown to repress swarming and T3SS1 gene expression. Swarming and T3SS1 gene expression were also demonstrated to be linked by LafK, a σ(54)-dependent regulator of swarming, and additionally connected by a negative-feedback loop on the swarming regulon propagated by ExsA. Thus, calcium and iron, two ions pertinent for a marine organism and pathogen, play a signaling role with global consequences on the regulation of gene sets that are relevant for surface colonization and infection.
Collapse
|
34
|
Hoffmann C, Galle M, Dilling S, Käppeli R, Müller AJ, Songhet P, Beyaert R, Hardt WD. In macrophages, caspase-1 activation by SopE and the type III secretion system-1 of S. typhimurium can proceed in the absence of flagellin. PLoS One 2010; 5:e12477. [PMID: 20814576 PMCID: PMC2930008 DOI: 10.1371/journal.pone.0012477] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is of vital importance for protection against infectious pathogens. Inflammasome mediated caspase-1 activation and subsequent release of pro-inflammatory cytokines like IL-1β and IL-18 is an important arm of the innate immune system. Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium, SL1344) is an enteropathogenic bacterium causing diarrheal diseases. Different reports have shown that in macrophages, S. Typhimurium may activate caspase-1 by at least three different types of stimuli: flagellin, the type III secretion system 1 (T1) and the T1 effector protein SopE. However, the relative importance and interdependence of the different factors in caspase-1 activation is still a matter of debate. Here, we have analyzed their relative contributions to caspase-1 activation in LPS-pretreated RAW264.7 macrophages. Using flagellar mutants (fliGHI, flgK) and centrifugation to mediate pathogen-host cell contact, we show that flagellins account for a small part of the caspase-1 activation in RAW264.7 cells. In addition, functional flagella are of key importance for motility and host cell attachment which is a prerequisite for mediating caspase-1 activation via these three stimuli. Using site directed mutants lacking several T1 effector proteins and flagellin expression, we found that SopE elicits caspase-1 activation even when flagellins are absent. In contrast, disruption of essential genes of the T1 protein injection system (invG, sipB) completely abolished caspase-1 activation. However, a robust level of caspase-1 activation is retained by the T1 system (or unidentified T1 effectors) in the absence of flagellin and SopE. T1-mediated inflammasome activation is in line with recent work by others and suggests that the T1 system itself may represent the basic caspase-1 activating stimulus in RAW264.7 macrophages which is further enhanced independently by SopE and/or flagellin.
Collapse
Affiliation(s)
- Claudia Hoffmann
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Marlies Galle
- Unit for Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Sabrina Dilling
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Rina Käppeli
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | | | - Pascal Songhet
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
35
|
Boonyom R, Karavolos MH, Bulmer DM, Khan CMA. Salmonella pathogenicity island 1 (SPI-1) type III secretion of SopD involves N- and C-terminal signals and direct binding to the InvC ATPase. Microbiology (Reading) 2010; 156:1805-1814. [PMID: 20185511 DOI: 10.1099/mic.0.038117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important pathogen and a causative agent of gastroenteritis. During infection, S. Typhimurium assembles molecular-needle complexes termed type III secretion (T3S) systems to translocate effector proteins from the bacterial cytoplasm directly into the host cell. The T3S signals that direct the secretion of effectors still remain enigmatic. SopD is a key T3S effector contributing to the systemic virulence of S. Typhimurium and the development of gastroenteritis. We have scrutinized the distribution of the SopD T3S signals using in silico analysis and a targeted deletion approach. We show that amino acid residues 6–10 act as the N-terminal secretion signal for Salmonella pathogenicity island 1 (SPI-1) T3S. Furthermore, we show that two putative C-terminal helical regions of SopD are essential for its secretion and also help prevent erroneous secretion through the flagellar T3S machinery. In addition, using protein–protein interaction assays, we have identified an association between SopD and the SPI-1 T3S system ATPase, InvC. These findings demonstrate that T3S of SopD involves multiple signals and protein interactions, providing important mechanistic insights into effector protein secretion.
Collapse
Affiliation(s)
- R. Boonyom
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - M. H. Karavolos
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - D. M. Bulmer
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - C. M. A. Khan
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
36
|
QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 2009; 78:914-26. [PMID: 20028809 DOI: 10.1128/iai.01038-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades epithelial cells and survives within macrophages. Invasion of epithelial cells is mediated by the type III secretion system (T3SS) encoded in Salmonella pathogenicity island 1 (SPI-1), while macrophage survival and systemic disease are mediated by the T3SS encoded in SPI-2. Here we show that QseC plays an important role in Salmonella serovar Typhimurium pathogenicity. A qseC mutant was impaired in flagellar motility, in invasion of epithelial cells, and in survival within macrophages and was attenuated for systemic infection in 129x1/SvJ mice. QseC acts globally, regulating expression of genes within SPI-1 and SPI-2 in vitro and in vivo (during infection of mice). Additionally, dopamine beta-hydroxylase knockout (Dbh(-)(/)(-)) mice that do not produce Epi or NE showed different susceptibility to Salmonella serovar Typhimurium infection than wild-type mice. These data suggest that the AI-3/Epi/NE signaling system is a key factor during Salmonella serovar Typhimurium pathogenesis in vitro and in vivo. Elucidation of the role of this interkingdom signaling system in Salmonella serovar Typhimurium should contribute to a better understanding of the complex interplay between the pathogen and the host during infection.
Collapse
|
37
|
Kim M, Lim S, Kim D, Choy HE, Ryu S. A tdcA mutation reduces the invasive ability of Salmonella enterica serovar typhimurium. Mol Cells 2009; 28:389-95. [PMID: 19812899 DOI: 10.1007/s10059-009-0133-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022] Open
Abstract
We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | |
Collapse
|
38
|
The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect Immun 2009; 77:2932-42. [PMID: 19451244 DOI: 10.1128/iai.00172-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium elicits acute neutrophil influx in the human intestinal mucosa within 1 or 2 days after infection, resulting in inflammatory diarrhea. In contrast, no overt symptoms are observed within the first 1 or 2 weeks after infection with S. enterica serotype Typhi. Here we show that introduction of the capsule-encoding viaB locus of serotype Typhi reduced the ability of serotype Typhimurium to elicit acute intestinal inflammation in a streptomycin-pretreated mouse model. Serotype Typhimurium requires a functional invasion-associated type III secretion system (type III secretion system 1 [T3SS-1]) to elicit cecal inflammation within 48 h after infection of streptomycin-pretreated mice, and the presence of the viaB locus reduced its invasiveness for human intestinal epithelial cells in vitro. However, a reduced activity of T3SS-1 could not account for the ability of the viaB locus to attenuate cecal inflammation, because introduction of the viaB locus into an invasion-deficient serotype Typhimurium strain (invA mutant) resulted in a significant reduction of pathology and inflammatory cytokine expression in the cecum 5 days after infection of mice. We conclude that a T3SS-1-independent mechanism contributes to the ability of the viaB locus to reduce intestinal inflammation.
Collapse
|
39
|
Taylor RC, Singhal M, Weller J, Khoshnevis S, Shi L, McDermott J. A network inference workflow applied to virulence-related processes in Salmonella typhimurium. Ann N Y Acad Sci 2009; 1158:143-58. [PMID: 19348639 DOI: 10.1111/j.1749-6632.2008.03762.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene-expression data now available for that organism and describe our results obtained by following this workflow. The primary tool is one of the network-inference algorithms deployed in the Software Environment for Biological Network Inference (SEBINI). Specifically, we selected the algorithm called context likelihood of relatedness (CLR), which uses the mutual information contained in the gene-expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological Interaction Networks (CABIN) tool for further postanalysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.
Collapse
Affiliation(s)
- Ronald C Taylor
- Computational Biology & Bioinformatics Group, Pacific Northwest National Laboratory (U.S. Dept of Energy), Richland, Washington, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Jahn CE, Willis DK, Charkowski AO. The flagellar sigma factor fliA is required for Dickeya dadantii virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1431-42. [PMID: 18842093 DOI: 10.1094/mpmi-21-11-1431] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The genome sequence of the Enterobacteriaceae phytopathogen Dickeya dadantii (formerly Erwinia chrysanthemi) revealed homologs of genes required for a complete flagellar secretion system and one flagellin gene. We found that D. dadantii was able to swim and swarm but that ability to swarm was dependent upon both growth media and temperature. Mutation of the D. dadantii fliA gene was pleiotropic, with the alternate sigma factor required for flagella production and development of disease symptoms but not bacterial growth in Nicotiana benthamiana leaves. The flagellar sigma factor was also required for multiple bacterial phenotypes, including biofilm formation in culture, bacterial adherence to plant tissue, and full expression of pectate lyase activity (but not cellulase or protease activity). Surprisingly, mutation of fliA resulted in the increased expression of avrL (a gene of unknown function in D. dadantii) and two pectate lyase gene homologs, pelX and ABF-0019391. Because FliA is a key contributor to virulence in D. dadantii, it is a new target for disease control.
Collapse
Affiliation(s)
- Courtney E Jahn
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
41
|
Bishop A, House D, Perkins T, Baker S, Kingsley RA, Dougan G. Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. MICROBIOLOGY-SGM 2008; 154:1914-1926. [PMID: 18599820 DOI: 10.1099/mic.0.2008/016998-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study we investigate the ability of Salmonella enterica serovar Typhi (S. Typhi) surface structures to influence invasion and adhesion in epithelial cell assay systems. In general, S. Typhi was found to be less adherent, invasive and cytotoxic than S. enterica serovar Typhimurium (S. Typhimurium). Culture conditions had little effect on adhesion of S. Typhi to cultured cells but had a marked influence on invasion. In contrast, bacterial growth conditions did not influence S. Typhi apical invasion of polarized cells. The levels of S. Typhi, but not S. Typhimurium, invasion were increased by application of bacteria to the basolateral surface of polarized cells. Expression of virulence (Vi) capsule by S. Typhi resulted in a modest reduction in adhesion, but profoundly reduced levels of invasion of non-polarized cells. However, Vi capsule expression had no affect on invasion of the apical or basolateral surfaces of polarized cells. Mutation of the staA, tcfA or pilS genes did not affect invasion or adhesion in either the presence or the absence of Vi capsule.
Collapse
Affiliation(s)
- Anne Bishop
- The Centre for Molecular Microbiology and Infection, Faculty of Life Sciences, Division of Molecular and Cell Biology, Imperial College London, London SW7 2AZ, UK
| | - Deborah House
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Timothy Perkins
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stephen Baker
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
42
|
Lanois A, Jubelin G, Givaudan A. FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Mol Microbiol 2008; 68:516-33. [PMID: 18383616 DOI: 10.1111/j.1365-2958.2008.06168.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. We investigated the role of FliZ in the regulation of flagellar and virulence genes in Xenorhabdus nematophila, an insect pathogen. The fliZ gene is the second gene in the fliAZ operon in X. nematophila. In vivo transcription analysis revealed a positive feedback loop of fliAZ transcription in which FliZ activates flhDC, the master operon of flagellar regulon in X. nematophila, leading to an increased transcription of the FlhDC-dependent promoter of fliAZ. We also showed that fliAZ and flhDC mutants lacked motility, had no haemolysin or Tween lipase activity and displayed an attenuated virulence phenotype in insects. Lipase activity is controlled by FliA, whereas haemolysin production and full virulence phenotype have been reported to be FliZ-dependent. Transcriptional analysis revealed that FliZ directly controlled expression of the xhlBA and xaxAB operons, which encode haemolysins from the two-partner secretion system and the binary XaxAB toxin family respectively. We suggest that this regulatory pathway may also occur in other pathogenic enterobacteria with genes encoding members of these two growing families of haemolysins.
Collapse
Affiliation(s)
- Anne Lanois
- INRA, UMR 1133 Laboratoire EMIP, F-34000 Montpellier, France
| | | | | |
Collapse
|
43
|
Signal pathway in salt-activated expression of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J Bacteriol 2008; 190:4624-31. [PMID: 18441068 DOI: 10.1128/jb.01957-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium secretes virulence factors for invasion called Sip proteins or Sips into its hosts through a type III secretion system (T3SS). In the absence of a host, S. enterica induces Sip secretion in response to sucrose or simple salts, such as NaCl. We analyzed induction of host-independent Sip secretion by monitoring protein secretion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), assembly of needle complexes by electron microscopy, and transcription of virulence regulatory genes by quantitative reverse transcriptase PCR (real-time PCR). SDS-PAGE showed that addition of sucrose or simple salts, such as NaCl, to the growth medium induced Sip secretion without altering flagellar protein secretion, which requires a distinct T3SS. Electron microscopy confirmed that the amount of secreted Sips increased as the number of assembled needle complexes increased. Real-time PCR revealed that added sucrose or NaCl enhanced transcription of hilA, hilC, and hilD, which encode known regulators of Salmonella virulence. However, epistasis analysis implicated HilD and HilA, but not HilC, in the direct pathway from the salt stimulus to the Sip secretion response. Further analyses showed that the BarA/SirA two-component signal transduction pathway, but not the two-component sensor kinase EnvZ, directly activated hilD and hilA transcription and thus Sip secretion in response to either sucrose or NaCl. Finally, real-time PCR showed that salt does not influence transcription of the BarA/SirA-dependent csrB and csrC genes. A model is proposed for the major pathway in which sucrose or salt signals to enhance virulence gene expression.
Collapse
|
44
|
Kim BH, Kim HG, Kim JS, Jang JI, Park YK. Analysis of functional domains present in the N-terminus of the SipB protein. MICROBIOLOGY-SGM 2007; 153:2998-3008. [PMID: 17768243 DOI: 10.1099/mic.0.2007/007872-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SipB (593 aa), one of the Salmonella invasion proteins (Sips), is secreted via the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Here, we report the delineation of several functional regions present in the SipB protein. Our data show that residues 3-8 of the SipB protein are essential for its secretion from the bacterial cell and that the SicA chaperone, which is important to ensure stability of SipB and SipC in the bacterial cytosol, binds to SipB somewhere between amino acids 80 and100 of the SipB N-terminal region. Interestingly, the N-terminal region (residues 1-160) of SipB (SipB160) cannot be secreted via the SPI-1 T3SS, but fusion of the C-terminal amphipathic region (residues 300-593) to SipB160 can restore secretion via this system.
Collapse
Affiliation(s)
- Bae Hoon Kim
- Institute of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hyeon Guk Kim
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jin Seok Kim
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jung Im Jang
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Yong Keun Park
- Laboratory of Microbial Genetics, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
45
|
Bearson BL, Bearson SMD. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog 2007; 44:271-8. [PMID: 17997077 DOI: 10.1016/j.micpath.2007.10.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 09/30/2007] [Accepted: 10/04/2007] [Indexed: 01/18/2023]
Abstract
Transcriptional analysis of Salmonella enterica serovar Typhimurium (S. Typhimurium) in the presence of the mammalian hormone norepinephrine revealed up-regulation of genes in the flagellar and chemotaxis regulon. Motility assays confirmed enhanced motility of wild-type S. Typhimurium in the presence of norepinephrine that could be blocked by the alpha-adrenergic antagonist, phentolamine. Furthermore, a mutation in the qseC gene, encoding the sensor kinase of the two-component QseBC quorum-sensing system, also diminished motility of S. Typhimurium. To investigate the role of S. Typhimurium QseC in vivo, 13-week old pigs were intranasally inoculated with equal concentrations (1 x 10(9)CFU) of wild-type S. Typhimurium and a qseC mutant. Over a 1-week competitive index experiment, the qseC mutant displayed decreased colonization of the gastrointestinal tract compared to the wild-type parent strain. Thus, this study has identified a role for the QseBC quorum-sensing signal transduction system in motility and swine colonization of S. Typhimurium. Cross-talk between cell-cell communication systems in Salmonella (quorum sensing) and host hormones may explain opportunistic behaviors of the pathogen, such as immune evasion and stress-induced recrudescence of Salmonella, during fluctuations of host hormone levels.
Collapse
Affiliation(s)
- Bradley L Bearson
- Swine Odor and Manure Management Research Unit, USDA, ARS, National Soil Tilth Laboratory, Ames, IA 50011, USA.
| | | |
Collapse
|
46
|
Soscia C, Hachani A, Bernadac A, Filloux A, Bleves S. Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J Bacteriol 2007; 189:3124-32. [PMID: 17307856 PMCID: PMC1855843 DOI: 10.1128/jb.01677-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 01/31/2007] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa cytotoxicity is linked to a type III secretion system (T3SS) that delivers effectors into the host cell. We show here that a negative cross-control exists between T3SS and flagellar assembly. We observed that, in a strain lacking flagella, T3SS gene expression, effector secretion, and cytotoxicity were increased. Conversely, we revealed that flagellar-gene expression and motility were decreased in a strain overproducing ExsA, the T3SS master regulator. Interestingly, a nonmotile strain lacking the flagellar filament (DeltafliC) presented a hyperefficient T3SS and a nonmotile strain assembling flagella (DeltamotAB) did not. More intriguingly, a strain lacking motCD genes is a flagellated strain with a slight defect in swimming. However, in this strain, T3SS gene expression was up-regulated. These results suggest that flagellar assembly and/or mobility antagonizes the T3SS and that a negative cross talk exists between these two systems. An illustration of this is the visualization by electron microscopy of T3SS needles in a nonmotile P. aeruginosa strain, needles which otherwise are not detected. The molecular basis of the cross talk is complex and remains to be elucidated, but proteins like MotCD might have a crucial role in signaling between the two processes. In addition, we found that the GacA response regulator negatively affects the T3SS. In a gacA mutant, the T3SS effector ExoS is hypersecreted. Strikingly, GacA was previously reported as a positive regulator for motility. Globally, our data document the idea that some virulence factors are coordinately but inversely regulated, depending on the bacterial colonization phase and infection types.
Collapse
Affiliation(s)
- Chantal Soscia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), CNRS-IBSM-UPR9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
47
|
Iyoda S, Koizumi N, Satou H, Lu Y, Saitoh T, Ohnishi M, Watanabe H. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. J Bacteriol 2006; 188:5682-92. [PMID: 16885436 PMCID: PMC1540053 DOI: 10.1128/jb.00352-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gene function of the locus of enterocyte effacement (LEE) is essential for full virulence of enterohemorrhagic Escherichia coli (EHEC). Strict control of LEE gene expression is mediated by the coordinated activities of several regulatory elements. We previously reported that the ClpX/ClpP protease positively controls LEE expression by down-regulating intracellular levels of GrlR, a negative regulator of LEE gene expression. We further revealed that the negative effect of GrlR on LEE expression was mediated through GrlA, a positive regulator of LEE expression. In this study, we found that the FliC protein, a major component of flagellar filament, was overproduced in clpXP mutant EHEC, as previously reported for Salmonella. We further found that FliC expression was reduced in a clpXP grlR double mutant. To determine the mediators of this phenotype, FliC protein levels in wild-type, grlR, grlA, and grlR grlA strains were compared. Steady-state levels of FliC protein were reduced only in the grlR mutant, suggesting that positive regulation of FliC expression by GrlR is mediated by GrlA. Correspondingly, cell motility was also reduced in the grlR mutant, but not in the grlA or grlR grlA mutant. Because overexpression of grlA from a multicopy plasmid strongly represses the FliC level, as well as cell motility, we conclude that GrlA acts as a negative regulator of flagellar-gene expression. The fact that an EHEC strain constitutively expressing FlhD/FlhC cannot adhere to HeLa cells leads us to hypothesize that GrlA-dependent repression of the flagellar regulon is important for efficient cell adhesion of EHEC to host cells.
Collapse
Affiliation(s)
- Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Cummings LA, Wilkerson WD, Bergsbaken T, Cookson BT. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol 2006; 61:795-809. [PMID: 16803592 DOI: 10.1111/j.1365-2958.2006.05271.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FliC is a natural antigen recognized by the innate and adaptive immune systems during Salmonella infection in mice and humans; however, the regulatory mechanisms governing its expression in vivo are incompletely understood. Here, we use flow cytometry to quantify fliC gene expression in single bacteria. In vitro, fliC transcription was not uniformly positive; a viable fliC-negative subpopulation was also identified. Intracellular Salmonella repressed transcription of fliC and its positive regulator fliA, but constitutively transcribed the master regulator flhD; fliC repression required ClpXP protease, known to degrade FlhD. In orally infected mice, fliC transcription was anatomically restricted: Salmonella transcribed fliC in the Peyer's Patches (PP) but not in the mesenteric lymph nodes and spleen. The intracellularly transcribed pagC promoter was upregulated by Salmonella in all tissues, defining the infected PP as a unique environment that initiates expression of intracellularly induced genes and yet permits transcription of fliC. Because a single bacterium can escape the GI tract to colonize deeper tissues, heterogeneous gene expression may have important implications for Salmonella pathogenesis: FliC-positive bacteria in the PP could stimulate inflammation and facilitate the priming of FliC-specific immune responses, while FliC-negative bacteria escape host detection in the gut and spread to systemic sites of replication.
Collapse
Affiliation(s)
- Lisa A Cummings
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
49
|
Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 2006; 7:569-75. [PMID: 16648853 DOI: 10.1038/ni1344] [Citation(s) in RCA: 915] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 04/04/2006] [Indexed: 12/25/2022]
Abstract
Macrophages respond to Salmonella typhimurium infection via Ipaf, a NACHT-leucine-rich repeat family member that activates caspase-1 and secretion of interleukin 1beta. However, the specific microbial salmonella-derived agonist responsible for activating Ipaf is unknown. We show here that cytosolic bacterial flagellin activated caspase-1 through Ipaf but was independent of Toll-like receptor 5, a known flagellin sensor. Stimulation of the Ipaf pathway in macrophages after infection required a functional salmonella pathogenicity island 1 type III secretion system but not the flagellar type III secretion system; furthermore, Ipaf activation could be recapitulated by the introduction of purified flagellin directly into the cytoplasm. These observations raise the possibility that the salmonella pathogenicity island 1 type III secretion system cannot completely exclude 'promiscuous' secretion of flagellin and that the host capitalizes on this 'error' by activating a potent host-defense pathway.
Collapse
Affiliation(s)
- Edward A Miao
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2006; 2:e18. [PMID: 16552444 PMCID: PMC1401497 DOI: 10.1371/journal.ppat.0020018] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/30/2006] [Indexed: 02/07/2023] Open
Abstract
Macrophages from C57BL/6J (B6) mice restrict growth of the intracellular bacterial pathogen Legionella pneumophila. Restriction of bacterial growth requires caspase-1 and the leucine-rich repeat-containing protein Naip5 (Birc1e). We identified mutants of L. pneumophila that evade macrophage innate immunity. All mutants were deficient in expression of flagellin, the primary flagellar subunit, and failed to induce caspase-1-mediated macrophage death. Interestingly, a previously isolated flagellar mutant (fliI) that expresses, but does not assemble, flagellin did not replicate in macrophages, and induced macrophage death. Thus, flagellin itself, not flagella or motility, is required to initiate macrophage innate immunity. Immunity to Legionella did not require MyD88, an essential adaptor for toll-like receptor 5 (TLR5) signaling. Moreover, flagellin of Legionella and Salmonella induced cytotoxicity when delivered to the macrophage cytosol using Escherichia coli as a heterologous host. It thus appears that macrophages sense cytosolic flagellin via a TLR5-independent pathway that leads to rapid caspase-1-dependent cell death and provides defense against intracellular bacterial pathogens. Legionella pneumophila is a bacterial pathogen that is the cause of a severe form of pneumonia known as Legionnaires' disease. A crucial aspect of the propensity of Legionella to cause disease lies in its ability to survive and multiply inside host immune cells known as macrophages. The intracellular survival and replication of Legionella can be studied using isolated macrophages grown in culture. Macrophages isolated from different laboratory mouse strains are differentially permissive for intracellular Legionella growth. This difference in permissiveness is genetic, and is conferred by differences in a mouse protein known as Naip5. The authors determined that Legionella strains that are unable to produce a protein called flagellin are able to grow inside normally resistant mouse macrophages. In addition, these flagellin− strains are defective in initiating a cell-death response on the part of infected macrophages. Based on these data, the authors suggest that there is an intracellular mechanism for detecting the presence of bacterial flagellin protein, and that a cell-death response is initiated upon the detection of flagellin.
Collapse
Affiliation(s)
- Tao Ren
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dario S Zamboni
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Craig R Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - William F Dietrich
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - Russell E Vance
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|