1
|
Abhyankar MM, Orr MT, Lin S, Suraju MO, Simpson A, Blust M, Pham T, Guderian JA, Tomai MA, Elvecrog J, Pedersen K, Petri WA, Fox CB. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines 2018; 3:22. [PMID: 29900011 PMCID: PMC5988657 DOI: 10.1038/s41541-018-0060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.
Collapse
Affiliation(s)
- Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Mark T. Orr
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| | - Susan Lin
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | - Mohammed O. Suraju
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | | | | | - Tiep Pham
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | | | - Mark A. Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | | | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Christopher B. Fox
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
2
|
Singh RS, Walia AK, Kanwar JR, Kennedy JF. Amoebiasis vaccine development: A snapshot on E. histolytica with emphasis on perspectives of Gal/GalNAc lectin. Int J Biol Macromol 2016; 91:258-68. [DOI: 10.1016/j.ijbiomac.2016.05.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
3
|
Ralston KS. Chew on this: amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol 2015; 31:442-52. [PMID: 26070402 DOI: 10.1016/j.pt.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Abstract
Entamoeba histolytica was named 'histolytica' (from histo-, 'tissue'; lytic-, 'dissolving') for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that, after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. We review this process, termed 'amoebic trogocytosis' (trogo-, 'nibble'), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. 'Nibbling' processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Protection against Amoebic Liver Abscess in Hamster by Intramuscular Immunization with an Autographa californica Baculovirus Driving the Expression of the Gal-Lectin LC3 Fragment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:760598. [PMID: 26090442 PMCID: PMC4452260 DOI: 10.1155/2015/760598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
Abstract
In a previous study, we demonstrated that oral immunization using Autographa californica baculovirus driving the expression of the Gal-lectin LC3 fragment (AcNPV-LC3) of Entamoeba histolytica conferred protection against ALA development in hamsters. In this study, we determined the ability of AcNPV-LC3 to protect against ALA by the intramuscular route as well as the liver immune response associated with protection. Results showed that 55% of hamsters IM immunized with AcNPV-LC3 showed sterile protection against ALA, whereas other 20% showed reduction in the size and extent of abscesses, resulting in some protection in 75% of animals compared to the sham control group. Levels of protection showed a linear correlation with the development and intensity of specific antiamoeba cellular and humoral responses, evaluated in serum and spleen of hamsters, respectively. Evaluation of the Th1/Th2 cytokine patterns expressed in the liver of hamsters showed that sterile protection was associated with the production of high levels of IFNγ and IL-4. These results suggest that the baculovirus system is equally efficient by the intramuscular as well as the oral routes for ALA protection and that the Gal-lectin LC3 fragment is a highly protective antigen against hepatic amoebiasis through the local induction of IFNγ and IL-4.
Collapse
|
5
|
Quach J, St-Pierre J, Chadee K. The future for vaccine development against Entamoeba histolytica. Hum Vaccin Immunother 2014; 10:1514-21. [PMID: 24504133 DOI: 10.4161/hv.27796] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica.
Collapse
Affiliation(s)
- Jeanie Quach
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Joëlle St-Pierre
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Kris Chadee
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| |
Collapse
|
6
|
Kaur U, Khurana S, Saikia UN, Dubey ML. Immunogenicity and protective efficacy of heparan sulphate binding proteins of Entamoeba histolytica in a guinea pig model of intestinal amoebiasis. Exp Parasitol 2013; 135:486-96. [PMID: 24007700 DOI: 10.1016/j.exppara.2013.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Entamoeba histolytica infection is associated with considerable morbidity and mortality in the form of intestinal and extraintestinal amoebiasis. No vaccine is yet available for amoebiasis. Heparan Sulphate Binding Proteins (HSBPs) from E. histolytica were evaluated for immunogenicity and protective efficacy in a Guinea pig model. Animals were immunized subcutaneously with 30μg of HSBP by three weekly inoculations. The immunogenicity of HSBP was determined by antibody response (IgG, IgM and IgA), splenocyte proliferation assay and in vitro direct amoebicidal assay with splenic lymphocytes and monocytes from vaccinated and control animals. The efficacy of the vaccine was evaluated by challenge infection to vaccinated and control animals by intra-caecal inoculation of E. histolytica trophozoites and comparing gross and histopathological findings in caeca of these animals. HSBP was found to induce specific anti-amoebic response as seen by specific antibody production and direct amoebicidal activity of splenocytes. The vaccine also showed partial protection against challenge infection in vaccinated animals as shown by mild/absent lesions and histopathological findings.
Collapse
Affiliation(s)
- Upninder Kaur
- Departments of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | | | | | | |
Collapse
|
7
|
Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther Deliv 2012; 2:1575-93. [PMID: 22833983 DOI: 10.4155/tde.11.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The technology has been available more than 25 years that would enable the oral delivery of vaccines, proteins and peptides, thus avoiding the need for injection. To this day, injection is still the mode of delivery, yet not the main mode of choice. This review focuses on several of the potential modes for oral delivery of peptides, proteins and vaccines. Additionally, the review will provide the reader with an insight into the problems and potential solutions for several of these modes of oral delivery of peptides and proteins.
Collapse
|
8
|
Meneses-Ruiz DM, Laclette JP, Aguilar-Díaz H, Hernández-Ruiz J, Luz-Madrigal A, Sampieri A, Vaca L, Carrero JC. Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster. Int J Biol Sci 2011; 7:1345-56. [PMID: 22110386 PMCID: PMC3221370 DOI: 10.7150/ijbs.7.1345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/23/2022] Open
Abstract
Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.
Collapse
Affiliation(s)
- D M Meneses-Ruiz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. A.P. 70228, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Davoodi-Semiromi A, Samson N, Daniell H. The green vaccine: A global strategy to combat infectious and autoimmune diseases. HUMAN VACCINES 2009; 5:488-93. [PMID: 19430198 DOI: 10.4161/hv.8247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
10
|
Protection against intestinal amebiasis by a recombinant vaccine is transferable by T cells and mediated by gamma interferon. Infect Immun 2009; 77:3909-18. [PMID: 19564375 DOI: 10.1128/iai.00487-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously shown that vaccination with purified Entamoeba histolytica Gal/GalNAc lectin or recombinant subunits can protect mice from intestinal amebiasis upon intracecal challenge. In this study, we demonstrated with adoptive-transfer experiments that this lectin vaccine protection is mediated by T cells but not serum. The cell-mediated immune (CMI) response was characterized by significant gamma interferon (IFN-gamma), interleukin 12 (IL-12), IL-2, IL-10, and IL-17 production. To move toward a human vaccine, we switched to a recombinant protein and tested a range of adjuvants and routes appropriate for humans. We found that subcutaneous delivery of LecA with IDRI's adjuvant system EM014 elicited a potent Th1-type CMI profile and provided significant protection, as measured by culture negativity (79% efficacy); intranasal immunization with cholera toxin provided 56% efficacy; and alum induced a Th2-type response that protected 62 to 68% of mice. Several antibody and CMI cytokine responses were examined for correlates of protection, and prechallenge IFN-gamma(+) or IFN-gamma-, IL-2-, and tumor necrosis factor alpha-triple-positive CD4 cells in blood were statistically associated with protection. To test the role of IFN-gamma in LecA-mediated protection, we neutralized IFN-gamma in LecA-immunized mice and found that it abrogated the protection conferred by vaccination. These data demonstrate that CMI is sufficient for vaccine protection from intestinal amebiasis and reveal an important role for IFN-gamma, even in the setting of alum.
Collapse
|
11
|
A pcDNA-Ehcpadh vaccine against Entamoeba histolytica elicits a protective Th1-like response in hamster liver. Vaccine 2009; 27:4176-86. [PMID: 19406180 DOI: 10.1016/j.vaccine.2009.04.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/18/2009] [Accepted: 04/20/2009] [Indexed: 12/12/2022]
Abstract
DNA vaccines are promising tools to fight parasitic diseases, including amoebiasis caused by the protozoan Entamoeba histolytica. Here we studied the immunogenicity and protective efficacy of a DNA vaccine against this parasite composed by the EhCPADH surface complex encoding genes (Ehcp112 and Ehadh112). EhCPADH is formed by an adhesin (EhADH112) and a cysteine proteinase (EhCP112), both involved in the parasite virulence. We evaluated transcription, protein expression, immunological response and protection against hepatic amoebiasis in hamsters intradermally and intramuscularly immunized with a mixture of pcDNA-Ehadh112 and pcDNA-Ehcp112 plasmids. RT-PCR and immunohistochemical assays showed that both antigens were differentially expressed in spleen and liver of immunized animals. No significant antibody immune response was induced by either route. However, intradermally inoculated hamsters presented a robust Th1-like immune response, characterized by high levels of INF-gamma and TNF-alpha cytokines, detected in the liver of animals challenged with virulent trophozoites. Animals showed significant protection against amoebiasis manifested by a higher survival rate and a significant prevention of liver abscess formation. We conclude that a refinement of this DNA vaccine could be a good choice to control hepatic amoebiasis.
Collapse
|
12
|
Lejeune M, Rybicka JM, Chadee K. Recent discoveries in the pathogenesis and immune response toward Entamoeba histolytica. Future Microbiol 2009; 4:105-18. [PMID: 19207103 DOI: 10.2217/17460913.4.1.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entamoeba histolytica is an enteric dwelling human protozoan parasite that causes the disease amoebiasis, which is endemic in the developing world. Over the past four decades, considerable effort has been made to understand the parasite and the disease. Improved diagnostics can now differentiate pathogenic E. histolytica from that of the related but nonpathogenic Entamoeba dispar, thus minimizing screening errors. Classically, the triad of Gal-lectin, cysteine proteinases and amoebapores of the parasite were thought to be the major proteins involved in the pathogenesis of amoebiasis. However, other amoebic molecules such as lipophosphopeptidoglycan, perioxiredoxin, arginase, and lysine and glutamic acid-rich proteins are also implicated. Recently, the genome of E. histolytica has been sequenced, which has widened our scope to study additional virulence factors. E. histolytica genome-based approaches have now confirmed the presence of Golgi apparatus-like vesicles and the machinery for glycosylation, thus improving the chances of identifying potential drug targets for chemotherapeutic intervention. Apart from Gal-lectin-based vaccines, promising vaccine targets such as serine-rich E. histolytica protein have yielded encouraging results. Considerable efforts have also been made to skew vaccination responses towards appropriate T-helper cell immunity that could augment the efficacy of vaccine candidates under study. Thus, ongoing efforts mining the information made available with the sequencing of the E. histolytica genome will no doubt identify and characterize other important potential vaccine/drug targets and lead to effective immunologic strategies for the control of amoebiasis.
Collapse
Affiliation(s)
- Manigandan Lejeune
- University of Calgary, Department of Microbiology & Infectious Diseases, Calgary, AB, T2N 4N1, Canada.
| | | | | |
Collapse
|
13
|
Lotter H, Rüssmann H, Heesemann J, Tannich E. Attenuated recombinant Yersinia as live oral vaccine carrier to protect against amoebiasis. Int J Med Microbiol 2007; 298:79-86. [PMID: 17900982 DOI: 10.1016/j.ijmm.2007.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Various attenuated Yersinia enterocolitica strains expressing different sections of the Entamoeba histolytica surface lectin via the type III protein secretion system (T3SS) were assessed for their use to orally vaccinate rodents against invasive amoebiasis. The T3SS was found to efficiently express and secrete or translocate subfragments as well as the entire heavy subunit of the lectin. Oral vaccination with recombinant Yersinia conferred significant protection against amoebic liver abscess formation when the antigen was expressed as a fusion molecule with the translocation domain of Yersinia outer protein E. However, effectiveness of vaccination was dependent on gender and the rodent species used. Protection was mediated primarily by cellular immune mechanisms as it was independent from the antibody titre against the amoeba lectin but correlated with an antigen-specific Th1-cytokine response. The results suggest that gram-negative bacteria expressing E. histolytica antigens via T3SS may constitute a suitable oral vaccine carrier against amoebiasis and that an effective IFN-gamma response is required for protection against invasive amoebiasis.
Collapse
Affiliation(s)
- Hannelore Lotter
- Bernhard-Nocht Institut für Tropenmedizin, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
Entamoeba histolytica is a eukaryotic protozoan parasite and is the causative agent of amebic colitis and amebic liver abscess. Many insights into the innate and acquired immune responses to infection with E. histolytica have been made in recent years. These findings have provided a foundation for producing a vaccine that could help to prevent the initial establishment of infection in the intestinal wall. The galactose and N-acetyl-D-galactosamine-specific lectin on the surface of the ameba is an immunodominant molecule that is highly conserved and has an integral role in the stimulation of these immune responses. The structure of the lectin has been defined, and the heavy subunit with its cysteine-rich region has been demonstrated in animal models to have some efficacy as a possible vaccine agent for prevention of amebic infection. Finding an ideal animal model of amebic intestinal infection has been difficult, but the C3H mouse and severe combined immunodeficient mouse-human intestinal xenograft models have both provided valuable insights into the first line of immune defense at the mucosal wall of the colon. Providing safe food and water to all people in the developing world is a formidable task that is not achievable in the foreseeable future. However, a vaccine for amebiasis could make a significant impact on the morbidity and mortality from the disease. Many components of the ameba are immunogenic and may serve as targets for a future vaccine, including the galactose and N-acetyl-D-galactosamine lectin, the serine-rich E. histolytica protein, cysteine proteinases, lipophosphoglycans, amebapores and the 29-kDa protein.
Collapse
Affiliation(s)
- Omer A Chaudhry
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1340, USA.
| | | |
Collapse
|
15
|
Chebolu S, Daniell H. Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:230-9. [PMID: 17309678 PMCID: PMC3471144 DOI: 10.1111/j.1467-7652.2006.00234.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multigene engineering in a single transformation event. Entamoeba histolytica infects 50 million people, causing about 100,000 deaths annually, but there is no approved vaccine against this pathogen. LecA, a potential target for blocking amoebiasis, was expressed for the first time in transgenic plants. Stable transgene integration into chloroplast genomes and homoplasmy were confirmed by polymerase chain reaction and Southern blot analyses. LecA expression was evaluated by Western blots and quantified by enzyme-linked immunosorbent assay (up to 6.3% of total soluble protein or 2.3 mg LecA/g leaf tissue). Subcutaneous immunization of mice with crude extract of transgenic leaves resulted in higher immunoglobulin G titres (up to 1:10,000) than in previous reports. An average yield of 24 mg of LecA per plant should produce 29 million doses of vaccine antigen per acre of transgenic plants. Such high levels of expression and immunogenicity should facilitate the development of a less expensive amoebiasis vaccine.
Collapse
Affiliation(s)
- Seethamahalakshmi Chebolu
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg. #20, Room 336, Orlando, FL 32816-2364, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg. #20, Room 336, Orlando, FL 32816-2364, USA
| |
Collapse
|
16
|
Lotter H, Tannich E. The current status of an amebiasis vaccine. Arch Med Res 2006; 37:292-6. [PMID: 16380335 DOI: 10.1016/j.arcmed.2005.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/25/2022]
Abstract
Efficient control of infectious diseases requires the development and application of suitable vaccines. Development of vaccines against amebiasis is still in its infancy. However, in recent years progress has been made in the identification of possible vaccine candidates, the route of application and the understanding of the immune response that is required for protection against amebiasis.
Collapse
Affiliation(s)
- Hannelore Lotter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
17
|
Snow MJ, Stanley SL. Recent Progress in Vaccines for Amebiasis. Arch Med Res 2006; 37:280-7. [PMID: 16380333 DOI: 10.1016/j.arcmed.2005.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022]
Abstract
The persistence of amebiasis as a global health problem, despite the availability of effective treatment, has led to the search for vaccines to prevent this deadly disease. Recent clinical studies suggest that mucosal immunity could provide some protection against recurrent intestinal infection with E. histolytica, but there is contradictory evidence about protective immunity after amebic liver abscess. Progress in vaccine development has been facilitated by new animal models that allow better testing of potential vaccine candidates and by the application of recombinant technology to vaccine design. Oral vaccines utilizing amebic antigens either co-administered with some form of cholera toxin or expressed in attenuated strains of Salmonella or Vibrio cholera have been developed and tested in animals for mucosal immunogenicity. Although there has been significant progress on a number of fronts, there are unanswered questions regarding the effectiveness of immune responses in preventing disease in man and, as yet, no testing of any of these vaccines in humans has been performed.
Collapse
Affiliation(s)
- Margaret J Snow
- Department of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
18
|
Lotter H, Rüssmann H, Heesemann J, Tannich E. Oral vaccination with recombinant Yersinia enterocolitica expressing hybrid type III proteins protects gerbils from amebic liver abscess. Infect Immun 2004; 72:7318-21. [PMID: 15557659 PMCID: PMC529123 DOI: 10.1128/iai.72.12.7318-7321.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protection against invasive amebiasis was achieved in the gerbil model for amebic liver abscess by oral immunization with live attenuated Yersinia enterocolitica expressing the Entamoeba histolytica galactose-inhibitable lectin that has been fused to the Yersinia outer protein E (YopE). Protection was dependent on the presence of the YopE translocation domain but was independent from the antibody response to the ameba lectin.
Collapse
Affiliation(s)
- Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany
| | | | | | | |
Collapse
|
19
|
Bravo-Torres JC, Villagómez-Castro JC, Calvo-Méndez C, Flores-Carreón A, López-Romero E. Purification and biochemical characterisation of a membrane-bound α-glucosidase from the parasite Entamoeba histolytica. Int J Parasitol 2004; 34:455-62. [PMID: 15013735 DOI: 10.1016/j.ijpara.2003.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 10/22/2003] [Accepted: 11/05/2003] [Indexed: 10/26/2022]
Abstract
An alpha-glucosidase was solubilised from a mixed membrane fraction of Entamoeba histolytica and purified to homogeneity by a two-step procedure consisting of ion exchange chromatography in a Mono Q column and affinity chromatography in concanavalin A-sepharose. Although the enzyme failed to bind the lectin, this step rendered a homogenous and more stable enzyme preparation that resolved into a single polypeptide of 55 kDa after SDS-PAGE. As measured with 4-methylumbelliferyl-alpha-D-glucopyranoside (MUalphaGlc) as substrate, glycosidase activity was optimum at pH 6.5 with different buffers and at 45 degrees C. Although the enzyme preferentially hydrolysed nigerose (alpha1,3-linked), it also cleaved kojibiose (alpha1,2-linked), which was the second preferred substrate, and to a lesser extent maltose (alpha1,4), trehalose (alpha1,1) and isomaltose (alpha1,6). Activity on alpha1,3- and alpha1,2-linked disaccharides was strongly inhibited by the glycoprotein processing inhibitors 1-deoxynojirimycin and castanospermine but was unaffected by australine. Glucose and particularly 3-deoxy-D-glucose and 6-deoxy-D-glucose were strong inhibitors of activity, whereas 2-deoxy-D-glucose and other monosaccharides had no effect. Enzyme activity on MUalphaGlc was very sensitive to inhibition by diethylpyrocarbonate suggesting a critical role of histidine residues in enzyme catalysis. Other amino acid modifying reagents such as N-ethylmaleimide and N-(3-dimethylaminopropyl)-N'ethylcarbodiimide showed a moderate effect or none at all, respectively. Results are discussed in terms of the possible involvement of this glycosidase in N-glycan processing.
Collapse
Affiliation(s)
- José C Bravo-Torres
- Facultad de Química, Instituto de Investigación en Biología Experimental, Universidad de Guanajuato, Apartado Postal No 187, Guanajuato, Gto 36000, México
| | | | | | | | | |
Collapse
|
20
|
Houpt E, Barroso L, Lockhart L, Wright R, Cramer C, Lyerly D, Petri WA. Prevention of intestinal amebiasis by vaccination with the Entamoeba histolytica Gal/GalNac lectin. Vaccine 2004; 22:611-7. [PMID: 14741152 DOI: 10.1016/j.vaccine.2003.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevention of intestinal infection by Entamoeba histolytica would block both invasive disease and parasite transmission. The amebic Gal/GalNAc lectin mediates parasite adherence to the colonic surface and fecal anti-lectin IgA is associated with protection from intestinal reinfection in children. We tested if vaccination with the E. histolytica Gal/GalNAc lectin could prevent cecal infection in a C3H mouse model of amebic colitis. Two trials using native lectin purified from the parasite and two trials using a 64 kDa recombinant fragment ("LecA") were performed with a combined intranasal and intraperitoneal immunization regimen using cholera toxin and Freund's adjuvants, respectively. Two weeks after immunization mice were challenged intracecally with trophozoites, and 4-12 weeks after challenge mice were sacrificed for histopathologic evaluation of infection. Vaccination prevented intestinal infection with efficacies of 84 and 100% in the two native lectin trials and 91 and 34% in the two LecA trials. Mice with detectable pre-challenge fecal anti-lectin IgA responses were significantly more resistant to infection than mice without fecal anti-lectin IgA responses. These results show for the first time that immunization with the Gal/GalNAc lectin can prevent intestinal amebiasis in mice and suggest a protective role for fecal anti-lectin IgA in vivo.
Collapse
Affiliation(s)
- Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, 300 Lane Rd, PO Box 801340, MR4 Building Room 2115, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Entamoeba histolytica is the aetiological agent of invasive amoebiasis, the third leading parasitic cause of mortality in the world. The disease can be easily cured by chemotherapy; however, prevention, mainly in the form of vaccination, could greatly decrease the incidence of the disease, and possibly help in its eradication. The parasite's surface galactose and N-acetyl-d-galactosamine-inhibitable adherence lectin (Gal-lectin) is highly antigenic and is the most promising subunit vaccine candidate. We have generated a Gal-lectin-based DNA vaccine and tested its immunogenicity in mice. Although further optimization will probably be required, this vaccine could help in the generation of an amoebiasis DNA vaccine for use in humans.
Collapse
Affiliation(s)
- Denis Gaucher
- Institute of Parasitology of McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|