1
|
Huang T, Zhang ZY, Qiu ZL, Li L, Liu XX, Wang L, Wang ZY, Li ZP, Xiao GS, Wang W. Effect of Cymbopogon martini (Roxb.) Will.Watson essential oil on antioxidant activity, immune and intestinal barrier-related function, and gut microbiota in pigeons infected by Candida albicans. Front Pharmacol 2024; 15:1380277. [PMID: 38628645 PMCID: PMC11018936 DOI: 10.3389/fphar.2024.1380277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1β, TGF-β, and IL-8 in the ileum, as well as IL-1β and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.
Collapse
Affiliation(s)
- Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zheng-Yue Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhi-Lin Qiu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lin Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xian-Xi Liu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lei Wang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zi-Ying Wang
- Meizhou Jinlv Modern Agriculture Development Co., Ltd., Meizhou, China
| | - Zhi-Peng Li
- Guangdong Baoning Agriculture and Animal Husbandry Technology Co., Ltd., Meizhou, China
| | - Geng-Sheng Xiao
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, Jacobsen ID, Kniemeyer O, Jungnickel B, Zipfel PF, Skerka C. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun 2020; 11:2331. [PMID: 32393780 PMCID: PMC7214408 DOI: 10.1038/s41467-020-16241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-β1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble β-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-β1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-β1 to the TGF-β receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-β1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-β1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.
Collapse
Affiliation(s)
- Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Emeraldo A H Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Mohammad Z Hasan
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Marta Ferreira-Gomes
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, University Hospital Jena, 07743, Jena, Germany
| | - Diana I Palme
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, 97070, Würzburg, Germany
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.
| |
Collapse
|
4
|
Ahmadi N, Ahmadi A, Kheirali E, Hossein Yadegari M, Bayat M, Shajiei A, Amini AA, Ashrafi S, Abolhassani M, Faezi S, Yazdanparast SA, Mahdavi M. Systemic infection with Candida albicans in breast tumor bearing mice: Cytokines dysregulation and induction of regulatory T cells. J Mycol Med 2019; 29:49-55. [DOI: 10.1016/j.mycmed.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
|
5
|
Abe Y, Yamamoto N, Nakamura K, Arai K, Sakurai C, Hatsuzawa K, Ogura Y, Iseki K, Tase C, Kanemitsu K. IL-13 attenuates early local CXCL2-dependent neutrophil recruitment for Candida albicans clearance during a severe murine systemic infection. Immunobiology 2018; 224:15-29. [PMID: 30514570 DOI: 10.1016/j.imbio.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/29/2023]
Abstract
To investigate the role of IL-13 during a severe systemic Candida albicans infection, BALB/c control and IL-13-/- mice were examined for colony forming units (CFU) in the kidneys and survival days after intravenous infection. Proinflammatory mediators and cell recruitment into the tissue were measured by quantitative real-time PCR, a multiple ELISA system, and morphological cell differentiation. The IL-13-/- group exhibited a lower CFU number in the kidneys at 4 days and survived longer than the control mice, which was accompanied by significantly higher expression of C-X-C motif ligand 2 (CXCL2), IFN-γ, and polymorphonuclear neutrophils (PMNs) in the infected kidneys. By contrast, the expression of transforming growth factor β (TGF-β) and IL-17 A on day 10 were significantly higher in the control mice than in the IL-13-/- group. When using an intratracheal infection model, the IL-13-/- group recruited a greater number of PMNs in 6 h, with rapidly increased CXCL2 in the alveolar space. In vitro testing with cultured bone-marrow-derived cells demonstrated rapid CXCL2 mRNA upregulation at 3 h after contact with C. albicans, which decreased with recombinant IL-13 pretreatment, whereas rIL-13 retained TGF-β upregulation. In a murine model of Candida systemic infection, preexistent IL-13 limits both the rapid CXCL2 elevation and PMN aggregation in the target organ to suppress inflammatory mediators, which also attenuates local pathogen clearance within four days.
Collapse
Affiliation(s)
- Yoshinobu Abe
- Department of Emergency and Critical Care Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Natsuo Yamamoto
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan; Health and Welfare Center of Sendai City, Taihaku Ward Branch Office, Taihaku-ku, Nagamachi-minami 1-15, Sendai, 982-8601, Japan.
| | - Kiwamu Nakamura
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazuaki Arai
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Yasunori Ogura
- Division of Human Life and Environmental Sciences, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Choichiro Tase
- Department of Emergency and Critical Care Medicine, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| | - Keiji Kanemitsu
- Department of Infection Control, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
6
|
Pinheiro CR, Coelho AL, de Oliveira CE, Gasparoto TH, Garlet GP, Silva JS, Santos CF, Cavassani KA, Hogaboam CM, Campanelli AP. Recognition of Candida albicans by gingival fibroblasts: The role of TLR2, TLR4/CD14, and MyD88. Cytokine 2017; 106:67-75. [PMID: 29128406 DOI: 10.1016/j.cyto.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Recent evidence indicates that nonprofessional immune cells such as epithelial cells, endothelial cells, and fibroblasts also contribute to innate immunity via secretion of cytokines. Fibroblasts are the principal type of cell found in the periodontal connective tissues and they are involved in the immune response during periodontal disease. The role of fibroblasts in the recognition of pathogens via Toll-like receptors (TLRs) has been established; however, few studies have been conducted concerning the involvement of innate immune receptors in the recognition of Candida albicans by gingival fibroblast. In the current study, we investigate the functional activity of TLR2, cluster of differentiation 14 (CD14), and myeloid differentiation primary response gene 88 (MyD88) molecules in the recognition of C. albicans by gingival fibroblast. First, we identified that gingival fibroblasts expressed TLR2, TLR3, and TLR4. Our results showed that TLR agonists had no effect on these receptors' expression by TLR2, MyD88, and CD14-deficient cells. Notably, C. albicans and a synthetic triacylated lipoprotein (Pam3CSK4) induced a remarkable increase of TLR3 expression on MyD88-deficient gingival fibroblasts. TLR4 expression levels were lower than TLR2 and TLR3 levels and remained unchanged after TLR agonist stimulation. Gingival fibroblasts presented morphological similarities; however, TLR2 deficiency on these cells leads to a lower proliferative response, whereas the deficiency on CD14 expression resulted in lower levels of type I collagen by these cells. In addition, the recognition of C. albicans by gingival fibroblasts had an effect on the secretion of cytokines and it was dependent on a specific recognition molecule. Specifically, tumor necrosis factor-α (TNF-α) production after the recognition of C. albicans was dependent on MyD88, CD14, and TLR2 molecules, whereas the production of interleukin-1β (IL-1β) and IL-13 was dependent on TLR2. These findings are the first to describe a role of gingival fibroblast in the recognition of C. albicans and the pathways involved in this process. An understanding of these pathways may lead to alternative treatments for patients with periodontal disease.
Collapse
Affiliation(s)
- Claudia Ramos Pinheiro
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Ana Lúcia Coelho
- Department of Medicine, Advanced Health Sciences Pavilion, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Karen Angélica Cavassani
- Department of Medicine, Advanced Health Sciences Pavilion, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Cory M Hogaboam
- Department of Medicine, Advanced Health Sciences Pavilion, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
7
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
8
|
Decreased production of proinflammatory cytokines by monocytes from individuals presenting Candida-associated denture stomatitis. Cytokine 2016; 77:145-51. [DOI: 10.1016/j.cyto.2015.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
|
9
|
Willcocks S, Wren BW. Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence. Future Microbiol 2015; 9:657-68. [PMID: 24957092 DOI: 10.2217/fmb.14.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.
Collapse
Affiliation(s)
- Sam Willcocks
- The London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | | |
Collapse
|
10
|
Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP. Early expression of local cytokines during systemic Candida albicans infection in a murine intravenous challenge model. Biomed Rep 2014; 2:869-874. [PMID: 25279161 DOI: 10.3892/br.2014.365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022] Open
Abstract
Local cytokine production is a significant indicator for disease pathogenesis or progression. Previous studies on cytokine production during systemic Candida albicans (C. albicans) infection were solely on kidney or single cell type interaction with C. albicans. Therefore, the present study aimed to assess the early cytokine expression of various target organs (kidney, spleen and brain) over a 72-h time course during systemic C. albicans infection. The local cytokine profiles of the target organs during systemic C. albicans infection were measured by cytometric bead array and ELISA analysis. The results demonstrated that interleukin-6 (IL-6) and IL-2 were statistically significant (P<0.05) in the spleen at 24 and 72 h post-infection, whereas in the kidney, IL-6 and tumor necrosis factor-α (TNF-α) were statistically significant (P<0.05) at 24 and 72 h post-infection and CXCL-1 and transforming growth factor-β (TGF-β) were statistically significant (P<0.05) at 72 h post-infection. In the brain, IL-6 and TNF-α were statistically significant (P<0.05) at 24 and 72 h post-infection, whereas TGF-β was statistically significant (P<0.05) at 72 h post-infection. These findings demonstrate that host immune responses were varied among target organs during systemic C. albicans infection. This could be important for designing targeted immunotherapy against this pathogen through immunomodulatory approaches in future exploratory research.
Collapse
Affiliation(s)
- Voon Kin Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Kuan Jeang Foong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Abdullah Maha
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Basir Rusliza
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohtarrudin Norhafizah
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Pei Pei Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia ; Translational Infectious Diseases Program, Centre for Translational Medicine, Department of Microbiology, National University of Singapore, Singapore 117597, Republic of Singapore
| |
Collapse
|
11
|
Rammaert B, Desjardins A, Lortholary O. New insights into hepatosplenic candidosis, a manifestation of chronic disseminated candidosis. Mycoses 2012; 55:e74-84. [DOI: 10.1111/j.1439-0507.2012.02182.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
D’Angelillo A, De Luna E, Romano S, Bisogni R, Buffolano W, Gargano N, Del Porto P, Del Vecchio L, Petersen E, Romano MF. Toxoplasma gondii Dense Granule Antigen 1 stimulates apoptosis of monocytes through autocrine TGF-β signaling. Apoptosis 2011; 16:551-62. [DOI: 10.1007/s10495-011-0586-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Abstract
We have previously postulated that as well as T-helper (Th) 1 and Th17 cells, the transforming growth factor (TGF)-beta/fibronectin (FN)/alpha5beta1 pathway is central to psoriasis pathogenesis. EDA+ FN refers to an alternatively spliced isoform of FN with an additional domain known as extra domain A. EDA+ FN has two important properties pertinent to psoriasis lesions: it stimulates keratinocyte hyperproliferation, and, through stimulation of Toll-like receptor (TLR) 4, stimulates production of proinflammatory cytokines. EDA+ FN production induced by TGF-beta stimulation can be maintained in psoriasis lesions via two main feedback loops. Firstly, EDA+ FN stimulates proliferation of keratinocytes, which, in an autocrine fashion, will release more EDA+ FN. Secondly, EDA+ FN stimulates TLR4 expressed by antigen-presenting cells resulting in the production of proinflammatory cytokines such as tumour necrosis factor-alpha, interleukin (IL)-1, IL-6 and IL-12. The resultant promotion of cutaneous inflammation results in the recruitment of Th1 cells, which also produce EDA+ FN. We propose that these 'FN loops' contribute to the maintenance and progression of psoriatic lesions. Finally, although the association between psoriasis and heart/thrombotic disease remains unclear one plausible link may be the promotion of atherosclerosis and thrombotic heart disease by EDA+ FN.
Collapse
Affiliation(s)
- J P McFadden
- Department of Cutaneous Allergy, St John's Institute of Dermatology, St Thomas' Hospital, London SE1 7EH, UK.
| | | | | | | |
Collapse
|
14
|
Rosenblum EB, Poorten TJ, Settles M, Murdoch GK, Robert J, Maddox N, Eisen MB. Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 2009; 4:e6494. [PMID: 19701481 PMCID: PMC2727658 DOI: 10.1371/journal.pone.0006494] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022] Open
Abstract
Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd) infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus) tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen) following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing efforts to understand differences in response to Bd between susceptible and resistant frog species and the effects of chytridiomycosis in natural populations.
Collapse
Affiliation(s)
- Erica Bree Rosenblum
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.
| | | | | | | | | | | | | |
Collapse
|
15
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Figueiredo CC, Deccache PMS, Lopes-Bezerra LM, Morandi V. TGF-beta1 induces transendothelial migration of the pathogenic fungus Sporothrix schenckii by a paracellular route involving extracellular matrix proteins. MICROBIOLOGY-SGM 2007; 153:2910-2921. [PMID: 17768235 DOI: 10.1099/mic.0.2006/005421-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sporotrichosis, a mycosis caused by Sporothrix schenckii, is characterized by lymphocutaneous lesions. In immunocompromised hosts, this fungus may invade the bloodstream and disseminate to other tissues, such as lung and bone. Our group previously showed that S. schenckii yeasts adhere to endothelial monolayers and that this interaction is modulated by cytokines. Using 3.0 mum-pore culture inserts, the present work shows that transforming growth factor (TGF)-beta1 led to a 80+/-26 % increase in fungal migration across endothelial monolayers and inhibited fungus internalization by 55+/-23.5 %, when compared to untreated cells. The major surface endothelial molecules recognized by S. schenckii were not modulated by TGF-beta1. These data suggested that a paracellular route is preferentially used by S. schenckii during the transmigration of cultured endothelial cells. It was further observed that TGF-beta1 increased the subendothelial matrix exposure and that anti-fibronectin (anti-FN) and anti-laminin (anti-LM) antibodies abolished the increase in S. schenckii association with endothelial monolayers induced by TGF-beta1. These antibodies also inhibited (38.2+/-4.29 % and 50.8+/-17.3 %, respectively) the adhesion of S. schenckii to freshly prepared native endothelial matrices. Furthermore, transendothelial migration of S. schenckii was blocked by anti-FN and anti-LM antibodies. These data indicate that TGF-beta1-induced S. schenckii adhesion to endothelial monolayers results from the increased exposure of the subendothelial extracellular matrix and that this event may contribute to the enhancement of transendothelial migration.
Collapse
Affiliation(s)
- Camila C Figueiredo
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Paula M S Deccache
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Leila M Lopes-Bezerra
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Verônica Morandi
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24:99-146. [PMID: 16551245 DOI: 10.1146/annurev.immunol.24.021605.090737] [Citation(s) in RCA: 1706] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
Collapse
Affiliation(s)
- Ming O Li
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
18
|
Walsh TJ, Roilides E, Cortez K, Kottilil S, Bailey J, Lyman CA. Control, immunoregulation, and expression of innate pulmonary host defenses against Aspergillus fumigatus. Med Mycol 2005; 43 Suppl 1:S165-72. [PMID: 16114132 DOI: 10.1080/13693780500064672] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The innate host defense system (IHDS) against Aspergillus fumigatus includes dedicated phagocytic cells (peripheral blood monocytes, monocyte derived macrophages, pulmonary alveolar macrophages, neutrophils, myeloid dendritic cells and natural killer cells), cytokines, chemokines, toll-like receptors, and antimicrobial peptides. During the past decade, the advances in the field of the IHDS have been enormous, allowing a better understanding of the immunopharmacological control, immunoregulation, and expression of innate host defense molecules against Aspergillus fumigatus.
Collapse
Affiliation(s)
- T J Walsh
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Bldg. 10, Rm 13N-240, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
During the past two decades, invasive fungal infections have emerged as a major threat to immunocompromised hosts. Patients with neoplastic diseases are at significant risk for such infections as a result of their underlying illness and its therapy. Aspergillus, Candida, Cryptococcus and emerging pathogens, such as the zygomycetes, dark walled fungi, Trichosporon and Fusarium, are largely opportunists, causing infection when host defences are breached. The immune response varies with respect to the fungal species and morphotype encountered. The risk for particular infections differs, depending upon which aspect of immunity is impaired. This article reviews the current understanding of the role and relative importance of innate and adaptive immunity to common and emerging fungal pathogens. An understanding of the host response to these organisms is important in decisions regarding use of currently available antifungal therapies and in the design of new therapeutic modalities.
Collapse
Affiliation(s)
- Shmuel Shoham
- Section of Infectious Diseases, Washington Hospital Center, Washington, DC, USA
| | | |
Collapse
|
20
|
Kim HS, Choi EH, Khan J, Roilides E, Francesconi A, Kasai M, Sein T, Schaufele RL, Sakurai K, Son CG, Greer BT, Chanock S, Lyman CA, Walsh TJ. Expression of genes encoding innate host defense molecules in normal human monocytes in response to Candida albicans. Infect Immun 2005; 73:3714-3724. [PMID: 15908401 PMCID: PMC1111842 DOI: 10.1128/iai.73.6.3714-3724.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/10/2004] [Accepted: 02/10/2005] [Indexed: 01/21/2023] Open
Abstract
Little is known about the regulation and coordinated expression of genes involved in the innate host response to Candida albicans. We therefore examined the kinetic profile of gene expression of innate host defense molecules in normal human monocytes infected with C. albicans using microarray technology. Freshly isolated peripheral blood monocytes from five healthy donors were incubated with C. albicans for 0 to 18 h in parallel with time-matched uninfected control cells. RNA from monocytes was extracted and amplified for microarray analysis, using a 42,421-gene cDNA chip. Expression of genes encoding proinflammatory cytokines, including tumor necrosis factor alpha, interleukin 1 (IL-1), IL-6, and leukemia inhibitory factor, was markedly enhanced during the first 6 h and coincided with an increase in phagocytosis. Expression of these genes returned to near baseline by 18 h. Genes encoding chemokines, including IL-8; macrophage inflammatory proteins 1, 3, and 4; and monocyte chemoattractant protein 1, also were strongly up-regulated, with peak expression at 4 to 6 h, as were genes encoding chemokine receptors CCR1, CCR5, CCR7, and CXCR5. Expression of genes whose products may protect monocyte viability, such as BCL2-related protein, metallothioneins, CD71, and SOCS3, was up-regulated at 4 to 6 h and remained elevated throughout the 18-h time course. On the other hand, expression of genes encoding T-cell-regulatory molecules (e.g., IL-12, gamma interferon, and transforming growth factor beta) was not significantly affected during the 18-h incubation. Moreover, genes encoding IL-15, the IL-13 receptor (IL-13Ra1), and CD14 were suppressed during the 18-h exposure to C. albicans. Thus, C. albicans is a potent inducer of a dynamic cascade of expression of genes whose products are related to the recruitment, activation, and protection of neutrophils and monocytes.
Collapse
Affiliation(s)
- Hee Sup Kim
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute/NIH, Room 1-5740, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Choi EH, Taylor JG, Foster CB, Walsh TJ, Anttila VJ, Ruutu T, Palotie A, Chanock SJ. Common polymorphisms in critical genes of innate immunity do not contribute to the risk for chronic disseminated candidiasis in adult leukemia patients. Med Mycol 2005; 43:349-53. [PMID: 16110781 DOI: 10.1080/13693780412331282322] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Chronic disseminated candidiasis is a serious fungal infection in immunocompromised patients, particularly those undergoing therapy for acute leukemia. Coordination between innate and adaptive immune system is critical to resistance or susceptibility to Candida infection. In order to investigate possible genetic contribution to chronic disseminated candidiasis of key molecules in the innate immune pathway, we performed a case control study using the candidate gene approach. Forty subjects with chronic disseminated candidiasis and 50 controls without chronic disseminated candidiasis but an underlying diagnosis of leukemia were enrolled in the Helsinki University Central Hospital during the period 1980-1998. Candidate genes were selected for analysis based upon the following criteria: a common polymorphism (>5% frequency) and existence a priori of clinical and biological data suggesting a role for the variant in the pathogenesis of chronic disseminated candidiasis. Six genes were selected from critical microbicidal and innate immune pathways, including three low-affinity Fcgamma receptors (FCGR2A, FCGR3A and FCGR3B), chitotriosidase (CHIT1), p22-phox NADPH oxidase (CYBA), and mannose binding lectin (MBL2). There was no statistically significant association of susceptibility to chronic disseminated candidiasis with the polymorphisms in this study. Common variants in the six studied genes most likely do not contribute to the risk for chronic disseminated candidiasis in patients with acute leukemia.
Collapse
Affiliation(s)
- Eun Hwa Choi
- Section of Genomic Variation, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
An increasingly diverse array of clinically relevant animal models of candidiasis have been established that mimic both the immune perturbations of the host and tissue-specific features of candidiasis in humans. Cause-and-effect analysis of Candida host-pathogen interactions using these animal models has made a quantum leap forward in the genomic era, with the concurrent construction of C. albicans mutants with targeted mutations of putative virulence factors, the application of microarrays and other emerging technologies to comprehensively assess C. albicans gene expression in vivo, and construction of transgenic and knockout mice to simulate specific host immunodeficiencies. The opportunity to combine these powerful tools will yield an unprecedented wealth of new information on the molecular and cellular pathogenesis of candidiasis.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology and Immunology, Sainte-Justine Hospital and University of Montreal, 3175 Côte Ste-Catherine, Montreal, Quebec, Canada, H3T 1C5.
| |
Collapse
|
23
|
Kalb TH, Lorin S. Infection in the chronically critically ill: unique risk profile in a newly defined population. Crit Care Clin 2002; 18:529-52. [PMID: 12140912 DOI: 10.1016/s0749-0704(02)00009-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although CCI is defined as prolonged ventilatory failure with tracheotomy stemming from preceding critical illness, the contention that multisystem debilities impact on most CCI patients' care and recovery is a central thesis of this volume. Perhaps reflecting the combined debilities inherent in CCI, infectious complications take their toll in morbidity, mortality, and persistent ventilatory insufficiency. Enhanced susceptibility to infection results from a potent admixture of barrier breakdown, exposure to virulent and resistant nosocomial pathogens, and postulated "immune exhaustion" that stems from the combined impact of comorbidities and the sequellae of critical illness. Strategies to improve outcome in CCI-related infection include standard measures of support especially nutrition, reducing environmental inoculum through pulmonary hygiene measures, skin care, and limiting barrier breaches, and appropriate antimicrobials directed at likely pathogens. Future stratification of patient risk on the basis of immune phenotype or genotype and potential immunomodulatory prophylaxis may be around the corner, as new prospects in the pharmaceutical armamentarium are presently undergoing testing.
Collapse
Affiliation(s)
- Thomas H Kalb
- Mount Sinai Medical Center, MICU, Department of Medicine, Box 1232, New York, NY 10029, USA.
| | | |
Collapse
|