1
|
Fu Y, Trautwein-Schult A, Piersma S, Sun C, Westra J, de Jong A, Becher D, van Dijl JM. Characterization of outer membrane vesicles of Aggregatibacter actinomycetemcomitans serotypes a, b and c and their interactions with human neutrophils. Int J Med Microbiol 2025; 319:151655. [PMID: 40424897 DOI: 10.1016/j.ijmm.2025.151655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/02/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a Gram-negative oral pathogen associated with periodontitis and systemic diseases. Seven serotypes of Aa are known, with serotypes a, b and c being most prevalent worldwide. Interestingly, serotype a, b and c isolates present differences in virulence. This focuses interest on their secreted virulence factors. Gram-negative bacteria evolved a specific protein secretion mechanism, based on the release of outer membrane vesicles (OMVs) with a protein cargo. The present study was therefore aimed at investigating whether differences in the protein cargo of OMVs could be associated with the differential virulence of Aa serotypes a, b or c. Accordingly, the different OMV proteomes were defined by mass spectrometry and infection assays were performed with human neutrophils that represent the main innate defense against oral pathogens like Aa. Subsequently, we correlated the OMV proteome data with the observed OMV-neutrophil interactions. A total of 276 OMV-associated proteins was identified, including 53 known virulence factors. Interestingly, OMVs from Aa isolates with different serotypes displayed similar protein cargo, but the relative quantities differed. OMVs of serotype a isolates were exceptional in carrying CRISPR proteins with a potential role in virulence. Intriguingly, Aa OMVs mostly coated the neutrophil surface, triggering formation of neutrophil extracellular traps (NETs). Conversely, the NETs captured Aa OMVs. Since the observed OMV-neutrophil interplay will occur at a distance from the OMV-producing bacteria, we postulate that it allows the bacteria to evade capture and elimination by neutrophils.
Collapse
Affiliation(s)
- Yanyan Fu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Anke Trautwein-Schult
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Sjouke Piersma
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Chang Sun
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of cells and Systems, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Anne de Jong
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, Groningen, the Netherlands
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands.
| |
Collapse
|
2
|
Kalfas S, Pour ZK, Claesson R, Johansson A. Leukotoxin A Production and Release by JP2 and Non-JP2 Genotype Aggregatibacter actinomycetemcomitans in Relation to Culture Conditions. Pathogens 2024; 13:569. [PMID: 39057796 PMCID: PMC11279835 DOI: 10.3390/pathogens13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aggressive forms of periodontitis, especially in young patients, are often associated with an increased proportion of the Gram-negative bacterium Aggregatibacter actinomycetemcomitans of the microbiota of the affected periodontal sites. One of the virulence factors of A. actinomycetemcomitans is a leukotoxin (LtxA) that induces a pro-inflammatory cell death process in leukocytes. A. actinomycetemcomitans exhibits a large genetic diversity and different genotypes vary in LtxA production capacity. The genotype JP2 is a heavy LtxA producer due to a 530-base pair deletion in the promoter for the toxin genes, and this trait has been associated with an increased pathogenic potential. The present study focused on the production and release of LtxA by different A. actinomycetemcomitans genotypes and serotypes under various growth conditions. Four different strains of this bacterium were cultured in two different culture broths, and the amount of LtxA bound to the bacterial surface or released into the broths was determined. The cultures were examined during the logarithmic and the early stationary phases of growth. The JP2 genotype exhibited the highest LtxA production among the strains tested, and production was not affected by the growth phase. The opposite was observed with the other strains. The composition of the culture broth had no effect on the growth pattern of the tested strains. However, the abundant release of LtxA from the bacterial surface into the culture broth was found in the presence of horse serum. Besides confirming the enhanced leucotoxicity of the JP2 genotype, the study provides new data on LtxA production in the logarithmic and stationary phases of growth and the effect of media composition on the release of the toxin from the bacterial membrane.
Collapse
Affiliation(s)
- Sotirios Kalfas
- Department of Preventive Dentistry, Periodontology and Implant Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Zahra Khayyat Pour
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| | - Rolf Claesson
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| | - Anders Johansson
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| |
Collapse
|
3
|
Halder T, Yadav SK, Yadav S. Chemical synthesis of the O-antigen repeating unit of Actinobacillus actinomycetemcomitans serotype f. Carbohydr Res 2023; 534:108977. [PMID: 37949033 DOI: 10.1016/j.carres.2023.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Herein, we report the total synthesis of the trisaccharide repeating unit of the O-antigen of Actinobacillus actinomycetemcomitans serotype f. The trisaccharide comprising of α-(1-2) and α-(1-3)-linked L-rhamnopyranosides backbone with the latter rhamnose containing a branching N-acetyl-d-galactosaminopyranoside at the C2-O via a β-glycosidic bond was synthesized by two methods. Initially, the protected trisaccharide has been synthesized by step-wise assembly of the monosaccharide building blocks and subsequently the former was synthesized by the one-pot assembly of the latter components. The synthesized trisaccharide contains an aminoethyl linker appended as an O-glycoside at the reducing end, thereby providing scope for further conjugation for different applications.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Sunil K Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
4
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
5
|
Fu Y, Maaβ S, Cavallo FM, de Jong A, Raangs E, Westra J, Buist G, Becher D, van Dijl JM. Differential Virulence of Aggregatibacter actinomycetemcomitans Serotypes Explained by Exoproteome Heterogeneity. Microbiol Spectr 2023; 11:e0329822. [PMID: 36541765 PMCID: PMC9927298 DOI: 10.1128/spectrum.03298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a Gram-negative bacterial pathogen associated with periodontitis and nonoral diseases like rheumatoid arthritis and Alzheimer´s disease. Aa isolates with the serotypes a, b, and c are globally most prevalent. Importantly, isolates displaying these serotypes have different clinical presentations. While serotype b isolates are predominant in severe periodontitis, serotypes a and c are generally encountered in mild periodontitis or healthy individuals. It is currently unknown how these differences are reflected in the overall secretion of virulence factors. Therefore, this study was aimed at a comparative analysis of exoproteomes from different clinical Aa isolates with serotypes a, b, or c by mass spectrometry, and a subsequent correlation of the recorded exoproteome profiles with virulence. Overall, we identified 425 extracellular proteins. Significant differences in the exoproteome composition of isolates with different serotypes were observed in terms of protein identification and abundance. In particular, serotype a isolates presented more extracellular proteins than serotype b or c isolates. These differences are mirrored in their virulence in infection models based on human salivary gland epithelial cells and neutrophils. Remarkably, serotype a isolates displayed stronger adhesive capabilities and induced more lysis of epithelial cells and neutrophils than serotype b or c isolates. Conversely, serotype c isolates showed relatively low leukotoxicity, while provoking NETosis to similar extents as serotype a and b isolates. Altogether, we conclude that the differential virulence presentation by Aa isolates with the dominant serotypes a, b, or c can be explained by their exoproteome heterogeneity. IMPORTANCE Periodontitis is an inflammatory disease that causes progressive destruction of alveolar bone and supporting tissues around the teeth, ultimately resulting in tooth loss. The bacterium Aggregatibacter actinomycetemcomitans (Aa) is a prevalent causative agent of periodontitis, but this oral pathogen is also associated with serious extraoral diseases like rheumatoid arthritis and Alzheimer's disease. Clinical Aa isolates are usually distinguished by serotyping, because of known serotype-specific differences in virulence. Aa with serotype b is associated with aggressive forms of periodontitis, while isolates with serotypes a or c are usually encountered in cases of mild periodontitis or healthy individuals. The molecular basis for these differences in virulence was so far unknown. In the present study, we pinpoint serotype-specific differences in virulence factor production by clinical Aa isolates. We consider these findings important, because they provide new leads for future preventive or therapeutic approaches to fight periodontitis and associated morbidities.
Collapse
Affiliation(s)
- Yanyan Fu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Sandra Maaβ
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Francis M. Cavallo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Anne de Jong
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, Groningen, the Netherlands
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Girbe Buist
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| |
Collapse
|
6
|
Tang-Siegel GG. Human Serum Mediated Bacteriophage Life Cycle Switch in Aggregatibacter actinomycetemcomitans Is Linked to Pyruvate Dehydrogenase Complex. Life (Basel) 2023; 13:436. [PMID: 36836793 PMCID: PMC9959103 DOI: 10.3390/life13020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antimicrobial resistance is rising as a major global public health threat and antibiotic resistance genes are widely spread among species, including human oral pathogens, e.g., Aggregatibacter actinomycetemcomitans. This Gram-negative, capnophilic, facultative anaerobe is well recognized as a causative agent leading to periodontal diseases, as well as seriously systemic infections including endocarditis. A. actinomycetemcomitans has also evolved mechanisms against complement-mediated phagocytosis and resiliently survives in serum-rich in vivo environments, i.e., inflamed periodontal pockets and blood circulations. This bacterium, however, demonstrated increasing sensitivity to human serum, when being infected by a pseudolysogenic bacteriophage S1249, which switched to the lytic state as a response to human serum. Concomitantly, the pyruvate dehydrogenase complex (PDHc), which is composed of multiple copies of three enzymes (E1, E2, and E3) and oxidatively decarboxylates pyruvate to acetyl-CoA available for tricarboxylic acid (TCA) cycle, was found up-regulated 10-fold in the bacterial lysogen after human serum exposure. The data clearly indicated that certain human serum components induced phage virion replication and egress, resulting in bacterial lysis. Phage manipulation of bacterial ATP production through regulation of PDHc, a gatekeeper linking glycolysis to TCA cycle through aerobic respiration, suggests that a more efficient energy production and delivery system is required for phage progeny replication and release in this in vivo environment. Insights into bacteriophage regulation of bacterial fitness in a mimic in vivo condition will provide alternative strategies to control bacterial infection, in addition to antibiotics.
Collapse
Affiliation(s)
- Gaoyan Grace Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont and State Agricultural College, Burlington, VT 05405, USA
| |
Collapse
|
7
|
Genomic Islands Shape the Genetic Background of Both JP2 and Non-JP2 Aggregatibacter actinomycetemcomitans. Pathogens 2022; 11:pathogens11091037. [PMID: 36145469 PMCID: PMC9506275 DOI: 10.3390/pathogens11091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen associated with periodontitis. This species exhibits substantial variations in gene content among different isolates and has different virulence potentials. This study examined the distribution of genomic islands and their insert sites among genetically diverse A. actinomycetemcomitans strains by comparative genomic analysis. The results showed that some islands, presumably more ancient, were found across all genetic clades of A. actinomycetemcomitans. In contrast, other islands were specific to individual clades or a subset of clades and may have been acquired more recently. The islands for the biogenesis of serotype-specific antigens comprise distinct genes located in different loci for serotype a and serotype b–f strains. Islands that encode the same cytolethal distending toxins appear to have been acquired via distinct mechanisms in different loci for clade b/c and for clade a/d/e/f strains. The functions of numerous other islands remain to be elucidated. JP2 strains represent a small branch within clade b, one of the five major genetic clades of A. actinomycetemcomitans. In conclusion, the complex process of genomic island acquisition, deletion, and modification is a significant force in the genetic divergence of A. actinomycetemcomitans. Assessing the genetic distinctions between JP2 and non-JP2 strains must consider the landscape of genetic variations shaped by evolution.
Collapse
|
8
|
Connections between Exoproteome Heterogeneity and Virulence in the Oral Pathogen Aggregatibacter actinomycetemcomitans. mSystems 2022; 7:e0025422. [PMID: 35695491 PMCID: PMC9239275 DOI: 10.1128/msystems.00254-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterial pathogen associated with severe periodontitis and nonoral diseases. Clinical isolates of A. actinomycetemcomitans display a rough (R) colony phenotype with strong adherent properties. Upon prolonged culturing, nonadherent strains with a smooth (S) colony phenotype emerge. To date, most virulence studies on A. actinomycetemcomitans have been performed with S strains of A. actinomycetemcomitans, whereas the virulence of clinical R isolates has received relatively little attention. Since the extracellular proteome is the main bacterial reservoir of virulence factors, the present study was aimed at a comparative analysis of this subproteome fraction for a collection of R isolates and derivative S strains, in order to link particular proteins to the virulence of A. actinomycetemcomitans with serotype b. To assess the bacterial virulence, we applied different infection models based on larvae of the greater wax moth Galleria mellonella, a human salivary gland-derived epithelial cell line, and freshly isolated neutrophils from healthy human volunteers. A total number of 351 extracellular A. actinomycetemcomitans proteins was identified by mass spectrometry, with the S strains consistently showing more extracellular proteins than their parental R isolates. A total of 50 known extracellular virulence factors was identified, of which 15 were expressed by all investigated bacteria. Importantly, the comparison of differences in exoproteome composition and virulence highlights critical roles of 10 extracellular proteins in the different infection models. Together, our findings provide novel clues for understanding the virulence of A. actinomycetemcomitans and for development of potential preventive or therapeutic avenues to neutralize this important oral pathogen. IMPORTANCE Periodontitis is one of the most common inflammatory diseases worldwide, causing high morbidity and decreasing the quality of life of millions of people. The bacterial pathogen Aggregatibacter actinomycetemcomitans is strongly associated with aggressive forms of periodontitis. Moreover, it has been implicated in serious nonoral infections, including endocarditis and brain abscesses. Therefore, it is important to investigate how A. actinomycetemcomitans can cause disease. In the present study, we applied a mass spectrometry approach to make an inventory of the virulence factors secreted by different clinical A. actinomycetemcomitans isolates and derivative strains that emerged upon culturing. We subsequently correlated the secreted virulence factors to the pathogenicity of the investigated bacteria in different infection models. The results show that a limited number of extracellular virulence factors of A. actinomycetemcomitans have central roles in pathogenesis, indicating that they could be druggable targets to prevent or treat oral disease.
Collapse
|
9
|
Tang-Siegel GG, Danforth DR, Tristano J, Ruiz T, Mintz KP. The serotype a-EmaA adhesin of Aggregatibacter actinomycetemcomitans does not require O-PS synthesis for collagen binding activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35551696 DOI: 10.1099/mic.0.001191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aggregatibacter actinomycetemcomitans, a causative agent of periodontitis and non-oral diseases, synthesizes a trimeric extracellular matrix protein adhesin A (EmaA) that mediates collagen binding and biofilm formation. EmaA is found as two molecular forms, which correlate with the serotype of the bacterium. The canonical protein (b-EmaA), associated with serotypes b and c, has a monomeric molecular mass of 202 kDa. The collagen binding activity of b-EmaA is dependent on the presence of O-polysaccharide (O-PS), whereas biofilm activity is independent of O-PS synthesis. The EmaA associated with serotype a strains (a-EmaA) has a monomeric molecular mass of 173 kDa and differs in the amino acid sequence of the functional domain of the protein. In this study, a-emaA was confirmed to encode a protein that forms antenna-like appendages on the surface of the bacterium, which were found to be important for both collagen binding and biofilm formation. In an O-PS-deficient talose biosynthetic (tld) mutant strain, the electrophoretic mobility of the a-EmaA monomers was altered and the amount of membrane-associated EmaA was decreased when compared to the parent strain. The mass of biofilm formed remained unchanged. Interestingly, the collagen binding activity of the mutant strain was similar to the activity associated with the parent strain, which differs from that observed with the canonical b-EmaA isoform. These data suggest that the properties of the a-EmaA isoform are like those of b-EmaA, with the exception that collagen binding activity is independent of the presence or absence of the O-PS.
Collapse
Affiliation(s)
- Gaoyan G Tang-Siegel
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - David R Danforth
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Jake Tristano
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Teresa Ruiz
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
10
|
Complete Genome Sequence of Aggregatibacter actinomycetemcomitans Strain CU1000N. Microbiol Resour Announc 2022; 11:e0104221. [PMID: 35254109 PMCID: PMC9022580 DOI: 10.1128/mra.01042-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Aggregatibacter actinomycetemcomitans strain CU1000N. This rough strain is used extensively as a model organism to characterize localized aggressive periodontitis pathogenesis, the basic biology and oral cavity colonization of A. actinomycetemcomitans, and its interactions with other members of the oral microbiome.
Collapse
|
11
|
Looh SC, Soo ZMP, Wong JJ, Yam HC, Chow SK, Hwang JS. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins (Basel) 2022; 14:toxins14010050. [PMID: 35051027 PMCID: PMC8777676 DOI: 10.3390/toxins14010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.
Collapse
Affiliation(s)
- Sung Cheng Looh
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | - Zoey May Pheng Soo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Jia Jia Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | | | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
12
|
Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: From Basic to Advanced Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:45-67. [DOI: 10.1007/978-3-030-96881-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Damgaard C, Danielsen AK, Enevold C, Reinholdt J, Holmstrup P, Nielsen CH, Massarenti L. Circulating antibodies against leukotoxin A as marker of periodontitis grades B and C and oral infection with Aggregatibacter actinomycetemcomitans. J Periodontol 2021; 92:1795-1804. [PMID: 33749825 DOI: 10.1002/jper.20-0895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The facultative bacterium Aggregatibacter actinomycetemcomitans (Aa) is strongly associated with periodontitis and is occasionally found in periodontally healthy subjects. We aimed to determine the prevalence of salivary Aa among patients with either periodontitis grade B (periodontitis-B) or grade C (periodontitis-C), periodontally healthy controls (HCs), and to determine if systemic antibodies against Aa or its virulence factor leukotoxin A (LtxA) may serve as biomarkers that reveal the oral presence of the bacterium and discriminate subjects with periodontitis-C, periodontitis-B, or no periodontitis from each other. METHODS Serum and unstimulated saliva samples were collected from patients with periodontitis-C (n = 27), patients with periodontitis-B (n = 34), and HCs (n = 28). Serum level of immunoglobulin G antibodies to fragmented whole Aa and to LtxA were quantified using a bead-based assay. Aa was identified in saliva using quantitative polymerase chain reaction (qPCR). All analyses were adjusted for age, sex, and current smoking status. RESULTS Aa was present in saliva from 11% of HCs, in 32% of patients with periodontitis-B (P = 0.04 versus HCs), and in 37% of patients with periodontitis-C (P = 0.02 versus HCs). Serum antibodies to fragments of Aa associated significantly with periodontitis-C (P = 0.03), while serum anti-LtxA antibodies associated with both periodontitis-B and periodontitis-C (P = 0.002 and P = 9×10-4 , respectively). Moreover, a significant association between serum anti-LtxA antibodies and Aa count in saliva was observed (P = 0.001). On the basis of serum anti-LtxA antibody levels, patients with periodontitis could be discriminated from HCs (AUC = 0.74 in ROC curve-analysis, P = 0.0003), and carriers of Aa could be discriminated from non-carriers (AUC = 0.78, P <0.0001). CONCLUSIONS Aa is highly prevalent in saliva of patients with periodontitis-B or periodontitis-C. Systemic immunoglobulin G antibodies against LtxA distinguish patients with periodontitis, regardless of grade, from HCs, while their quantity reflects the concurrent bacterial burden in the oral cavity.
Collapse
Affiliation(s)
- Christian Damgaard
- Research area Periodontology, Section for Oral Biology & Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, The Capitol Region, Copenhagen, 2200, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, The Capitol Region, Copenhagen, 2100, Denmark
| | - Anne Katrine Danielsen
- Research area Periodontology, Section for Oral Biology & Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, The Capitol Region, Copenhagen, 2200, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, The Capitol Region, Copenhagen, 2100, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, The Capitol Region, Copenhagen, 2100, Denmark
| | - Jesper Reinholdt
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Central Denmark Region, Aarhus, 8000, Denmark
| | - Palle Holmstrup
- Research area Periodontology, Section for Oral Biology & Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, The Capitol Region, Copenhagen, 2200, Denmark
| | - Claus H Nielsen
- Research area Periodontology, Section for Oral Biology & Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, The Capitol Region, Copenhagen, 2200, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, The Capitol Region, Copenhagen, 2100, Denmark
| | - Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, The Capitol Region, Copenhagen, 2100, Denmark
| |
Collapse
|
14
|
Fujita A, Oogai Y, Kawada-Matsuo M, Nakata M, Noguchi K, Komatsuzawa H. Expression of virulence factors under different environmental conditions in Aggregatibacter actinomycetemcomitans. Microbiol Immunol 2021; 65:101-114. [PMID: 33591576 DOI: 10.1111/1348-0421.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with periodontal diseases, especially aggressive periodontitis. The virulence factors of this pathogen, including adhesins, exotoxins, and endotoxin, have been extensively studied. However, little is known about their gene expression mode in the host. Herein, we investigated whether culture conditions reflecting in vivo environments, including serum and saliva, alter expression levels of virulence genes in the strain HK1651, a JP2 clone. Under aerobic conditions, addition of calf serum (CS) into a general medium induced high expression of two outer membrane proteins (omp100 and omp64). The high expression of omp100 and omp64 was also induced by an iron-limited medium. RNA-seq analysis showed that the gene expressions of several factors involved in iron acquisition were increased in the CS-containing medium. When HK1651 was grown on agar plates, genes encoding many virulence factors, including the Omps, cytolethal distending toxin, and leukotoxin, were differentially expressed. Then, we investigated their expression in five other A. actinomycetemcomitans strains grown in general and CS-containing media. The expression pattern of virulence factors varied among strains. Compared with the other five strains, HK1561 showed high expression of omp29 regardless of the CS addition, while the gene expression of leukotoxin in HK1651 was higher only in the medium without CS. HK1651 showed reduced biofilm in both CS- and saliva-containing media. Coaggregation with Fusobacterium nucleatum was remarkably enhanced using HK1651 grown in the CS-containing medium. Our results indicate that the expression of virulence factors is altered by adaptation to different conditions during infection.
Collapse
Affiliation(s)
- Ayumi Fujita
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
15
|
Claesson R, Chiang HM, Lindholm M, Höglund Åberg C, Haubek D, Johansson A, Oscarsson J. Characterization of Aggregatibacter actinomycetemcomitans Serotype b Strains with Five Different, Including Two Novel, Leukotoxin Promoter Structures. Vaccines (Basel) 2020; 8:vaccines8030398. [PMID: 32698444 PMCID: PMC7563764 DOI: 10.3390/vaccines8030398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023] Open
Abstract
The JP2 genotype of A. actinomycetemcomitans, serotype b has attracted much interest during the past three decades due to its close association with periodontitis in young individuals and the enhanced expression of a leukotoxin (LtxA). A typical feature of this genotype is a 530-base pair (bp) deletion in the ltxCABD promoter region controlling leukotoxin expression. In the present work, we have characterized serotype b strains with four additional promoter types. Two novel types have been recognized, that is, one with a 230-bp deletion and one with a 172-bp duplication. Moreover, a strain with a 640-bp deletion and three strains with a full-length promoter, including the type strain Y4, were included in the present study. The seven strains were characterized by multi locus sequence typing (MLST) and arbitrarily primed polymerase chain reaction (PCR) and assessed for LtxA production. MLST showed that the strains with the non-JP2-like deletions represented distinct monophyletic groups, whereas the JP2 strain, HK1651, represented a separate branch. LtxA production was high in all three strains with a promoter deletion, whereas the other four strains showed significantly lower levels. It can be concluded that the genetic characterization and determination of LtxA production of A. actinomycetemcomitans isolates from individuals with periodontitis can contribute to the identification of novel virulent genotypes of this bacterium.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
- Correspondence:
| | - Huei-Min Chiang
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Mark Lindholm
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Dorte Haubek
- Section for Paediatric Dentistry, Department of Dentistry and Oral Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
16
|
Immunological and molecular techniques used for determination of serotypes in Pasteurellaceae. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
18
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
19
|
Jensen AB, Haubek D, Claesson R, Johansson A, Nørskov‐Lauritsen N. Comprehensive antimicrobial susceptibility testing of a large collection of clinical strains ofAggregatibacter actinomycetemcomitansdoes not identify resistance to amoxicillin. J Clin Periodontol 2019; 46:846-854. [DOI: 10.1111/jcpe.13148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/21/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Anne B. Jensen
- Department of Dentistry and Oral Health Aarhus University Aarhus Denmark
- Department of Clinical Microbiology Aarhus University Hospital Aarhus Denmark
| | - Dorte Haubek
- Department of Dentistry and Oral Health Aarhus University Aarhus Denmark
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine and Odontology Umeå University Umeå Sweden
| | - Anders Johansson
- Division of Periodontology, Department of Odontology, Faculty of Medicine and Odontology Umeå University Umeå Sweden
| | | |
Collapse
|
20
|
Pietiäinen M, Liljestrand JM, Kopra E, Pussinen PJ. Mediators between oral dysbiosis and cardiovascular diseases. Eur J Oral Sci 2019; 126 Suppl 1:26-36. [PMID: 30178551 DOI: 10.1111/eos.12423] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Clinical periodontitis is associated with an increased risk for cardiovascular diseases (CVDs) through systemic inflammation as the etiopathogenic link. Whether the oral microbiota, especially its quality, quantity, serology, and virulence factors, plays a role in atherogenesis is not clarified. Patients with periodontitis are exposed to bacteria and their products, which have access to the circulation directly through inflamed oral tissues and indirectly (via saliva) through the gastrointestinal tract, resulting in systemic inflammatory and immunologic responses. Periodontitis is associated with persistent endotoxemia, which has been identified as a notable cardiometabolic risk factor. The serology of bacterial biomarkers for oral dysbiosis is associated with an increased risk for subclinical atherosclerosis, prevalent and future coronary artery disease, and incident and recurrent stroke. In addition to species-specific antibodies, the immunologic response includes persistent, cross-reactive, proatherogenic antibodies against host-derived antigens. Periodontitis may affect lipoprotein metabolism at all levels, and all lipoprotein classes are affected. Periodontitis or its bacterial signatures may be involved not only in increased storage of proatherogenic lipids but also in attenuation of the anti-atherogenic processes, thereby putatively increasing the net risk of atherosclerosis. In this review we summarize possible molecular mediators between the dysbiotic oral microbiota and atherosclerotic processes.
Collapse
Affiliation(s)
- Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - John M Liljestrand
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Díaz-Zúñiga J, Muñoz Y, Melgar-Rodríguez S, More J, Bruna B, Lobos P, Monasterio G, Vernal R, Paula-Lima A. Serotype b of Aggregatibacter actinomycetemcomitans triggers pro-inflammatory responses and amyloid beta secretion in hippocampal cells: a novel link between periodontitis and Alzheimer´s disease? J Oral Microbiol 2019; 11:1586423. [PMID: 31044031 PMCID: PMC6484476 DOI: 10.1080/20002297.2019.1586423] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/18/2023] Open
Abstract
Introduction: Previous reports have proposed that Periodontal disease (PDis) predisposes to Alzheimer's disease (AD), both highly prevalent pathologies among the elderly. The bacteria Aggregatibacter actinomycetemcomitans (Aa), associated with the most aggressive forms of PDis, are classified in different serotypes with distinct virulence according to the antigenicity of their lipopolysaccharide (LPS). Methods: Here, we determined the effects of purified LPS, from serotypes a, b or c of Aa, on primary cultures of microglia or mixed hippocampal cells. Results: We found that both culture types exhibited higher levels of inflammatory cytokines (IL-1β, IL-6 and TNFα) when treated with serotype b-LPS, compared with controls, as quantified by qPCR and/or ELISA. Also, cultures treated with serotype a-LPS displayed increased mRNA levels of the modulatory cytokines IL-4 and IL-10. Mixed hippocampal cultures treated with serotype b-LPS exhibited severe neuronal morphological changes and displayed increased levels of secreted Aβ1-42 peptide. These results indicate that LPS from different Aa serotypes triggers discriminatory immune responses, which differentially affect primary hippocampal cells. Conclusion: Altogether, our results show that treatment with serotype b-LPS triggers the secretion of proinflammatory cytokines by microglia, induces neurite shrinking, and increases the extracellular Aβ1-42 levels, all features strongly associated with the etiology of AD.
Collapse
Affiliation(s)
- J Díaz-Zúñiga
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Y Muñoz
- Aging Cellular Laboratory, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - S Melgar-Rodríguez
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - J More
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - B Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - G Monasterio
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - R Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - A Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Rebeis ES, Albuquerque-Souza E, Paulino da Silva M, Giudicissi M, Mayer MPA, Saraiva L. Effect of periodontal treatment onAggregatibacter actinomycetemcomitanscolonization and serum IgG levels againstA. actinomycetemcomitansserotypes and Omp29 of aggressive periodontitis patients. Oral Dis 2018; 25:569-579. [DOI: 10.1111/odi.13010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Estela Sanches Rebeis
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Maike Paulino da Silva
- Department of Microbiology, Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Marcela Giudicissi
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| | - Marcia P. A. Mayer
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
- Department of Microbiology, Institute of Biomedical Sciences; University of São Paulo; Sao Paulo Brazil
| | - Luciana Saraiva
- Division of Periodontics, Department of Stomatology, School of Dentistry; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
23
|
Ahlstrand T, Kovesjoki L, Maula T, Oscarsson J, Ihalin R. Aggregatibacter actinomycetemcomitans LPS binds human interleukin-8. J Oral Microbiol 2018; 11:1549931. [PMID: 34917288 PMCID: PMC8670607 DOI: 10.1080/20002297.2018.1549931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Various gram-negative species sequester host cytokines using outer membrane proteins or surface modulation by sulfated polysaccharides. An outer membrane lipoprotein (BilRI) of the periodontal pathogen Aggregatibacter actinomycetemcomitans binds several cytokines, including interleukin (IL)-8. Because IL-8 is positively charged at physiological pH, we aimed to determine whether IL-8 interacts with negatively charged lipopolysaccharide (LPS). Binding was investigated using electrophoretic mobility shift assays and microwell-based time-resolved fluorometric immunoassay. LPS from each tested strain of A. actinomycetemcomitans (N = 13), Pseudomonas aeruginosa (N = 1) and Escherichia coli (N = 1) bound IL-8. The Kd value of the A. actinomycetemcomitans LPS-IL-8 interaction varied between 1.2–17 μM irrespective of the serotype and the amount of phosphorus in LPS and was significantly lower than that of the BilRI-IL-8 interaction. Moreover, IL-8 interacted with whole A. actinomycetemcomitans cells and outer membrane vesicles. Hence, LPS might be involved in binding of IL-8 to the outer membrane of A. actinomycetemcomitans. This raises an interesting question regarding whether other gram-negative periodontal pathogens use LPS for IL-8 sequestering in vivo.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Laura Kovesjoki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Terhi Maula
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Pietiäinen M, Kopra KAE, Vuorenkoski J, Salminen A, Paju S, Mäntylä P, Buhlin K, Liljestrand JM, Nieminen MS, Sinisalo J, Hyvärinen K, Pussinen PJ. Aggregatibacter actinomycetemcomitansserotypes associate with periodontal and coronary artery disease status. J Clin Periodontol 2018; 45:413-421. [DOI: 10.1111/jcpe.12873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Milla Pietiäinen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - K. A. Elisa Kopra
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Juha Vuorenkoski
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Department of Dental Medicine Huddinge; Division of Periodontology; Karolinska Institutet; Huddinge Sweden
| | - Susanna Paju
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Päivi Mäntylä
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Institute of Dentistry; University of Eastern Finland; Kuopio Finland
- Oral and Maxillofacial Diseases; Kuopio University Hospital; Kuopio Finland
| | - Kåre Buhlin
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Department of Dental Medicine Huddinge; Division of Periodontology; Karolinska Institutet; Huddinge Sweden
| | - John M. Liljestrand
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Markku S. Nieminen
- Department of Cardiology, Heart and Lung Center; Helsinki University Hospital; Helsinki Finland
| | - Juha Sinisalo
- Department of Cardiology, Heart and Lung Center; Helsinki University Hospital; Helsinki Finland
| | - Kati Hyvärinen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Pirkko J. Pussinen
- Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
25
|
Suprith SS, Setty S, Bhat K, Thakur S. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and assessment of leukotoxin in periodontal disease: A clinico-microbiological study. J Indian Soc Periodontol 2018; 22:201-208. [PMID: 29962698 PMCID: PMC6009160 DOI: 10.4103/jisp.jisp_36_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Context: Aggregatibacter actinomycetemcomitans (A.a) serotypes may add some important information of the pathogenetic background of periodontal infections. A.a leukotoxin is an important virulence factor in the pathogenesis of periodontal disease and its rate of progression. When compared to minimally leukotoxic strains, variants of A.a highly leukotoxic strains produce 10–20 times more leukotoxin. Aims: The aim of the present study was to detect serotypes a, b, c, d, and e of A.a its leukotoxin and find its correlation with periodontal status. Settings and Design: Microbiological analysis and cross-sectional study. Materials and Methods: A total of 80 subjects (40 chronic periodontitis and 40 aggressive periodontitis) in the age range of 14–55 years were selected. Subgingival plaque samples were collected and checked for the presence of A.a. Following isolation of the organism, detection of the serotypes and leukotoxin assessment was done. Statistical Analysis Used: The proportions of A.a were calculated using descriptive statistics in terms of percentage. Chi-square test was used to find association between serotype, leukotoxin, and periodontal disease in individual group. Results: Out of 80 plaque samples, 45% tested positive for A.a. serotype b was detected in 33.33%, whereas serotype e in 8.33% samples and serotype c in 2.77% samples. Serotypes a and d were not detected in any of the samples. A combination of serotypes was seen in 47.22% of the sites. Of these 76.47% showed a combination of 2 serotypes, while 23.52%showed a combination of 3 serotypes. 8.33% showed untypable serotype. All samples had low-toxic variants of A.a. Conclusions: Serotype b and serotype e were predominant in chronic periodontitis, and serotype b was predominant in aggressive periodontitis. An association could be present between serotype and periodontal disease.
Collapse
Affiliation(s)
| | - Swati Setty
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandals Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Srinath Thakur
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| |
Collapse
|
26
|
Wang C, Kankaanpää J, Kummu O, Turunen SP, Akhi R, Bergmann U, Pussinen P, Remes AM, Hörkkö S. Characterization of a natural mouse monoclonal antibody recognizing epitopes shared by oxidized low-density lipoprotein and chaperonin 60 of Aggregatibacter actinomycetemcomitans. Immunol Res 2017; 64:699-710. [PMID: 26786003 DOI: 10.1007/s12026-015-8781-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural antibodies are predominantly antibodies of the IgM isotype present in the circulation of all vertebrates that have not been previously exposed to exogenous antigens. They are often directed against highly conserved epitopes and bind to ligands of varying chemical composition with low affinity. In this study we cloned and characterized a natural mouse monoclonal IgM antibody selected by binding to malondialdehyde acetaldehyde epitopes on low-density lipoprotein (LDL). Interestingly, the IgM antibody cross-reacted with Aggregatibacter actinomycetemcomitans (Aa) bacteria, a key pathogenic microbe in periodontitis reported to be associated with risk factor for atherosclerosis, thus being named as Aa_Mab. It is more intriguing that the binding molecule of Aa to Aa_Mab IgM was found to be Aa chaperonin 60 or HSP60, a member of heat-shock protein family, behaving not only as a chaperone for correct protein folding but also as a powerful virulence factor of the bacteria for inducing bone resorption and as a putative pathogenic factor in atherosclerosis. The findings will highlight the question of whether molecular mimicry between pathogen components and oxidized LDL could lead to atheroprotective immune activity, and also would be of great importance in potential application of immune response-based preventive and therapeutic strategies against atherosclerosis and periodontal disease.
Collapse
Affiliation(s)
- Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland. .,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.
| | - Jari Kankaanpää
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - S Pauliina Turunen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Genome-scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland.,Research Unit of Oral Health Sciences, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne M Remes
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
27
|
Akrivopoulou C, Green IM, Donos N, Nair SP, Ready D. Aggregatibacter actinomycetemcomitans serotype prevalence and antibiotic resistance in a UK population with periodontitis. J Glob Antimicrob Resist 2017; 10:54-58. [DOI: 10.1016/j.jgar.2017.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 11/28/2022] Open
|
28
|
Claesson R, Höglund-Åberg C, Haubek D, Johansson A. Age-related prevalence and characteristics of Aggregatibacter actinomycetemcomitans in periodontitis patients living in Sweden. J Oral Microbiol 2017; 9:1334504. [PMID: 28748039 PMCID: PMC5508378 DOI: 10.1080/20002297.2017.1334504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023] Open
Abstract
Background: The presence of Aggregatibacter actinomycetemcomitans in patients with periodontitis has been extensively studied for decades. Objective: To study the prevalence of A. actinomycetemcomitans in younger and older periodontitis patients and to genetically characterize isolates of this bacterium. Design: Data from microbiological analyses of 3459 subgingival plaque samples collected from 1445 patients, 337 ‘younger’ patients (≤35 yrs) and 1108 ‘older’ patients (>35 yrs) during 15 years (2000–2014), has been summerized. Isolates of A. actinomycetemcomitans were serotyped, leukotoxin promoter typed (JP2 and non JP2) and arbitrarily primed PCR (AP-PCR) genotyped. The origin of the JP2 genotype detected in the study population was determined. Results: The prevalence of A. actinomycetemcomitans was higher among younger than older patients and samples from the younger patients contained higher proportions of the bacterium. Serotype b was more prevalent among younger patients and the majorty of these isolates was from the same AP-PCR genotype. The JP2 genotype was detected in 1.2% of the patients, and the majority of these carriers were of non-African origin. Conslusions: For presence and charcteristics of A. actinomycetemcomitans in clinical samples the age of the carriers were a discriminating factor. Additional, apparently non-African carriers of the JP2 genotype of A. actinomycetemcomitans were identified.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Carola Höglund-Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus UniversityAarhus, Denmark
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Lakio L, Lehto M, Tuomainen AM, Jauhiainen M, Malle E, Asikainen S, Pussinen PJ. Pro-atherogenic properties of lipopolysaccharide from the periodontal pathogen Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120010601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An association between cardiovascular and periodontal disease may be due to lipopolysaccharide (LPS)-promoted release of inflammatory mediators, adverse alterations of the lipoprotein profile, and an imbalance in cholesterol homeostasis. Since periodontopathogenic potential differs between serotypes of a major periodontal pathogen, Actinobacillus actinomycetemcomitans, we studied the pro-atherogenic properties of LPS preparations from serotypes b and d strains on macrophages (RAW 264.7). A. actinomycetemcomitans LPS preparations induced a time-dependent release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). LPS induced foam cell formation and cholesteryl ester accumulation from native low density lipoprotein in the following order: A. actinomycetemcomitans strains JP2 (serotype b) > Y4 (serotype b) > IDH781 (serotype d). mRNA expression levels of scavenger receptor class B, type-I, and ATP-binding cassette transporter-1, receptors mediating cholesterol efflux from macrophages, were decreased by LPS preparations. The results suggest that the pro-atherogenic potential of A. actinomycetemcomitans LPS may depend on the infecting strain and correlate with the periodontopathogenic potential of the pathogen.
Collapse
Affiliation(s)
- Laura Lakio
- Institute of Dentistry, University of Helsinki, and Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Markku Lehto
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | - Anita M. Tuomainen
- Institute of Dentistry, University of Helsinki, and Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Matti Jauhiainen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria
| | - Sirkka Asikainen
- Section of Oral Microbiology, Institute of Odontology, UmeÅ University, UmeÅ, Sweden
| | - Pirkko J. Pussinen
- Institute of Dentistry, University of Helsinki, and Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland,
| |
Collapse
|
30
|
Tang-Siegel G, Bumgarner R, Ruiz T, Kittichotirat W, Chen W, Chen C. Human Serum-Specific Activation of Alternative Sigma Factors, the Stress Responders in Aggregatibacter actinomycetemcomitans. PLoS One 2016; 11:e0160018. [PMID: 27490177 PMCID: PMC4973924 DOI: 10.1371/journal.pone.0160018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans, a known pathogen causing periodontal disease and infective endocarditis, is a survivor in the periodontal pocket and blood stream; both environments contain serum as a nutrient source. To screen for unknown virulence factors associated with this microorganism, A. actinomycetemcomitans was grown in serum-based media to simulate its in vivo environment. Different strains of A. actinomycetemcomitans showed distinct growth phenotypes only in the presence of human serum, and they were grouped into high- and low-responder groups. High-responders comprised mainly serotype c strains, and showed an unusual growth phenomenon, featuring a second, rapid increase in turbidity after 9-h incubation that reached a final optical density 2- to 7-fold higher than low-responders. Upon further investigation, the second increase in turbidity was not caused by cell multiplication, but by cell death. Whole transcriptomic analysis via RNA-seq identified 35 genes that were up-regulated by human serum, but not horse serum, in high-responders but not in low-responders, including prominently an alternative sigma factor rpoE (σE). A lacZ reporter construct driven by the 132-bp rpoE promoter sequence of A. actinomycetemcomitans responded dramatically to human serum within 90 min of incubation only when the construct was carried by a high responder strain. The rpoE promoter is 100% identical among high- and low-responder strains. Proteomic investigation showed potential interactions between human serum protein, e.g. apolipoprotein A1 (ApoA1) and A. actinomycetemcomitans. The data clearly indicated a different activation process for rpoE in high- versus low-responder strains. This differential human serum-specific activation of rpoE, a putative extra-cytoplasmic stress responder and global regulator, suggests distinct in vivo adaptations among different strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Roger Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Weizhen Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
| | - Casey Chen
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
31
|
Obradović D, Gašperšič R, Caserman S, Leonardi A, Jamnik M, Podlesek Z, Seme K, Anderluh G, Križaj I, Maček P, Butala M. A Cytolethal Distending Toxin Variant from Aggregatibacter actinomycetemcomitans with an Aberrant CdtB That Lacks the Conserved Catalytic Histidine 160. PLoS One 2016; 11:e0159231. [PMID: 27414641 PMCID: PMC4945079 DOI: 10.1371/journal.pone.0159231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage. Different strains of A. actinomycetemcomitans have diverse virulence genotypes, which results in varied pathogenic potential and disease progression. Here, we identified an A. actinomycetemcomitans strain isolated from two patients with advance chronic periodontitis that has a regular cdtABC operon, which, however, codes for a unique, shorter, variant of the CdtB subunit. We describe the characteristics of this CdtBΔ116–188, which lacks the intact nuclear localisation signal and the catalytic histidine 160. We show that the A. actinomycetemcomitans DO15 isolate secretes CdtBΔ116–188, and that this subunit cannot form a holotoxin and is also not genotoxic if expressed ectopically in HeLa cells. Furthermore, the A. actinomycetemcomitans DO15 isolate is not toxic, nor does it induce cellular distention upon infection of co-cultivated HeLa cells. Biological significance of this deletion in the cdtB remains to be explained.
Collapse
Affiliation(s)
- Davor Obradović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Caserman
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Jamnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| |
Collapse
|
32
|
Díaz-Zúñiga J, Monasterio G, Alvarez C, Melgar-Rodríguez S, Benítez A, Ciuchi P, García M, Arias J, Sanz M, Vernal R. Variability of the dendritic cell response triggered by different serotypes of Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis is toll-like receptor 2 (TLR2) or TLR4 dependent. J Periodontol 2016; 86:108-19. [PMID: 25224175 DOI: 10.1902/jop.2014.140326] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Different serotypes of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis have been shown to induce differential dendritic cell (DC) responses. This study investigates whether cytokine and CC-chemokine receptor (CCR) production by DCs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is Toll-like receptor 2 (TLR2) and/or TLR4 dependent. METHODS DCs were obtained from healthy individuals and primed at a multiplicity of infection (MOI) of 10(2) with different A. actinomycetemcomitans or P. gingivalis serotypes in the presence or absence of anti-TLR2 or anti-TLR4 blocking antibodies. TLR2 and TLR4 expression, CCR5 and CCR6 expression, and interleukin (IL)-1β, IL-10, IL-12, and IL-23 expression and secretion were quantified by flow cytometry, real-time reverse-transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS When DCs were stimulated with serotype b of A. actinomycetemcomitans or serotype K1 of P. gingivalis, higher levels of TLR2 or TLR4, respectively, were detected compared to DCs stimulated with the other serotypes. Similarly, higher levels of cytokines and CCRs were detected in serotype b- or serotype K1-primed DCs compared to the others, and these increased levels positively correlated with levels of TLR2 or TLR4. When TLR2 signaling was blocked using a specific anti-TLR2 monoclonal antibody, serotype b-induced cytokine and CCR expression was inhibited; when TLR4 signaling was blocked, serotype K1-induced response was inhibited. CONCLUSIONS These results demonstrate that the variability of secretion of cytokines and expression of CCRs detected in DCs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is TLR2 or TLR4 dependent, respectively.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Dental School, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Virulence of Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes isolated from chronic adult periodontitis in Thailand. Anaerobe 2015; 36:60-4. [DOI: 10.1016/j.anaerobe.2015.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022]
|
34
|
Doğan B, Chen J, Çiftlikli SY, Huang J, Kadir T, Alnıak AK, Chen C. Occurrence and serotype distribution of Aggregatibacter actinomycetemcomitans in subjects without periodontitis in Turkey. Arch Oral Biol 2015; 61:125-9. [PMID: 26556547 DOI: 10.1016/j.archoralbio.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the occurrence and serotype distribution of Aggregatibacter actinomycetemcomitans in subjects without periodontitis. DESIGN Systemically healthy dental students without periodontitis (n=94), who had not used antibiotics within the last 3 months or received any form of periodontal therapy within the last 6 months, were included in the study. Pooled subgingival microbiological samples were collected from 4 first molars and 4 central incisors in each subject using sterile paper points. All samples were tested for the presence and the serotype of A. actinomycetemcomitans through PCR analysis of the 16S rRNA genes and the serotype-specific gene clusters in the DNA extracted from the samples. RESULTS Of the 94 samples that were tested, 43 (46%) were positive for A. actinomycetemcomitans. No statistically significant differences in clinical parameters were found between subgingival sites with or without detectable A. actinomycetemcomitans (t-test, P>0.01). Among the 43 A. actinomycetemcomitans-positive samples, the serotype was identified in 21 samples. Fifteen were positive for A. actinomycetemcomitans serotype a, 1 for serotype b, 1 for serotype c, and 4 for serotype f, while serotypes d and e were not detected. CONCLUSION A. actinomycetemcomitans serotype a is the most commonly found serotype among Turkish dental students without periodontitis.
Collapse
Affiliation(s)
- Başak Doğan
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Jason Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA
| | - Sinem Yıldız Çiftlikli
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Jonathan Huang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA
| | - Tanju Kadir
- Department of Microbiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Anıl Kınacı Alnıak
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry, University of Southern California, USA.
| |
Collapse
|
35
|
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been considered the most likely etiologic agent in aggressive periodontitis. Implementation of DNA-based microbiologic methodologies has considerably improved our understanding of the composition of subgingival biofilms, and advanced open-ended molecular techniques even allow for genome mapping of the whole bacterial spectrum in a sample and characterization of both the cultivable and not-yet-cultivable microbiota associated with periodontal health and disease. Currently, A. actinomycetemcomitans is regarded as a minor component of the resident oral microbiota and as an opportunistic pathogen in some individuals. Its specific JP2 clone, however, shows properties of a true exogenous pathogen and has an important role in the development of aggressive periodontitis in certain populations. Still, limited data exist on the impact of other microbes specifically in aggressive periodontitis. Despite a wide heterogeneity of bacteria, especially in subgingival samples collected from patients, bacteria of the red complex in particular, and those of the orange complex, are considered as potential pathogens in generalized aggressive periodontitis. These types of bacterial findings closely resemble those found for chronic periodontitis, representing a mixed polymicrobial infection without a clear association with any specific microorganism. In aggressive periodontitis, the role of novel and not-yet-cultivable bacteria has not yet been elucidated. There are geographic and ethnic differences in the carriage of periodontitis-associated microorganisms, and they need to be taken into account when comparing study reports on periodontal microbiology in different study populations. In the present review, we provide an overview on the colonization of potential periodontal pathogens in childhood and adolescence, and on specific microorganisms that have been suspected for their role in the initiation and progression of aggressive forms of periodontal disease.
Collapse
|
36
|
Pahumunto N, Ruangsri P, Wongsuwanlert M, Piwat S, Dahlen G, Teanpaisan R. Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes in Thai adults with chronic periodontitis. Arch Oral Biol 2015; 60:1789-96. [PMID: 26475998 DOI: 10.1016/j.archoralbio.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the distribution of Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes among isolates from Thai chronic periodontitis patients. DESIGN Forty-four adult Thai periodontitis patients were assessed by a full mouth recording for CAL, PPD, and BOP. Seventy-nine strains of A. actinomycetemcomitans were isolated from deep pockets on selective TSBV agar and 17 strains were isolated from shallow pockets. The strains were serotyped using PCR and subtyped using DGGE. RESULTS The prevalence of A. actinomycetemcomitans was 84.1%. Non-serotypeable A. actinomycetemcomitans strains occurred equally frequent as serotypeable (54.5%); serotype a 18.2%, serotype c 15.9%, serotype e 9.1%, and serotype f 11.4%. Serotype b and d were not detected. A JP2 like strain but serotyped as c was isolated from two patients, and another two strains showed an 886bp insertion on the ltx promoter of their A. actinomycetemcomitans isolates. DGGE typing disclosed 16 different subtypes among the non-serotypeable strains. Two of them (NS1 and NS2) were more common (12.7 and 10.1%) among the strains than the other 14 subtypes (˂5.1%). Most patients showed only one subtype (32.4%) but 29.7% had 2 and 3 different subtypes while 8.1% revealed 4 subtypes in one and the same deep pocket. CONCLUSION This study showed a greater subtype diversity of A. actinomycetemcomitans predominated by non-serotypeable strains than previously reported in an adult Thai population. It was also revealed for the first time that isolates with a 530bp deletion or 886bp insertion of the ltx promoter were serotyped as serotype c.
Collapse
Affiliation(s)
- Nuntiya Pahumunto
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Praphansri Ruangsri
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Mutita Wongsuwanlert
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Supatcharin Piwat
- Common Oral Diseases and Epidemiology Research Center and the Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Thailand
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Thailand.
| |
Collapse
|
37
|
Díaz-Zúñiga J, Melgar-Rodríguez S, Alvarez C, Monasterio G, Benítez A, Ciuchi P, Díaz C, Mardones J, Escobar A, Sanz M, Vernal R. T-lymphocyte phenotype and function triggered by Aggregatibacter actinomycetemcomitans is serotype-dependent. J Periodontal Res 2015; 50:824-35. [PMID: 25824938 DOI: 10.1111/jre.12270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Based on lipopolysaccharide (LPS) antigenicity, different Aggregatibacter actinomycetemcomitans serotypes have been described. Serotype b strains have demonstrated a stronger capacity to trigger cytokine production on dendritic cells (DCs). As DCs regulate the development of T-lymphocyte lineages, the objective of this investigation was to study the response of T lymphocytes after being stimulated with autologous DCs primed with different bacterial strains belonging to the most prevalent serotypes of A. actinomycetemcomitans in humans: a-c. MATERIAL AND METHODS Human DCs were primed with increasing multiplicity of infection (10(-1) -10(2) ) or the purified LPS (10-50 ng/mL) of A. actinomycetemcomitans serotypes a-c and then used to stimulate autologous naïve CD4(+) T lymphocytes. The T-helper (Th) type 1, Th2, Th17 and T-regulatory transcription factors T-bet, GATA-3, RORC2 and Foxp3, which are the master-switch genes implied in their specific differentiation, as well as T-cell phenotype-specific cytokine patterns were quantified by real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, the intracellular expression of T-bet/interferon-γ, GATA-3/interleukin-4, RORC2/interleukin-17A and Foxp3/transforming growth factor-β1 was analysed by double staining and flow cytometry. RESULTS All the A. actinomycetemcomitans serotypes led to T-lymphocyte activation; however, when T lymphocytes were stimulated with DCs primed with the A. actinomycetemcomitans serotype b strain or their purified LPS, higher levels of Th1- and Th17-associated transcription factors and cytokines were detected compared with similar experiments with the other serotypes. CONCLUSION These results demonstrate that serotype b of A. actinomycetemcomitans has a higher capacity of trigger Th1 and Th17 phenotype and function and it was demonstrated that their LPS is a more potent immunogen compared with the other serotypes.
Collapse
Affiliation(s)
- J Díaz-Zúñiga
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile.,Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - S Melgar-Rodríguez
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile.,Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - C Alvarez
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - G Monasterio
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - A Benítez
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - P Ciuchi
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - C Díaz
- Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - J Mardones
- Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - A Escobar
- Dental Sciences Institute, Dental School, Universidad de Chile, Santiago de Chile, Chile
| | - M Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, Universidad Complutense de Madrid, Madrid, Spain
| | - R Vernal
- Periodontal Biology Laboratory, Dental School, Universidad de Chile, Santiago de Chile, Chile.,Department of Conservative Dentistry, Dental School, Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
38
|
Shanmugam M, Gopal P, El Abbar F, Schreiner HC, Kaplan JB, Fine DH, Ramasubbu N. Role of exopolysaccharide in Aggregatibacter actinomycetemcomitans-induced bone resorption in a rat model for periodontal disease. PLoS One 2015; 10:e0117487. [PMID: 25706999 PMCID: PMC4338281 DOI: 10.1371/journal.pone.0117487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans a causative agent of periodontal disease in humans, forms biofilm on biotic and abiotic surfaces. A. actinomycetemcomitans biofilm is heterogeneous in nature and is composed of proteins, extracellular DNA and exopolysaccharide. To explore the role played by the exopolysaccharide in the colonization and disease progression, we employed genetic reduction approach using our rat model of A. actinomycetemcomitans-induced periodontitis. To this end, a genetically modified strain of A. actinomycetemcomitans lacking the pga operon was compared with the wild-type strain in the rat infection model. The parent and mutant strains were primarily evaluated for bone resorption and disease. Our study showed that colonization, bone resorption/disease and antibody response were all elevated in the wild-type fed rats. The bone resorption/disease caused by the pga mutant strain, lacking the exopolysaccharide, was significantly less (P < 0.05) than the bone resorption/disease caused by the wild-type strain. Further analysis of the expression levels of selected virulence genes through RT-PCR showed that the decrease in colonization, bone resorption and antibody titer in the absence of the exopolysaccharide might be due to attenuated levels of colonization genes, flp-1, apiA and aae in the mutant strain. This study demonstrates that the effect exerted by the exopolysaccharide in A. actinomycetemcomitans-induced bone resorption has hitherto not been recognized and underscores the role played by the exopolysaccharide in A. actinomycetemcomitans-induced disease.
Collapse
Affiliation(s)
- Mayilvahanan Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Prerna Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Faiha El Abbar
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Helen C Schreiner
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Jeffrey B Kaplan
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, United States of America
| |
Collapse
|
39
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
40
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
41
|
Brígido JA, da Silveira VRS, Rego RO, Nogueira NAP. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and geographic origin of individuals-a review of the literature. Med Oral Patol Oral Cir Bucal 2014; 19:e184-91. [PMID: 24316700 PMCID: PMC4015043 DOI: 10.4317/medoral.19304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023] Open
Abstract
Objectives: Several studies have focused on the relationship among serotype distribution, ethnical status and geographic populations, and periodontal conditions. Studies that have investigated the prevalence and the distribution of A. actinomycetemcomitans serotypes and the relation between the different serotypes of the bacterium and periodontal status were reviewed.
Material and Methods: A systematic literature search for publications regarding the distribution of A. actinomycetemcomitans serotypes in subgingival samples of periodontitis patients and periodontally healthy subjects by employing polymerase chain reaction (PCR) was conducted.
Results: From the 85 studies identified in the first analysis, only 12 met all inclusion and exclusion criteria. Clinical isolates from diverse geographic populations with different periodontal conditions were evaluated. Serotypes a, b and c were largely found, and serotype c was the most prevalent. They were isolated from various periodontal conditions, including aggressive periodontitis.
Conclusions: The available literature suggests that serotypes a, b, and c are globally dominant, serotypes d and e are rare, and the prevalence of the most recently identified serotype fis still unknown. It is widely accepted that distribution patterns of A. actinomycetemcomitans vary among subjects of different ethnicity and geographic regions. The correlation of different serotypes with various periodontal conditions remains unclear.
Key words:Aggregatibacter actinomycetemcomitans, serotypes, periodontal disease, prevalence.
Collapse
Affiliation(s)
- J-A Brígido
- Rua Monsenhor Furtado s/n, Bairro Rodolfo Teófilo, Fortaleza, Ceará, CEP 60430-170, Brazil,
| | | | | | | |
Collapse
|
42
|
Tsuzukibashi O, Saito M, Kobayashi T, Umezawa K, Nagahama F, Hiroi T, Hirasawa M, Takada K. A gene cluster for the synthesis of serotype g-specific polysaccharide antigen in Aggregatibacter actinomycetemcomitans. Arch Microbiol 2014; 196:261-5. [PMID: 24562973 DOI: 10.1007/s00203-014-0965-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an important pathogen related to aggressively progressive periodontal breakdown in adolescents and adults. The species can be divided into six serotypes (a-f) according to their surface carbohydrate antigens. Recently, a new serotype g of A. actinomycetemcomitans was proposed. The aim of the present study was to sequence the gene cluster associated with the biosynthesis of the serotype g-specific polysaccharide antigen and develop serotype-specific primers for PCR assay to identify serotype g strains of A. actinomycetemcomitans. The serotype-specific polysaccharide (SSPS) gene cluster of the NUM-Aa 4039 strain contained 21 genes in 21,842-bp nucleotides. The similarity of the SSPS gene cluster sequence was 96.7 % compared with that of the serotype e strain. Seventeen serotype g genes showed more than 90 % homology both in nucleotide and amino acids to the serotype e strain. Three additional genes with 1,579 bp in NUM-Aa 4039 were inserted into the corresponding ORF13 of the serotype e strain. The serotype g-specific primers were designed from the insertion region of NUM-Aa 4039. Serotypes of the a-f strains were not amplified by serotype-specific g primers; only NUM-Aa 4039 showed an amplicon band. The NUM-Aa 4039 strain was three genes in the SSPS gene cluster different from those of serotype e strain. The specific primers derived from these different regions are useful for identification and distribution of serotype g strain among A. actinomycetemcomitans from clinical samples.
Collapse
Affiliation(s)
- Osamu Tsuzukibashi
- Department of Oral Microbiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Díaz-Zúñiga J, Yáñez JP, Alvarez C, Melgar-Rodríguez S, Hernández M, Sanz M, Vernal R. Serotype-dependent response of human dendritic cells stimulated withAggregatibacter actinomycetemcomitans. J Clin Periodontol 2013; 41:242-51. [DOI: 10.1111/jcpe.12205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Juan Pablo Yáñez
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory; Department of Pathology; Dental School; Universidad de Chile; Santiago de Chile Chile
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group; Universidad Complutense de Madrid; Madrid Spain
| | - Rolando Vernal
- Periodontal Biology Laboratory; Department of Conservative Dentistry; Dental School; Universidad de Chile; Santiago de Chile Chile
| |
Collapse
|
44
|
Haemophilus parainfluenzae expresses diverse lipopolysaccharide O-antigens using ABC transporter and Wzy polymerase-dependent mechanisms. Int J Med Microbiol 2013; 303:603-17. [PMID: 24035104 PMCID: PMC3989065 DOI: 10.1016/j.ijmm.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide O-antigens are the basis of serotyping schemes for Gram negative bacteria and help to determine the nature of host–bacterial interactions. Haemophilus parainfluenzae is a normal commensal of humans but is also an occasional pathogen. The prevalence, diversity and biosynthesis of O-antigens were investigated in this species for the first time. 18/18 commensal H. parainfluenzae isolates contain a O-antigen biosynthesis gene cluster flanked by glnA and pepB, the same position as the hmg locus for tetrasaccharide biosynthesis in Haemophilus influenzae. The O-antigen loci show diverse restriction digest patterns but fall into two main groups: (1) those encoding enzymes for the synthesis and transfer of FucNAc4N in addition to the Wzy-dependent mechanism of O-antigen synthesis and transport and (2) those encoding galactofuranose synthesis/transfer enzymes and an ABC transporter. The other glycosyltransferase genes differ between isolates. Three H. parainfluenzae isolates fell outside these groups and are predicted to synthesise O-antigens containing ribitol phosphate or deoxytalose. Isolates using the ABC transporter system encode a putative O-antigen ligase, required for the synthesis of O-antigen-containing LPS glycoforms, at a separate genomic location. The presence of an O-antigen contributes significantly to H. parainfluenzae resistance to the killing effect of human serum in vitro. The discovery of O-antigens in H. parainfluenzae is striking, as its close relative H. influenzae lacks this cell surface component.
Collapse
|
45
|
Paino A, Ahlstrand T, Nuutila J, Navickaite I, Lahti M, Tuominen H, Välimaa H, Lamminmäki U, Pöllänen MT, Ihalin R. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans. PLoS One 2013; 8:e70509. [PMID: 23936223 PMCID: PMC3729834 DOI: 10.1371/journal.pone.0070509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022] Open
Abstract
Aggregatibacteractinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1β also interacted with BilRI. Our findings suggest that A. actinomycetemcomitans expresses an IL-1β-binding surface-exposed lipoprotein that may be part of the bacterial IL-1β-sensing system.
Collapse
Affiliation(s)
- Annamari Paino
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Tuuli Ahlstrand
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jari Nuutila
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Indre Navickaite
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Maria Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi Tuominen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Hannamari Välimaa
- Haartman Institute, Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki University Hospital, Helsinki, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | - Riikka Ihalin
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
46
|
Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression. PLoS One 2013; 8:e65781. [PMID: 23922633 PMCID: PMC3683020 DOI: 10.1371/journal.pone.0065781] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). MATERIALS AND METHODS A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. RESULTS Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], p<0.001). CONCLUSION A. actinomycetemcomitans isolated from the Ghanaian adolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Georgios Antonoglou
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
47
|
Kikuchi H, Fujise O, Miura M, Tanaka A, Hisano K, Haraguchi A, Hamachi T, Maeda K. Serotype-dependent expression patterns of stabilized lipopolysaccharide aggregates inAggregatibacter actinomycetemcomitansstrains. Microbiol Immunol 2012; 56:680-91. [DOI: 10.1111/j.1348-0421.2012.00492.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Ganeshnarayan K, Velliyagounder K, Furgang D, Fine DH. Human salivary cystatin SA exhibits antimicrobial effect against Aggregatibacter actinomycetemcomitans. J Periodontal Res 2012; 47:661-73. [DOI: 10.1111/j.1600-0765.2012.01481.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Bandhaya P, Saraithong P, Likittanasombat K, Hengprasith B, Torrungruang K. Aggregatibacter actinomycetemcomitans serotypes, the JP2 clone and cytolethal distending toxin genes in a Thai population. J Clin Periodontol 2012; 39:519-25. [PMID: 22471788 DOI: 10.1111/j.1600-051x.2012.01871.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2012] [Indexed: 11/27/2022]
Abstract
AIM To examine the genetic diversity of Aggregatibacter actinomycetemcomitans in Thai adults. MATERIALS AND METHODS Subgingival plaque samples from 453 subjects were analysed for A. actinomycetemcomitans serotypes, the presence of the high leukotoxin-producing JP2 clone and cytolethal distending toxin genes (cdtABC) using the polymerase chain reaction technique. In subjects who were positive for cdtABC, restriction fragment length polymorphism analysis was used to identify a single nucleotide polymorphism (SNP) in the cdtB gene at amino acid position 281. The extent and severity of periodontal disease were compared between subjects harbouring different A. actinomycetemcomitans genotypes. RESULTS Eighty six subjects (19%) were positive for A. actinomycetemcomitans. The JP2 clone was not detected. Serotype c was the most prevalent (57%), followed by serotypes a (33%) and b (7%). Among A. actinomycetemcomitans-positive subjects, 27% were positive for cdtABC. All cdtABC-positive subjects possessed the SNP in the cdtB, which is involved with increased toxin activity. The presence of A. actinomycetemcomitans, but not a specific genotype, was significantly related to increased probing depth and periodontal attachment loss. CONCLUSIONS Our results confirm the previous findings that genotype distribution of A. actinomycetemcomitans varies between ethnic groups. However, no clear relationship between a specific genotype and periodontal conditions was observed.
Collapse
Affiliation(s)
- Panwadee Bandhaya
- Section of Periodontology, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
50
|
Genome sequence of Aggregatibacter actinomycetemcomitans RHAA1, isolated from a rhesus macaque, an Old World primate. J Bacteriol 2012; 194:1275-6. [PMID: 22328766 DOI: 10.1128/jb.06710-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in localized aggressive periodontitis. We report the first genome sequence of an A. actinomycetemcomitans strain isolated from an Old World primate.
Collapse
|