1
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Opriessnig T, Forde T, Shimoji Y. Erysipelothrix Spp.: Past, Present, and Future Directions in Vaccine Research. Front Vet Sci 2020; 7:174. [PMID: 32351978 PMCID: PMC7174600 DOI: 10.3389/fvets.2020.00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Erysipelothrix spp. comprise a group of small Gram-positive bacteria that can infect a variety of hosts including mammals, fish, birds, reptiles and insects. Among the eight Erysipelothrix species that have been described to date, only Erysipelothrix rhusiopathiae plays a major role in farmed livestock where it is the causative agent of erysipelas. E. rhusiopathiae also has zoonotic potential and can cause erysipeloid in humans with a clear occupational link to meat and fish industries. While there are 28 known Erysipelothrix serovars, over 80% of identified isolates belong to serovars 1 or 2. Vaccines to protect pigs against E. rhusiopathiae first became available in 1883 as a response to an epizootic of swine erysipelas in southern France. The overall vaccine repertoire was notably enlarged between the 1940s and 1960s following major outbreaks of swine erysipelas in the Midwest USA and has changed little since. Traditionally, E. rhusiopathiae serovar 1a or 2 isolates were inactivated (bacterins) or attenuated and these types of vaccines are still used today on a global basis. E. rhusiopathiae vaccines are most commonly used in pigs, poultry, and sheep where the bacterium can cause considerable economic losses. In addition, erysipelas vaccination is also utilized in selected vulnerable susceptible populations, such as marine mammals in aquariums, which are commonly vaccinated at regular intervals. While commercially produced erysipelas vaccines appear to provide good protection against clinical disease, in recent years there has been an increase in perceived vaccine failures in farmed animals, especially in organic outdoor operations. Moreover, clinical erysipelas outbreaks have been reported in animal populations not previously considered at risk. This has raised concerns over a possible lack of vaccine protection across various production species. This review focuses on summarizing the history and the present status of E. rhusiopathiae vaccines, the current knowledge on protection including surface antigens, and also provides an outlook into future directions for vaccine development.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Taya Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
3
|
Kitiyodom S, Yata T, Yostawornkul J, Kaewmalun S, Nittayasut N, Suktham K, Surassmo S, Namdee K, Rodkhum C, Pirarat N. Enhanced efficacy of immersion vaccination in tilapia against columnaris disease by chitosan-coated "pathogen-like" mucoadhesive nanovaccines. FISH & SHELLFISH IMMUNOLOGY 2019; 95:213-219. [PMID: 31585248 DOI: 10.1016/j.fsi.2019.09.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Red tilapia (Oreochromis sp.) has become one of the most important fish in aquaculture. Bacterial infection caused by Flavobacterium columnare, the causative agent of columnaris disease, has been now identified as one of the most serious infectious diseases in farmed red tilapia and cause major financial damage to the producers. Among the effective prevention and control strategies, vaccination is one of the most effective approach. As the surface of living fish is covered by mucus and directly associated with the mucosal immunity, we therefore hypothesized that better adsorption on mucosal surfaces and more efficient vaccine efficacy could be enhanced biomimetic nanoparticles mimicking the mucoadhesive characteristic of live F. columnare. In this work, we describe an effective approach to targeted antigen delivery by coating the surface of nanoparticles with mucoadhesive chitosan biopolymer to provide "pathogen-like" properties that ensure nanoparticles binding on fish mucosal membrane. The physiochemical properties of nanovaccines were analyzed, and their mucoadhesive characteristics and immune response against pathogens were also evaluated. The prepared vaccines were nano-sized and spherical as confirmed by scanning electron microscope (SEM). The analysis of hydrodynamic diameter and zeta-potential also suggested the successful modification of nanovaccines by chitosan as indicated by positively charged and the overall increased diameter of chitosan-modified nanovaccines. In vivo mucoadhesive study demonstrated the excellent affinity of the chitosan-modified nanovaccines toward fish gills as confirmed by bioluminescence imaging, fluorescent microscopy, and spectrophotometric quantitative measurement. Following vaccination with the prepared nanovaccines by immersion 30 min, the challenge test was then carried out 30 and 60 days post-vaccination and resulted in high mortalities in the control. The relative percent survival (RPS) of vaccinated fish was greater than 60% for mucoadhesive nanovaccine. Our results also suggested that whole-cell vaccines failed to protect fish from columnaris infection, which is consistent with the mucoadhesive assays showing that whole-cell bacteria were unable to bind to mucosal surfaces. In conclusion, we could use this system to deliver antigen preparation to the mucosal membrane of tilapia and obtained a significant increase in survival compared to controls, suggesting that targeting mucoadhesive nanovaccines to the mucosal surface could be exploited as an effective method for immersion vaccination.
Collapse
Affiliation(s)
- Sirikorn Kitiyodom
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jakarwan Yostawornkul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Somrudee Kaewmalun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Naiyaphat Nittayasut
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kunat Suktham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Channarong Rodkhum
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nopadon Pirarat
- Wildlife Exotic Aquatic Animal Pathology-Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Shimoji Y, Ogawa Y, Tsukio M, Shiraiwa K, Nishikawa S, Eguchi M. Genome-Wide Identification of Virulence Genes in Erysipelothrix rhusiopathiae: Use of a Mutant Deficient in a tagF Homolog as a Safe Oral Vaccine against Swine Erysipelas. Infect Immun 2019; 87:e00673-19. [PMID: 31548316 PMCID: PMC6867862 DOI: 10.1128/iai.00673-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
Swine erysipelas is caused by the Gram-positive pathogen Erysipelothrix rhusiopathiae The swine erysipelas live vaccine in Japan, the E. rhusiopathiae Koganei 65-0.15 strain (Koganei), has been reported to cause arthritis and endocarditis. To develop a vaccine with increased safety, we used a virulent Fujisawa strain to construct transposon mutants for a total of 651 genes, which covered 38% of the coding sequence of the genome. We screened the mutants for attenuation by inoculating mice with 108 CFU of each mutant and subsequently assessed protective capability by challenging the surviving mice with 103 CFU (102 times the 50% lethal dose) of the Fujisawa strain. Of the 23 attenuated mutants obtained, 6 mutants were selected and evaluated for protective capability in pigs by comparison to that of the Koganei strain. A mutant in the ERH_0432 (tagF) gene encoding a putative CDP-glycerol glycerophosphotransferase was found to be highly attenuated and to induce humoral and cell-mediated immune responses in conventional pigs. An in-frame deletion mutant of the gene, the Δ432 mutant, was constructed, and attenuation was further confirmed in germfree piglets; three of four piglets subcutaneously inoculated with 109 CFU of the Δ432 mutant showed no apparent clinical symptoms, whereas all four of the Koganei-inoculated piglets died 3 days after inoculation. It was confirmed that conventional pigs inoculated orally or subcutaneously with the Δ432 strain were almost completely protected against lethal challenge infection. Thus, the tagF homolog mutant of E. rhusiopathiae represents a safe vaccine candidate that can be administered via the oral and subcutaneous routes.
Collapse
Affiliation(s)
- Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Manae Tsukio
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazumasa Shiraiwa
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Sayaka Nishikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Shimoji Y, Tsukio M, Ogawa Y, Shiraiwa K, Nishikawa S, Eguchi M. A putative transcription regulator involved in the virulence attenuation of an acriflavine-resistant vaccine strain of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas. Vet Microbiol 2019; 239:108488. [PMID: 31767066 DOI: 10.1016/j.vetmic.2019.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/01/2022]
Abstract
Acriflavine, an acridine dye that causes frameshift mutations, has been used to attenuate various veterinary pathogens for the development of live vaccines. Erysipelothrix rhusiopathiae Koganei 65-0.15 strain (Koganei) (serovar 1a) is the acriflavine-resistant live vaccine currently used in Japan for the control of swine erysipelas. To investigate the attenuation mechanisms of the Koganei strain, we analyzed the draft genome sequence of the Koganei strain against the reference genome sequence of the E. rhusiopathiae Fujisawa strain (serovar 1a). The sequence analysis revealed a high degree of sequence similarity between the two strains and identified a total of 98 sequence differences within 80 protein-coding sequences. Among them, insertions/deletions (indels) were identified in 9 genes, of which 7 resulted in frameshift and premature termination. To investigate whether these mutations resulted in the attenuation of the Koganei strain, we focused on the indel mutation identified in ERH_0661, an XRE family transcriptional regulator. We introduced the mutation into ERH_0661 of the Fujisawa strain and restored the mutation of the Koganei strain. Animal experiments using the recombinant strains showed that mice survived inoculation with 103 colony forming units (CFUs) (equivalent to approximately 100 50% lethal doses [LD50] of the wild-type Fujisawa) of the recombinant Fujisawa strain, and the mice became ill after inoculation with 108 CFUs of the recombinant Koganei strain. These results suggest that the transcriptional regulator ERH_0661 is involved in the virulence of E. rhusiopathiae and that the ERH_0661 mutation is partially responsible for the attenuation of the Koganei strain.
Collapse
Affiliation(s)
- Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Manae Tsukio
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yohsuke Ogawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Kazumasa Shiraiwa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Sayaka Nishikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Masahiro Eguchi
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| |
Collapse
|
6
|
Petersen AC, Clampitt JM, Minion FC. Analysis of swine antigen-specific antibody responses to Mycoplasma hyopneumoniae infection determined by protein microarray. Vet Microbiol 2019; 230:195-201. [PMID: 30827388 DOI: 10.1016/j.vetmic.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/09/2019] [Accepted: 02/05/2019] [Indexed: 11/18/2022]
Abstract
Pigs harbor several different species of mycoplasmas, of which Mycoplasma hyopneumoniae presents the most significant economic impact on the swine industry. While ELISAs are the predominant diagnostic assay to measure antibody responses during infection with M. hyopneumoniae, the assay itself is only a rough estimate of the total antibody response. It lends little information on pathogen-wide antigen-specific responses. In addition, antibody responses to M. hyopneumoniae as measured by ELISA are slow to develop in infected swine. Our goal was to determine if a protein microarray could be more sensitive and informative of the serological responses of pigs to M. hyopneumoniae infection. The gene sequences of approximately 50 M. hyopneumoniae surface proteins or protein fragments were cloned, mutated to remove UGA codons, expressed in Escherichia coli and purified. The arrays were used to interrogate pig sera from various sources. Sera from naturally-infected swine gave some variability in antigen-specific responses, but, unexpectedly, the responses against the C-terminal portion of the major adhesin P97 was weak in all animals, including those that were experimentally infected. In two of four 118-day experimentally-infected caesarian-derived colostrum-deprived pigs, the strongest antibody responses occurred on days 30 and 54 against members of the P97/P102 paralog families. Our Day 0 results in the other two animals indicate that although thought to be mycoplasma free by all known criteria (serology and PCR), they may have harbored an inapparent Mycoplasma infection. In summary, the protein microarray has the potential to identify new targets for assay development to enhance sensitivity of antibody-based assays.
Collapse
Affiliation(s)
- Andrew C Petersen
- Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1134, USA
| | - Jeannett M Clampitt
- Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1134, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011-1134, USA
| | - F Chris Minion
- Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1134, USA.
| |
Collapse
|
7
|
Identification of the Chromosomal Region Essential for Serovar-Specific Antigen and Virulence of Serovar 1 and 2 Strains of Erysipelothrix rhusiopathiae. Infect Immun 2018; 86:IAI.00324-18. [PMID: 29891546 DOI: 10.1128/iai.00324-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae causes swine erysipelas, an infection characterized by acute septicemia or chronic endocarditis and polyarthritis. Among 17 E. rhusiopathiae serovars, determined based on heat-stable peptidoglycan antigens, serovars 1 and 2 are most commonly associated with the disease; however, the molecular basis for the association between these serovars and virulence is unknown. To search for the genetic region defining serovar 1a (Fujisawa) strain antigenicity, we examined the 15-kb chromosomal region encompassing a putative pathway for polysaccharide biosynthesis, which was previously identified in the E. rhusiopathiae Fujisawa strain. Six transposon mutants of Fujisawa strain possessing a mutation in this region lost antigenic reactivity with serovar 1a-specific rabbit serum. Sequence analysis of this region in wild-type strains of serovars 1a, 1b, and 2 and serovar N, which lacks serovar-specific antigens, revealed that gene organization was similar among the strains and that serovar 2 strains showed variation. Serovar N strains displayed the same gene organization as the serovar 1a, 1b, or 2 strain and possessed certain mutations in this region. In two of the analyzed serovar N strains, restoration of the mutations via complementation with sequences derived from serovar 1a and 2 strains recovered antigenic reactivity with 1a- and 2-specific rabbit serum, respectively. Several gene mutations in this region resulted in altered capsule expression and attenuation of virulence in mice. These results indicate a functional connection between the biosynthetic pathways for the capsular polysaccharide and peptidoglycan antigens used for serotyping, which may explain variation in virulence among strains of different serovars.
Collapse
|
8
|
Lawan A, Jesse FFA, Idris UH, Odhah MN, Arsalan M, Muhammad NA, Bhutto KR, Peter ID, Abraham GA, Wahid AH, Mohd-Azmi ML, Zamri-Saad M. Mucosal and systemic responses of immunogenic vaccines candidates against enteric Escherichia coli infections in ruminants: A review. Microb Pathog 2018; 117:175-183. [PMID: 29471137 DOI: 10.1016/j.micpath.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Abstract
Innumerable Escherichia coli of animal origin are identified, which are of economic significance, likewise, cattle, sheep and goats are the carrier of enterohaemorrhagic E. coli, which are less pathogenic, and can spread to people by way of direct contact and through the contamination of foodstuff or portable drinking water, causing serious illness. The immunization of ruminants has been carried out for ages and is largely acknowledged as the most economical and maintainable process of monitoring E. coli infection in ruminants. Yet, only a limited number of E. coli vaccines are obtainable. Mucosal surfaces are the most important ingress for E. coli and thus mucosal immune responses function as the primary means of fortification. Largely contemporary vaccination processes are done by parenteral administration and merely limited number of E. coli vaccines are inoculated via mucosal itinerary, due to its decreased efficacy. Nevertheless, aiming at maximal mucosal partitions to stimulate defensive immunity at both mucosal compartments and systemic site epitomises a prodigious task. Enormous determinations are involved in order to improve on novel mucosal E. coli vaccines candidate by choosing apposite antigens with potent immunogenicity, manipulating novel mucosal itineraries of inoculation and choosing immune-inducing adjuvants. The target of E. coli mucosal vaccines is to stimulate a comprehensive, effective and defensive immunity by specifically counteracting the antibodies at mucosal linings and by the stimulation of cellular immunity. Furthermore, effective E. coli mucosal vaccine would make vaccination measures stress-free and appropriate for large number of inoculation. On account of contemporary advancement in proteomics, metagenomics, metabolomics and transcriptomics research, a comprehensive appraisal of the immeasurable genes and proteins that were divulged by a bacterium is now in easy reach. Moreover, there exist marvellous prospects in this bourgeoning technologies in comprehending the host bacteria affiliation. Accordingly, the flourishing knowledge could massively guarantee to the progression of immunogenic vaccines against E. coli infections in both humans and animals. This review highlight and expounds on the current prominence of mucosal and systemic immunogenic vaccines for the prevention of E. coli infections in ruminants.
Collapse
Affiliation(s)
- A Lawan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria.
| | - F F A Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Farm & Exotic Animals Medicine & Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor, Malaysia
| | - U H Idris
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - M N Odhah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Yemen
| | - M Arsalan
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia; Livestock and Dairy Development Department Baluchistan, Pakistan
| | - N A Muhammad
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia
| | - K R Bhutto
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Veterinary Research & Diagnosis, Livestock and Fisheries Department, Sindh, Pakistan
| | - I D Peter
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Theriogenology, Faculty of Veterinary Medicine, University of Maiduguri, Nigeria
| | - G A Abraham
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Farm & Exotic Animals Medicine & Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor, Malaysia
| | - A H Wahid
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M L Mohd-Azmi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - M Zamri-Saad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
9
|
The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biori.2017.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
|
11
|
Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional Properties of Vinegar. J Food Sci 2014; 79:R757-64. [DOI: 10.1111/1750-3841.12434] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nilgün H. Budak
- Dept. of Food Technology; Egirdir Vocational School; Süleyman Demirel Univ.; Isparta Turkey
| | - Elif Aykin
- Dept. of Food Engineering; Engineering Faculty; Akdeniz Univ.; Antalya Turkey
| | - Atif C. Seydim
- Dept. of Food Engineering; Engineering Faculty; Süleyman Demirel Univ.; Isparta Turkey
| | - Annel K. Greene
- Dept. of Animal and Veterinary Science; Clemson Univ.; Clemson SC U.S.A
| | | |
Collapse
|
12
|
Characterization and identification of a novel candidate vaccine protein through systematic analysis of extracellular proteins of Erysipelothrix rhusiopathiae. Infect Immun 2013; 81:4333-40. [PMID: 24019408 DOI: 10.1128/iai.00549-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, is a facultative intracellular Gram-positive bacterium. It has been shown that animals immunized with a filtrate from E. rhusiopathiae cultures are protected against lethal challenge. In this study, we identified and characterized the extracellular proteins of E. rhusiopathiae to search for novel vaccine antigens. A concentrated culture supernatant from the E. rhusiopathiae Fujisawa strain, which has been found to induce protection in mice, was analyzed using two-dimensional electrophoresis. From more than 40 confirmed protein spots, 16 major protein spots were selected and subjected to N-terminal amino acid sequence determination, and 14 protein spots were successfully identified. The identified proteins included housekeeping proteins and other metabolic enzymes. We searched for surface-localized proteins by analyzing the genomes of two E. rhusiopathiae strains: Fujisawa and ATCC 19414. Genome analysis revealed that the ATCC 19414 strain has three putative surface-exposed choline-binding proteins (CBPs): CbpA, CbpB, and CbpC. Each CBP contains a putative choline-binding domain. The CbpC gene is mutated in Fujisawa, becoming a nonfunctional pseudogene. Immunogold electron microscopy confirmed that CbpA and CbpB, as well as the majority of the metabolic enzymes examined, are associated with the cell surface of E. rhusiopathiae Fujisawa. Immunization with recombinant CbpB, but not with other recombinant CBPs or metabolic enzymes, protected mice against lethal challenge. A phagocytosis assay revealed that antiserum against CbpB promoted opsonin-mediated phagocytosis by murine macrophages in vitro. The protective capabilities of CbpB were confirmed in pigs, suggesting that CbpB could be used as a vaccine antigen.
Collapse
|
13
|
Capsular polysaccharide of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, and its modification with phosphorylcholine. Infect Immun 2012; 80:3993-4003. [PMID: 22949554 DOI: 10.1128/iai.00635-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsule has been implicated in the virulence of the swine pathogen Erysipelothrix rhusiopathiae, a rod-shaped, intracellular Gram-positive bacterium that has a unique phylogenetic position in the phylum Firmicutes and is a close relative of Mollicutes (mycoplasma species). In this study, we analyzed the genetic locus and composition of the capsular polysaccharide (CPS) of the Fujisawa strain of E. rhusiopathiae. Genome analysis of the Fujisawa strain revealed that the genetic locus for capsular polysaccharide synthesis (cps) is located next to an lic operon, which is involved in the incorporation and expression of phosphorylcholine (PCho). Reverse transcription-PCR analysis showed that cps and lic are transcribed as a single mRNA, indicating that the loci form an operon. Using the cell surface antigen-specific monoclonal antibody (MAb) ER21 as a probe, the capsular materials were isolated from the Fujisawa strain by hot water extraction and treatment with DNase, RNase, pronase, and N-acetylmuramidase SG, followed by anion-exchange and gel filtration chromatography. The materials were then analyzed by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The CPS of E. rhusiopathiae is heterogeneous and consists of the major monosaccharides galacturonic acid, galactose, mannose, glucose, arabinose, xylose, and N-acetylglucosamine and some minor monosaccharides containing ribose, rhamnose, and N-acetylgalactosamine. In addition, the capsule is modified by PCho, which comigrates with the capsular materials, as determined by Western immunoblotting, and colocalizes on the cell surface, as determined by immunogold electron microscopy. Virulence testing of PCho-defective mutants in mice demonstrated that PCho is critical for the virulence of this organism.
Collapse
|
14
|
Immunostimulatory effects of recombinant Erysipelothrix rhusiopathiae expressing porcine interleukin-18 in mice and pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1393-8. [PMID: 22761300 DOI: 10.1128/cvi.00342-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-18 (IL-18), which was originally called gamma interferon (IFN-γ)-inducing factor, has been shown to play an important role in innate and acquired immune responses. In this study, attenuated Erysipelothrix rhusiopathiae strains were engineered to produce porcine IL-18 (poIL-18) and evaluated for their potential immunostimulatory effect in animals. Recombinant poIL-18 was successfully expressed in the recombinant E. rhusiopathiae strains YS-1/IL-18 and KO/IL-18. The culture supernatant of YS-1/IL-18 was confirmed to induce IFN-γ production in murine splenocytes in vitro, and this production was inhibited by incubation with anti-poIL-18 monoclonal antibodies. Furthermore, more IFN-γ production was induced upon stimulation of splenocytes with concanavalin A for splenocytes from mice that were intraperitoneally inoculated with YS-1/IL-18 than for splenocytes from control mice inoculated with the parent strain YS-1. Peritoneal macrophages from mice preinoculated with YS-1/IL-18 exhibited enhanced phagocytosis of Salmonella enterica subsp. enterica serovar Typhimurium compared with peritoneal macrophages from control mice preinoculated with YS-1. We also confirmed the immunostimulatory effect on humoral immune responses against antigens of E. rhusiopathiae and Mycoplasma hyopneumoniae in gnotobiotic pigs that were orally preinoculated with KO/IL-18. Thus, these results provide evidence that E. rhusiopathiae is a promising vector for the expression of host cytokines and suggest the potential utility of E. rhusiopathiae vector-encoded cytokines in the activation of host innate and acquired immune responses.
Collapse
|
15
|
Escribano D, Gutiérrez AM, Martínez Subiela S, Tecles F, Cerón JJ. Validation of three commercially available immunoassays for quantification of IgA, IgG, and IgM in porcine saliva samples. Res Vet Sci 2011; 93:682-7. [PMID: 22019471 DOI: 10.1016/j.rvsc.2011.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 11/24/2022]
Abstract
The objectives of this study were to perform the optimization and validation of three commercially available immunoassays for the measurement of IgA, IgG, and IgM (Igs) in porcine saliva samples and to determinate if their concentrations may be used to distinguish healthy from diseased animals. Intra and inter assay coefficients of variation were lower than 15% in all cases. All methods showed good linearity and recovery; and detection limits were low enough to detect Igs levels in healthy and diseased animals. The clinical validation showed an increase statistically significant (P<0.05) in the group of diseased animals versus healthy pigs. Therefore, these assays may be used in porcine saliva samples, in addition, the measurement of Igs in saliva could be a practical tool, simple and minimally invasive, to evaluate the humoral immune status of pigs.
Collapse
Affiliation(s)
- D Escribano
- Department of Animal Medicine and Surgery, University of Murcia, 30100 Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
16
|
Zou HY, Liu XJ, Ma FY, Chen P, Zhou R, He QG. Attenuated Actinobacillus pleuropneumoniae as a bacterial vector for expression of Mycoplasma hyopneumoniae P36 gene. J Gene Med 2011; 13:221-9. [PMID: 21432947 DOI: 10.1002/jgm.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Actinobacillus pleuropneumoniae and Mycoplasma hyopneumoniae are causative agents of porcine pneumonia. Over the last few years, attenuated A. pleuropneumoniae live vaccines have been shown to provide protection against A. pleuropneumoniae infection. We postulated that attenuated A. pleuropneumoniae could additionally be used as a vaccine vector for protection against M. hyopneumoniae. METHODS A mutant strain of A. pleuropneumoniae, SLW36, was constructed by replacing the urease structural gene of mutant strain SLW03 of A. pleuropneumoniae with the L-lactate dehydrogenase gene (p36) of M. hyopneumoniae by transconjugation and counter selection. The urease function and the growth kinetics of SLW36 were measured. Protein expression of P36 was analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and western blotting. The attenuated virulence and immunity of SLW36 were analyzed in a mouse model. RESULTS The mutant strain SLW36 was urease negative and four-fold less virulent than the parental strain SLW03. There were no differences in expression levels of p36 at different culture time-points and the foreign gene was stable after in vitro passage. Immunoglobulin G responses against p36 antigen and M. hyopneumoniae whole-cell antigen were detected. CONCLUSIONS The mutant strain SLW36 can induce antibody against p36 and M. hyopneumoniae. The mutant strain SLW36 has the potential to be used as a live vaccine for protection against A. pleuropneumoniae and M. hyopneumoniae. Studies in pigs are needed to confirm protective levels of antibodies and to check for rare side-effects of the vaccine.
Collapse
Affiliation(s)
- Hao-Yong Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
17
|
Shen HG, Bender JS, Opriessnig T. Identification of surface protective antigen (spa) types in Erysipelothrix reference strains and diagnostic samples by spa multiplex real-time and conventional PCR assays. J Appl Microbiol 2010; 109:1227-33. [PMID: 20477888 DOI: 10.1111/j.1365-2672.2010.04746.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To develop spa multiplex real-time and conventional PCR assays to detect and differentiate between spaA, spaB and spaC genes within Erysipelothrix spp. METHODS AND RESULTS For evaluation of the assays, 28 Erysipelothrix spp. reference strains, 25 tissues from pigs inoculated with reference strains of serotypes 1, 2, 5, 10 or 18, and 15 diagnostic samples were used. SpaA was found to be present in Erysipelothrix rhusiopathiae serotypes 1a, 1b, 2, 5, 9, 12, 15, 16, 17, 23 and N; spaB was detected in E. rhusiopathiae serotypes 4, 6, 8, 11, 19 and 21 and spaC was detected in E. sp. strain 2 serotype 18. Spa-related genes were not detected in E. tonsillarum strains (serotypes 3, 7, 10, 14, 20, 22, 24, 25, 26) or E. sp. strain 1 (serotype 13). With the spa multiplex real-time PCR assay, it was also possible to further differentiate spaB into spaB1 (serotypes 4, 6, 8, 19 and 21) and spaB2 (serotype 11). Overall, spaA was detected in seven experimental tissue samples and six diagnostic tissue samples, and spaC in two experimental tissue samples. The detection limits were determined to be five colony-forming units (CFU) per reaction for the spa multiplex real-time PCR assay and 4000 CFU per reaction for the conventional PCR assay. CONCLUSIONS Both spa PCR assays were specific and reproducible in the identification of spa types in Erysipelothrix spp. SIGNIFICANCE AND IMPACT OF THE STUDY The described spa PCR assays may be useful tools for investigating spa prevalence among strains isolated from field tissues and to determine the role of the Spa proteins in vaccine protection and pathogenesis.
Collapse
Affiliation(s)
- H G Shen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
18
|
Erysipelothrix rhusiopathiae. Vet Microbiol 2009; 140:405-17. [PMID: 19733019 DOI: 10.1016/j.vetmic.2009.08.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/26/2009] [Accepted: 08/03/2009] [Indexed: 11/23/2022]
Abstract
Erysipelothrix rhusiopathiae is a facultative, non-spore-forming, non-acid-fast, small, Gram-positive bacillus. The organism was first established as a human pathogen late in the nineteenth century. Three forms of human disease have been recognised since then. These include a localised cutaneous lesion form, erysipeloid, a generalised cutaneous form and a septicaemic form often associated with endocarditis. The organism is ubiquitous and able to persist for a long period of time in the environment, including marine locations. It is a pathogen or a commensal in a wide variety of wild and domestic animals, birds and fish. Swine erysipelas caused by E. rhusiopathiae is the disease of greatest prevalence and economic importance. Diseases in other animals include erysipelas of farmed turkeys, chickens, ducks and emus, and polyarthritis in sheep and lambs. Infection due to E. rhusiopathiae in humans is occupationally related, principally occurring as a result of contact with contaminated animals, their products or wastes, or soil. Erysipeloid is the most common form of infections in humans. While it has been suggested that the incidence of human infection could be declining due to technological advances in animal industries, infection still occurs in specific environments. Additionally, infection by the organism is possibly under-diagnosed due to the resemblance it bears to other infections, and problems encountered in isolation and identification. Various virulence factors have been suggested as being involved in the pathogenicity of E. rhusiopathiae. The presence of a hyaluronidase and neuraminidase has been recognised, and it was shown that neuraminidase plays a significant role in bacterial attachment and subsequent invasion into host cells. The role of hyaluronidase in the disease process is controversial. The presence of a heat labile capsule has been reported as important in virulence. Control of animal disease by sound husbandry, herd management, good sanitation and immunization procedures is recommended.
Collapse
|
19
|
Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector. Vaccine 2009; 27:4543-50. [DOI: 10.1016/j.vaccine.2009.04.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 11/20/2022]
|
20
|
da Silva Ramos Rocha A, Conceição FR, Grassmann AA, Lagranha VL, Dellagostin OA. B subunit ofEscherichia coliheat-labile enterotoxin as adjuvant of humoral immune response in recombinant BCG vaccination. Can J Microbiol 2008; 54:677-86. [DOI: 10.1139/w08-056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a nontoxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. In this paper, the effect of LTB on the humoral immune response to recombinant BCG (rBCG) vaccination was evaluated. Isogenic mice were immunized with rBCG expressing the R1 repeat region of the P97 adhesin of Mycoplasma hyopneumoniae alone (rBCG/R1) or fused to LTB (rBCG/LTBR1). Anti-R1 systemic antibody levels (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgA) were measured by ELISA using recombinant R1 as antigen. With the exception of IgM, LTB doubled the anti-R1 antibody levels in rBCG vaccination. The IgG1/IgG2a mean ratio showed that both rBCG/LTBR1 and rBCG/R1 induced a mixed Th1/Th2 immune response. Interestingly, anti-R1 serum IgA was induced only by rBCG/LTBR1. These results demonstrate that LTB has an adjuvant effect on the humoral immune response to recombinant antigens expressed in BCG.
Collapse
Affiliation(s)
- Andréa da Silva Ramos Rocha
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - André Alex Grassmann
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Valeska Lizzi Lagranha
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Odir Antônio Dellagostin
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
21
|
Chen AY, Fry SR, Daggard GE, Mukkur TK. Evaluation of immune response to recombinant potential protective antigens of Mycoplasma hyopneumoniae delivered as cocktail DNA and/or recombinant protein vaccines in mice. Vaccine 2008; 26:4372-8. [DOI: 10.1016/j.vaccine.2008.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 12/13/2022]
|
22
|
Muneta Y, Minagawa Y, Shimoji Y, Nagata R, Markham PF, Browning GF, Mori Y. IL-18 expression in pigs following infection with Mycoplasma hyopneumoniae. J Interferon Cytokine Res 2007; 26:637-44. [PMID: 16978067 DOI: 10.1089/jir.2006.26.637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Little is known about the detail of the immune response during infection of pigs with Mycoplasma hyopneumoniae (Mhp). To further understand this important porcine pathogen, we examined the interleukin-18 (IL- 18) response in experimentally infected piglets. We found that large amounts of IL-18 were produced in the bronchoalveolar lavage fluids (BALF) of pigs experimentally infected with Mhp. However, the concentration of interferon-gamma (IFN-gamma) in the same BALF was negatively correlated with that of IL-18. The antibody response against Mhp was found to be associated with the IL-18 concentration in the BALF. Immunohistochemical staining revealed that both IL-18 and IL-18 receptor alpha chain (IL-18Ralpha) were present in macrophages and plasma cells in the lungs of Mhp-infected pigs. Lung mononuclear cells isolated from pneumonic lesions secreted IL-18 and prostaglandin E(2) (PGE(2)) in vitro, and PGE(2) production was enhanced by stimulation with IL-18. These results indicate that IL-18 produced in the pig lung contributes to the development of innate and acquired immune responses against Mhp as a proinflammatory cytokine rather than as an IFN-gamma-inducing factor and may be involved in immunomodulation in pigs.
Collapse
Affiliation(s)
- Yoshihiro Muneta
- Department of Immunology, National Institute of Animal Health, Tsukuba, Ibaraki, 305-0856, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
24
|
Conceição FR, Moreira AN, Dellagostin OA. A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine 2006; 24:5734-43. [PMID: 16730864 DOI: 10.1016/j.vaccine.2006.04.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 01/12/2023]
Abstract
Swine mycoplasmal pneumonia (SMP), caused by fastidious bacterium Mycoplasma hyopneumoniae, is the most important respiratory disease in swine breeding. The commonly used vaccines to control this disease consist of inactivated whole cells (bacterins), whose production cost is high and the efficiency is limited. The objective of this study was to develop and to evaluate in BALB/c mice a recombinant subunit vaccine (rLTBR1) containing the R1 region of P97 adhesin of M. hyopneumoniae (R1) fused to the B subunit of the heat-labile enterotoxin of Escherichia coli (LTB). rLTBR1 formed functional oligomers that presented high affinity to GM1 ganglioside. Mice inoculated with rLTBR1 by intranasal (IN) or intramuscular (IM) route produced high levels of anti-R1 systemic and mucosal antibodies (IgA), which recognized the native P97. On the other hand, mice inoculated with the inactivated whole cell vaccine did not produce anti-R1 antibodies. The administration route influenced the modulation of the immune response by LTB, showing that IM rLTBR1 induced Th2-biased immune responses and IN rLTBR1 induced Th1-biased immune responses. rLTBR1 administrated by IN route also induced IFN-gamma secretion by lymphocytes. rLTBR1 may constitute a new strategy for preventing infection by M. hyopneumoniae and may have potential for developing vaccines against other infectious diseases as well.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial/blood
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/metabolism
- Female
- Immunoglobulin A/blood
- Immunoglobulin A/metabolism
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mycoplasma hyopneumoniae/immunology
- Mycoplasma hyopneumoniae/metabolism
- Pneumonia of Swine, Mycoplasmal/immunology
- Pneumonia of Swine, Mycoplasmal/prevention & control
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Nucleic Acid
- T-Lymphocytes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
|
25
|
Detmer A, Glenting J. Live bacterial vaccines--a review and identification of potential hazards. Microb Cell Fact 2006; 5:23. [PMID: 16796731 PMCID: PMC1538998 DOI: 10.1186/1475-2859-5-23] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 06/23/2006] [Indexed: 12/20/2022] Open
Abstract
The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.
Collapse
Affiliation(s)
- Ann Detmer
- Danish Toxicology Centre, Hørsholm, Denmark
| | | |
Collapse
|
26
|
Gerdts V, Mutwiri GK, Tikoo SK, Babiuk LA. Mucosal delivery of vaccines in domestic animals. Vet Res 2006; 37:487-510. [PMID: 16611560 DOI: 10.1051/vetres:2006012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 10/11/2005] [Indexed: 12/29/2022] Open
Abstract
Mucosal vaccination is proving to be one of the greatest challenges in modern vaccine development. Although highly beneficial for achieving protective immunity, the induction of mucosal immunity, especially in the gastro-intestinal tract, still remains a difficult task. As a result, only very few mucosal vaccines are commercially available for domestic animals. Here, we critically review various strategies for mucosal delivery of vaccines in domestic animals. This includes live bacterial and viral vectors, particulate delivery-systems such as polymers, alginate, polyphosphazenes, immune stimulating complex and liposomes, and receptor mediated-targeting strategies to the mucosal tissues. The most commonly used routes of immunization, strategies for delivering the antigen to the mucosal surfaces, and future prospects in the development of mucosal vaccines are discussed.
Collapse
Affiliation(s)
- Volker Gerdts
- Vaccine and Infectious Disease Organization, VIDO, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, S7N 5E3, Canada.
| | | | | | | |
Collapse
|
27
|
Imada Y, Takase A, Kikuma R, Iwamaru Y, Akachi S, Hayakawa Y. Serotyping of 800 strains of Erysipelothrix isolated from pigs affected with erysipelas and discrimination of attenuated live vaccine strain by genotyping. J Clin Microbiol 2004; 42:2121-6. [PMID: 15131179 PMCID: PMC404604 DOI: 10.1128/jcm.42.5.2121-2126.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight hundred Erysipelothrix strains isolated between 1992 and 2002 from swine with erysipelas in Japan were serotyped. Thirty-seven, 47, 73, and 643 strains were isolated from animals with acute septicemia, urticaria, chronic endocarditis, and chronic arthritis, respectively, of which 381, 146, 254, and 19 isolates belonged to serotypes 1a, 1b, and 2b and other serotypes, respectively. All serotype 1a isolates were further examined for acriflavine resistance and their genotypes to discriminate them from the attenuated live vaccine strain, defined as serotype 1a, which is resistant to 0.02% acriflavine and which shows low levels of pathogenicity in mice. Of the serotype 1a isolates, 64.6% were acriflavine resistant, with 98.4% of these acriflavine-resistant strains having been isolated from animals with chronic arthritis. By randomly amplified polymorphic DNA (RAPD) analysis, almost all the acriflavine-resistant serotype 1a strains showed the 253-bp band characteristic of vaccine strains and were easily discriminated from all 113 strains of acriflavine-sensitive serotype 1a strains from animals with acute and subacute swine erysipelas. The incidence of acriflavine-resistant strains of the distinctive RAPD type 1-2 was markedly higher than that of the other RAPD types and serotypes. RAPD type 1-2 strains also included a specific group identifiable by restriction fragment length polymorphism DNA analysis. Furthermore, the pathogenicities of 29 isolates of RAPD type 1-2 for mice were lower than those of the 21 isolates of other RAPD types. Our results indicate that RAPD type 1-2 strains are live vaccine strains and that 37% of the cases of chronic swine erysipelas detected in the past 11 years in Japan have occurred as a side effect of live vaccine use.
Collapse
Affiliation(s)
- Yumiko Imada
- National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mucosal immunization regimes that employ the oral route of delivery are often compromised by antigen degradation in the stomach. Moreover, tolerance or immunological unresponsiveness to orally delivered vaccine antigens is also a major problem associated with this route of immunization. Immunization by alternative routes including intrarectal (i.r.) and intranasal (i.n.) is becoming increasingly recognized in large animals for generating protective antibody responses at mucosal surfaces. These approaches are particularly useful in ruminant species which have four stomachs that can potentially interfere with antigen presentation to mucosal inductive sites of the gut. Modifications to enhance existing mucosal immunization regimes have also been explored through the use of alternative antigen delivery systems and mucosal adjuvants. The combination of alternative immunization routes and the use of appropriate antigen delivery systems appear to be a rational approach for providing protective immunity at mucosal surfaces. There has been a considerable amount of research conducted on evaluating the efficacy of emerging antigen delivery systems and novel adjuvants for improved immunity to mucosal immunization but very little of this work has been specific to the mucosal compartment of large animals. The aim of this review is therefore to assess the feasibility and practicality of using large animals (particularly sheep, cattle and pigs) for inducing and detecting specific immune responses to alternative mucosal routes of immunization.
Collapse
Affiliation(s)
- Bradley J Sedgmen
- Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
29
|
Shimoji Y, Oishi E, Muneta Y, Nosaka H, Mori Y. Vaccine efficacy of the attenuated Erysipelothrix rhusiopathiae YS-19 expressing a recombinant protein of Mycoplasma hyopneumoniae P97 adhesin against mycoplasmal pneumonia of swine. Vaccine 2003; 21:532-7. [PMID: 12531653 DOI: 10.1016/s0264-410x(02)00462-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The attenuated Erysipelothrix rhusiopathiae YS-19 strain was constructed for the purpose of delivering the C-terminal portion of the Mycoplasma hyopneumoniae P97 adhesin to the mucosal surface of the respiratory tract of pigs. In this study, the efficacy of the YS-19 vaccine against mycoplasmal pneumonia of swine was evaluated. Animal experiments revealed that intranasal immunization of pigs with the YS-19 strain significantly reduced the severity of pneumonic lung lesions caused by M. hyopneumoniae infection. In YS-19-immunized pigs, P97-specific serum antibodies were not detected. However, when stimulated with the P97 protein, peripheral blood mononuclear cells from the YS-19-immunized pigs had a significantly higher stimulation index (P<0.05) than that of cells from control pigs at 7 days post-challenge.
Collapse
Affiliation(s)
- Yoshihiro Shimoji
- National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | |
Collapse
|