1
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
2
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Ma PY, Tan JE, Hee EW, Yong DWX, Heng YS, Low WX, Wu XH, Cletus C, Kumar Chellappan D, Aung K, Yong CY, Liew YK. Human Genetic Variation Influences Enteric Fever Progression. Cells 2021; 10:cells10020345. [PMID: 33562108 PMCID: PMC7915608 DOI: 10.3390/cells10020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
In the 21st century, enteric fever is still causing a significant number of mortalities, especially in high-risk regions of the world. Genetic studies involving the genome and transcriptome have revealed a broad set of candidate genetic polymorphisms associated with susceptibility to and the severity of enteric fever. This review attempted to explain and discuss the past and the most recent findings on human genetic variants affecting the progression of Salmonella typhoidal species infection, particularly toll-like receptor (TLR) 4, TLR5, interleukin (IL-) 4, natural resistance-associated macrophage protein 1 (NRAMP1), VAC14, PARK2/PACRG, cystic fibrosis transmembrane conductance regulator (CFTR), major-histocompatibility-complex (MHC) class II and class III. These polymorphisms on disease susceptibility or progression in patients could be related to multiple mechanisms in eliminating both intracellular and extracellular Salmonella typhoidal species. Here, we also highlighted the limitations in the studies reported, which led to inconclusive results in association studies. Nevertheless, the knowledge obtained through this review may shed some light on the development of risk prediction tools, novel therapies as well as strategies towards developing a personalised typhoid vaccine.
Collapse
Affiliation(s)
- Pei Yee Ma
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Jing En Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Edd Wyn Hee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Dylan Wang Xi Yong
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Yi Shuan Heng
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Wei Xiang Low
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Xun Hui Wu
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Christy Cletus
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.E.T.); (E.W.H.); (D.W.X.Y.); (Y.S.H.); (W.X.L.); (X.H.W.); (C.C.)
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Kyan Aung
- Department of Pathology, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Yun Khoon Liew
- Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
4
|
Rehman T, Yin L, Latif MB, Chen J, Wang K, Geng Y, Huang X, Abaidullah M, Guo H, Ouyang P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb Pathog 2019; 137:103748. [PMID: 31521802 DOI: 10.1016/j.micpath.2019.103748] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023]
Abstract
Salmonellosis is a serious threat to human and animal health. Salmonella adhesion to the host cell is an initial and most crucial step in the pathogenesis of salmonellosis. Many factors are involved in the adhesion process of Salmonella infection. Fimbriae are one of the most important factors in the adhesion of Salmonella. The Salmonella fimbriae are assembled in three types of assembly pathways: chaperon-usher, nucleation-precipitation, and type IV fimbriae. These assembly pathways lead to multiple types of fimbriae. Salmonella fimbriae bind to host cell receptors to initiate adhesion. So far, many receptors have been identified, such as Toll-like receptors. However, several receptors that may be involved in the adhesive mechanism of Salmonella fimbriae are still un-identified. This review aimed to summarize the types of Salmonella fimbriae produced by different assembly pathways and their role in adhesion. It also enlisted previously discovered receptors involved in adhesion. This review might help readers to develop a comprehensive understanding of Salmonella fimbriae, their role in adhesion, and recently developed strategies to counter Salmonella infection.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Bilal Latif
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, 44195, Ohio, USA.
| | - Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Abaidullah
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Grzymajlo K, Ugorski M, Suchanski J, Kedzierska AE, Kolenda R, Jarzab A, Biernatowska A, Schierack P. The Novel Type 1 Fimbriae FimH Receptor Calreticulin Plays a Role in Salmonella Host Specificity. Front Cell Infect Microbiol 2017; 7:326. [PMID: 28770174 PMCID: PMC5516122 DOI: 10.3389/fcimb.2017.00326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 01/25/2023] Open
Abstract
It was suggested that minor differences in the structure of FimH are most likely associated with differences in its adhesion specificities and may determine the tropism of various Salmonella serovars to different species and tissues. We have recently shown that FimH adhesins from host-adapted serovars, e.g., Salmonella Choleraesuis (SCh), bind to other glycoprotein receptors compared to FimH from host-unrestricted Salmonella Enteritidis (SE). Here we identify porcine calreticulin expressed by swine intestinal cells as a host-specific receptor for SCh FimH adhesin, suggesting that such an interaction may contribute to SCh host specificity. Calreticulin was identified by 2D electrophoresis and mass spectrometry as a glycoprotein that was bound specifically by recombinant SCh FimH protein, but not by FimH from SE. The functionality of calreticulin as a specific receptor of SCh FimH adhesin was further confirmed by adhesion and invasion of mutated strains of SCh carrying different variants of FimH proteins to IPEC-J2 cells with overexpression and silenced expression of calreticulin. It was found that SCh carrying the active variant of FimH adhered and invaded IPEC-J2 cells with calreticulin overexpression at significantly higher numbers than those of SCh expressing the non-active variant or SE variant of FimH. Moreover, binding of SCh carrying the active variant of FimH to IPEC-J2 with silenced calreticulin expression was significantly weaker. Furthermore, we observed that SCh infection induces translocation of calreticulin to cell membrane. All of the aforementioned results lead to the general conclusion that Salmonella host specificity requires not only special mechanisms and proteins expressed by the pathogen but also specifically recognized receptors expressed by a specific host.
Collapse
Affiliation(s)
- Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Jaroslaw Suchanski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Anna E Kedzierska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Rafal Kolenda
- Faculty of Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-SenftenbergSenftenberg, Germany
| | - Anna Jarzab
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Agnieszka Biernatowska
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of WrocławWrocław, Poland
| | - Peter Schierack
- Faculty of Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-SenftenbergSenftenberg, Germany
| |
Collapse
|
6
|
Barrila J, Yang J, Crabbé A, Sarker SF, Liu Y, Ott CM, Nelman-Gonzalez MA, Clemett SJ, Nydam SD, Forsyth RJ, Davis RR, Crucian BE, Quiriarte H, Roland KL, Brenneman K, Sams C, Loscher C, Nickerson CA. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns. NPJ Microgravity 2017; 3:10. [PMID: 28649632 PMCID: PMC5460263 DOI: 10.1038/s41526-017-0011-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.
Collapse
Affiliation(s)
- Jennifer Barrila
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Shameema F. Sarker
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Yulong Liu
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| | | | | | - Seth D. Nydam
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Rebecca J. Forsyth
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Richard R. Davis
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Brian E. Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| | | | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Karen Brenneman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Clarence Sams
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| | - Christine Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Ireland
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ USA
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| |
Collapse
|
7
|
Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin Microbiol Rev 2015; 28:901-37. [PMID: 26180063 PMCID: PMC4503790 DOI: 10.1128/cmr.00002-15] [Citation(s) in RCA: 704] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015.
Collapse
Affiliation(s)
- John A Crump
- Centre for International Health, University of Otago, Dunedin, Otago, New Zealand Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Sjölund-Karlsson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melita A Gordon
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christopher M Parry
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Adhesive mechanisms of Salmonella enterica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:17-34. [PMID: 21557055 DOI: 10.1007/978-94-007-0940-9_2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salmonella enterica is an invasive, facultative intracellular pathogen of animal and man with the ability to colonize various niches in diverse host organisms. The pathogenesis of infections by S. enterica requires adhesion to various host cell surfaces, and a large number of adhesive structures can be found. Depending on the serotype of S. enterica, gene clusters for more than 10 different fimbrial adhesins were identified, with type I fimbriae such as Fim, Lpf (long polar fimbriae), Tafi (thin aggregative fimbriae) or the type IV pili of serotype Typhi. In addition, autotransporter adhesins such as ShdA, MisL and SadA and the type I secreted large repetitive adhesins SiiE and BapA have been identified. Although the functions of many of the various adhesins are not well understood, recent studies show the specific structural and functional properties of Salmonella adhesins and how they act in concert with other virulence determinants. In this chapter, we describe the molecular characteristics of Salmonella adhesins and link these features to their multiple functions in infection biology.
Collapse
|
9
|
Mercado-Lubo R, McCormick BA. The interaction of gut microbes with host ABC transporters. Gut Microbes 2010; 1:301-306. [PMID: 21327038 PMCID: PMC3023614 DOI: 10.4161/gmic.1.5.12925] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 06/30/2010] [Accepted: 07/08/2010] [Indexed: 02/08/2023] Open
Abstract
ATP binding cassette (ABC) transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, secretion and toxicity of xenobiotics. In addition to their essential function in drug resistance, there is also emerging evidence documenting the important role ABC transporters play in tissue defense. In this respect, the gastrointestinal tract represents a critical vanguard of defense against oral exposure of drugs while at the same time functions as a physical barrier between the lumenal contents (including bacteria) and the intestinal epithelium. Given emerging evidence suggesting that multidrug resistance protein (MDR) plays an important role in host-bacterial interactions in the gastrointestinal tract, this review will discuss the interplay between MDR of the intestinal epithelial cell barrier and gut microbes in health and disease. In particular, we will explore host-microbe interactions involving three apically restricted ABC transporters of the intestinal epithelium; P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cystic fibrosis transmembrane regulator (CFTR).
Collapse
|
10
|
Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun 2009; 77:5300-10. [PMID: 19805527 DOI: 10.1128/iai.00501-09] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of pneumonia, and many components of the innate immune system have been proposed to exert important effects in preventing lung infection. However, a vigorous experimental system to identify an overriding, key effector mediating innate immunity to lung infection has not been utilized. As many of the important components of innate immunity are involved in recruitment and activation of polymorphonuclear neutrophils (PMNs) to infected tissues, we hypothesized that the cells and factors needed for their proper recruitment to the lung comprised the major mediators of innate immunity. In neutropenic mice, intranasal (i.n.) doses of P. aeruginosa as low as 10 to 100 CFU/mouse produced a fatal lung infection, compared with 10(7) to >10(8) CFU for nonneutropenic mice. There was only a very modest increased mortality in mice lacking mature lymphocytes and no increased mortality in mice depleted of alveolar macrophages when administered i.n. P. aeruginosa. Recombinant mouse granulocyte colony-stimulating factor increased survival of neutropenic mice after i.n. P. aeruginosa inoculation. MyD88(-/-) mice, which cannot recruit PMNs to the lungs, were highly susceptible to fatal P. aeruginosa lung infection, with bacterial doses of <120 CFU being lethal. Activation of a MyD88-independent pathway for PMN recruitment to the lungs in MyD88(-/-) mice resulted in enhanced protection against P. aeruginosa lung infection. Overall, in the absence of PMNs, mice cannot resist P. aeruginosa lung infection from extremely small bacterial doses. There is an inescapable requirement for local PMN recruitment and activation to mediate innate immunity to P. aeruginosa lung infection.
Collapse
|
11
|
Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection. PLoS One 2009; 4:e4237. [PMID: 19156198 PMCID: PMC2617780 DOI: 10.1371/journal.pone.0004237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023] Open
Abstract
Background Circulating lipoproteins improve the outcome of severe Gram-negative infections through neutralizing lipopolysaccharides (LPS), thus inhibiting the release of proinflammatory cytokines. Methods/Principal Findings Low density lipoprotein receptor deficient (LDLR−/−) mice, with a 7-fold increase in LDL, are resistant against infection with Salmonella typhimurium (survival 100% vs 5%, p<0.001), and 100 to 1000-fold lower bacterial burden in the organs, compared with LDLR+/+ mice. Protection was not due to differences in cytokine production, phagocytosis, and killing of Salmonella organisms. The differences were caused by the excess of lipoproteins, as hyperlipoproteinemic ApoE−/− mice were also highly resistant to Salmonella infection. Lipoproteins protect against infection by interfering with the binding of Salmonella to host cells, and preventing organ invasion. This leads to an altered biodistribution of the microorganisms during the first hours of infection: after intravenous injection of Salmonella into LDLR+/+ mice, the bacteria invaded the liver and spleen within 30 minutes of infection. In contrast, in LDLR−/− mice, Salmonella remained constrained to the circulation from where they were efficiently cleared, with decreased organ invasion. Conclusions plasma lipoproteins are a potent host defense mechanism against invasive Salmonella infection, by blocking adhesion of Salmonella to the host cells and subsequent tissue invasion.
Collapse
|
12
|
Henckaerts L, Jaspers M, Van Steenbergen W, Vliegen L, Fevery J, Nuytten H, Roskams T, Rutgeerts P, Cassiman JJ, Vermeire S, Cuppens H. Cystic fibrosis transmembrane conductance regulator gene polymorphisms in patients with primary sclerosing cholangitis. J Hepatol 2009; 50:150-7. [PMID: 18992954 DOI: 10.1016/j.jhep.2008.07.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/16/2008] [Accepted: 07/21/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Primary sclerosing cholangitis (PSC) is a progressive cholestatic disease commonly associated with inflammatory bowel disease (IBD) and characterized by fibrosing inflammatory destruction of bile ducts. The histological features in the liver of PSC patients are similar to those observed in cystic fibrosis (CF). Our aim was to study whether variants in the CFTR gene are associated with the occurrence and/or evolution of PSC. METHODS PSC patients (n=140) were genotyped for F508del, the TGmTn variants, and four additional polymorphic loci (1001+11 C>T, M470V, T854T and Q1463Q), and compared to 136 matched healthy controls. RESULTS The 1540G-allele, encoding V470, was less frequent in PSC (52%) than in controls (64%, p=0.003), and was associated with protection against PSC in individuals without IBD (OR 0.25, 95% CI 0.12-0.52, p=0.0002). Also TG11-T7 was less frequent in PSC (53%) than in controls (61%, p=0.04), this haplotype was associated with reduced risk for PSC (OR 0.34, 95% CI 0.17-0.70, p=0.003) in individuals without IBD. CONCLUSIONS In this cohort of PSC patients, several CFTR-variants affecting the functional properties of the CFTR protein seem to offer protection against the development of PSC, confirming our hypothesis that CFTR might be implicated in the pathogenesis of PSC.
Collapse
Affiliation(s)
- Liesbet Henckaerts
- Department of Gastroenterology, University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bishop A, House D, Perkins T, Baker S, Kingsley RA, Dougan G. Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. MICROBIOLOGY-SGM 2008; 154:1914-1926. [PMID: 18599820 DOI: 10.1099/mic.0.2008/016998-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study we investigate the ability of Salmonella enterica serovar Typhi (S. Typhi) surface structures to influence invasion and adhesion in epithelial cell assay systems. In general, S. Typhi was found to be less adherent, invasive and cytotoxic than S. enterica serovar Typhimurium (S. Typhimurium). Culture conditions had little effect on adhesion of S. Typhi to cultured cells but had a marked influence on invasion. In contrast, bacterial growth conditions did not influence S. Typhi apical invasion of polarized cells. The levels of S. Typhi, but not S. Typhimurium, invasion were increased by application of bacteria to the basolateral surface of polarized cells. Expression of virulence (Vi) capsule by S. Typhi resulted in a modest reduction in adhesion, but profoundly reduced levels of invasion of non-polarized cells. However, Vi capsule expression had no affect on invasion of the apical or basolateral surfaces of polarized cells. Mutation of the staA, tcfA or pilS genes did not affect invasion or adhesion in either the presence or the absence of Vi capsule.
Collapse
Affiliation(s)
- Anne Bishop
- The Centre for Molecular Microbiology and Infection, Faculty of Life Sciences, Division of Molecular and Cell Biology, Imperial College London, London SW7 2AZ, UK
| | - Deborah House
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Timothy Perkins
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stephen Baker
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
14
|
Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 2008; 4:e35. [PMID: 18282097 PMCID: PMC2242836 DOI: 10.1371/journal.ppat.0040035] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 01/07/2008] [Indexed: 01/17/2023] Open
Abstract
Candida albicans fungemia in cancer patients is thought to develop from initial gastrointestinal (GI) colonization with subsequent translocation into the bloodstream after administration of chemotherapy. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but we have hypothesized that both neutropenia and GI mucosal damage are critical for allowing widespread invasive C. albicans disease. We investigated these parameters in a mouse model of C. albicans GI colonization that led to systemic spread after administration of immunosuppression and mucosal damage. After depleting resident GI intestinal flora with antibiotic treatment and achieving stable GI colonization levels of C. albicans, it was determined that systemic chemotherapy with cyclophosphamide led to 100% mortality, whereas selective neutrophil depletion, macrophage depletion, lymphopenia or GI mucosal disruption alone resulted in no mortality. Selective neutrophil depletion combined with GI mucosal disruption led to disseminated fungal infection and 100% mortality ensued. GI translocation and dissemination by C. albicans was also dependent on the organism's ability to transform from the yeast to the hyphal form. This mouse model of GI colonization and fungemia is useful for studying factors of innate host immunity needed to prevent invasive C. albicans disease as well as identifying virulence factors that are necessary for fungal GI colonization and dissemination. The model may also prove valuable for evaluating therapies to control C. albicans infections.
Collapse
Affiliation(s)
- Andrew Y Koh
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
15
|
Tam CKP, Morris C, Hackett J. The Salmonella enterica serovar Typhi type IVB self-association pili are detached from the bacterial cell by the PilV minor pilus proteins. Infect Immun 2006; 74:5414-8. [PMID: 16926438 PMCID: PMC1594823 DOI: 10.1128/iai.00172-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi and some strains (Vi+) of serovar Dublin use type IVB pili to facilitate bacterial self-association, but only when the PilV proteins (potential minor pilus proteins) are not synthesized. Pilus-mediated self-association may be important in the pathogenesis of enteric fever. We have shown previously that the extent of DNA supercoiling controls the rate of Rci-catalyzed inversion of a DNA fragment which includes the C-terminal portions of the PilV proteins. This inversion therefore controls PilV synthesis as a high inversion rate prohibits transcription of pilV-encoding DNA. Here, we describe the manner in which PilV protein expression inhibits bacterial self-association and present data which suggest that incorporation of one or a few PilV protein molecules into a growing pilus, comprised of PilS subunits, causes the pilus to detach at the bacterial membrane. The bacteria are then unable to self-associate. We suggest that this phenomenon may be relevant to the pathogenesis of typhoid fever.
Collapse
Affiliation(s)
- Connie K P Tam
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
16
|
Hansen JK, Forest KT. Type IV Pilin Structures: Insights on Shared Architecture, Fiber Assembly, Receptor Binding and Type II Secretion. J Mol Microbiol Biotechnol 2006; 11:192-207. [PMID: 16983195 DOI: 10.1159/000094054] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Type IV pili are long, flexible filaments that extend from the surface of Gram-negative bacteria and are formed by the polymerization of pilin subunits. This review focuses on the structural information available for each pilin subclass, type IVa and type IVb, highlighting the contributions crystal and nuclear magnetic resonance structures have made in understanding pilus function and assembly. In addition, the type II secretion pseudopilus subunit structure and helical assembly is compared to that of the type IV pilus. The pilin subunits adopt an alphabeta-roll fold formed by the hydrophobic packing of the C-terminal half of a long alpha-helix against an antiparallel beta-sheet. The conserved N-terminal half of the same alpha-helix, as well as two sequence- and structurally-variable regions, protrude from this globular head domain. Filament models have a hydrophobic core formed by the signature long alpha-helices, with variable regions at the filament surface.
Collapse
Affiliation(s)
- Johanna K Hansen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
17
|
Elahi E, Khodadad A, Kupershmidt I, Ghasemi F, Alinasab B, Naghizadeh R, Eason RG, Amini M, Esmaili M, Esmaeili Dooki MR, Sanati MH, Davis RW, Ronaghi M, Thorstenson YR. A haplotype framework for cystic fibrosis mutations in Iran. J Mol Diagn 2006; 8:119-27. [PMID: 16436643 PMCID: PMC1867567 DOI: 10.2353/jmoldx.2006.050063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This is the first comprehensive profile of cystic fibrosis transmembrane conductance regulator (CFTR) mutations and their corresponding haplotypes in the Iranian population. All of the 27 CFTR exons of 60 unrelated Iranian CF patients were sequenced to identify disease-causing mutations. Eleven core haplotypes of CFTR were identified by genotyping six high-frequency simple nucleotide polymorphisms. The carrier frequency of 2.5 in 100 (1 in 40) was estimated from the frequency of heterozygous patients and suggests that contrary to popular belief, cystic fibrosis may be a common, under-diagnosed disease in Iran. A heterogeneous mutation spectrum was observed at the CFTR locus in 60 cystic fibrosis (CF) patients from Iran. Twenty putative disease-causing mutations were identified on 64 (53%) of the 120 chromosomes. The five most common Iranian mutations together represented 37% of the expected mutated alleles. The most frequent mutation, DeltaF508 (p.F508del), represented only 16% of the expected mutated alleles. The next most frequent mutations were c.1677del2 (p.515fs) at 7.5%, c.4041C>G (p.N1303K) at 5.6%, c.2183AA>G (p.684fs) at 5%, and c.3661A>T (p.K1177X) at 2.5%. Three of the five most frequent Iranian mutations are not included in a commonly used panel of CF mutations, underscoring the importance of identifying geographic-specific mutations in this population.
Collapse
Affiliation(s)
- Elahe Elahi
- Department of Biological Sciences, Tehran University, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doffinger R, Patel SY, Kumararatne DS. Host genetic factors and mycobacterial infections: lessons from single gene disorders affecting innate and adaptive immunity. Microbes Infect 2006; 8:1141-50. [PMID: 16520078 DOI: 10.1016/j.micinf.2005.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 10/19/2005] [Indexed: 12/21/2022]
Abstract
This review summarizes the association of increased susceptibility to mycobacterial disease in patients with genetic defects affecting innate and adaptive immunity. The optimum function of CD4 T-cell and macrophage function is critically important for immunity against mycobacteria. Antibody, complement and neutrophil function is not required for effective anti-mycobacterial immunity.
Collapse
Affiliation(s)
- Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | | | | |
Collapse
|
19
|
Tam CKP, Hackett J, Morris C. Rate of inversion of the Salmonella enterica shufflon regulates expression of invertible DNA. Infect Immun 2005; 73:5568-77. [PMID: 16113273 PMCID: PMC1231127 DOI: 10.1128/iai.73.9.5568-5577.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi and some strains (Vi(+)) of serovar Dublin use type IVB pili to facilitate bacterial self-association, but only when the PilV proteins (potential minor pilus proteins) are not synthesized. Pilus-mediated self-association may be important in the pathogenesis of enteric fever. We have suggested that the rate of Rci-catalyzed inversion of DNA encoding the C-terminal portions of the PilV proteins controls PilV protein synthesis. This potentially represents a novel means of transcriptional control. Here, it is initially shown that DNA inversion per se is required for inhibition of gene expression from invertible DNA. Binding, without DNA scission, of Rci to its substrate sequences on DNA cannot explain the data obtained. Next, it is shown that inversion frequencies of xylE-encoding DNA, bracketed by Rci substrate sequences, may be modulated by changes in the 19-bp consensus sequences which are essential components of Rci substrate DNA. The affinity of Rci for these sequences affects inversion frequencies, so that a greater affinity is predictive of faster inversion, and therefore less synthesis of product encoded by invertible DNA. Inversion events may inhibit transcription of DNA from external promoters. In vivo, the frequency of Rci-mediated inversion is influenced by the extent of DNA supercoiling, with increasing levels of expression of invertible genes as novobiocin inhibits DNA supercoiling and thus Rci action. This inhibition of DNA supercoiling results in increased synthesis of PilV proteins as Rci activity decreases, and, in turn, bacterial self-association (particularly in serovar Dublin) decreases.
Collapse
Affiliation(s)
- Connie K P Tam
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | | | | |
Collapse
|
20
|
Crane JK, Naeher TM, Choudhari SS, Giroux EM. Two pathways for ATP release from host cells in enteropathogenic Escherichia coli infection. Am J Physiol Gastrointest Liver Physiol 2005; 289:G407-17. [PMID: 16093420 DOI: 10.1152/ajpgi.00137.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that enteropathogenic Escherichia coli (EPEC) infection triggered a large release of ATP from the host cell that was correlated with and dependent on EPEC-induced killing of the host cell. We noted, however, that under some circumstances, EPEC-induced ATP release exceeded that which could be accounted for on the basis of host cell killing. For example, EPEC-induced ATP release was potentiated by noncytotoxic agents that elevate host cell cAMP, such as forskolin and cholera toxin, and by exposure to hypotonic medium. These findings and the performance of the EPEC espF mutant led us to hypothesize that the CFTR plays a role in EPEC-induced ATP release that is independent of cell death. We report the results of experiments using specific, cell-permeable CFTR activators and inhibitors, as well as transfection of the CFTR into non-CFTR-expressing cell lines, which incriminate the CFTR as a second pathway for ATP release from host cells. Increased ATP release via CFTR is not accompanied by an increase in EPEC adherence to transfected cells. The CFTR-dependent ATP release pathway becomes activated endogenously later in EPEC infection, and this activation is mediated, at least in part, by generation of extracellular adenosine from the breakdown of released ATP.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, Division of Infectious Diseases, University of Buffalo, Rm. 317, Biomedical Research Bldg., 3435 Main St., Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Typhoid fever is estimated to have caused 21.6 million illnesses and 216,500 deaths globally in 2000, affecting all ages. There is also one case of paratyphoid fever for every four of typhoid. The global emergence of multidrug-resistant strains and of strains with reduced susceptibility to fluoroquinolones is of great concern. We discuss the occurrence of poor clinical response to fluoroquinolones despite disc sensitivity. Developments are being made in our understanding of the molecular pathogenesis, and genomic and proteomic studies reveal the possibility of new targets for diagnosis and treatment. Further, we review guidelines for use of diagnostic tests and for selection of antimicrobials in varying clinical situations. The importance of safe water, sanitation, and immunisation in the presence of increasing antibiotic resistance is paramount. Routine immunisation of school-age children with Vi or Ty21a vaccine is recommended for countries endemic for typhoid. Vi vaccine should be used for 2-5 year-old children in highly endemic settings.
Collapse
Affiliation(s)
- M K Bhan
- All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | |
Collapse
|
22
|
Morris C, Tam CKP, Wallis TS, Jones PW, Hackett J. Salmonella enterica serovar Dublin strains which are Vi antigen-positive use type IVB pili for bacterial self-association and human intestinal cell entry. Microb Pathog 2004; 35:279-84. [PMID: 14580391 DOI: 10.1016/j.micpath.2003.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Some strains of Salmonella enterica serovar Dublin are Vi antigen-positive. S. enterica serovar Typhi uses Type IVB pili, encoded adjacent to the viaB locus required for Vi antigen synthesis, to facilitate both eukaryotic cell attachment and bacterial self-association under conditions that favour DNA supercoiling. These pilus-mediated events may be important in typhoid fever pathogenesis. A survey of 17 isolates of S. enterica serovar Dublin showed that all strains which carried the viaB region also carried a serovar Typhi-like Type IVB pil operon, and all serovar Dublin Vi antigen-negative isolates lacked the pil operon. The pil operon was completely sequenced from one of the Vi(+) serovar Dublin strains, and was almost identical (4 nt changes; 3 aa changes, in over 10 kb) to that of serovar Typhi. A pilS mutant of one serovar Dublin strain was constructed, and shown to invade cultured human intestinal INT407 cells to an extent only 20% that of the wild-type parent. Purified prePilS protein inhibited INT407 cell entry by serovar Dublin. The wild-type serovar Dublin strain, but not the pilS mutant, self-associated. The data suggest that the serovar Dublin Type IVB pil operon may increase the human-invasiveness of serovar Dublin, compared to pil-free strains.
Collapse
Affiliation(s)
- Christina Morris
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | | | | | | | | |
Collapse
|
23
|
Lyczak JB. Commensal bacteria increase invasion of intestinal epithelium by Salmonella enterica serovar Typhi. Infect Immun 2003; 71:6610-4. [PMID: 14573683 PMCID: PMC219600 DOI: 10.1128/iai.71.11.6610-6614.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intestinal microflora consists of a heterogeneous population of microorganisms and has many effects on the health status of its human host. Here, it is shown that the products of certain strains of bacteria normally present in the intestinal microflora are able to trigger redistribution of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in epithelial cells. CFTR is used by Salmonella enterica serovar Typhi as a receptor on epithelial cells which mediate the translocation of this microorganism to the gastric submucosa. Serovar Typhi-epithelial cell adhesion and CFTR-dependent invasion by serovar Typhi of epithelial cells were increased following commensal-mediated CFTR redistribution. These data suggest that commensal microorganisms present in the intestinal lumen can affect the efficiency of serovar Typhi invasion of the intestinal submucosa. This could be a key factor influencing host susceptibility to typhoid fever.
Collapse
Affiliation(s)
- Jeffrey B Lyczak
- The Channing Laboratory, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
24
|
Tsui ISM, Yip CMC, Hackett J, Morris C. The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect Immun 2003; 71:6049-50. [PMID: 14500527 PMCID: PMC201034 DOI: 10.1128/iai.71.10.6049-6050.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi expresses type IVB pili. We show that the prePilS protein (the soluble precursor form of the structural pilin) interacts with a 15-mer peptide representing the first extracellular domain of the cystic fibrosis transmembrane conductance regulator (CFTR), a recognized human epithelial cell receptor for serovar Typhi (G. B. Pier et al., Nature 393:79-82, 1998). This indicates that after mediating bacterial self-association (C. Morris et al., Infect. Immun. 71:1141-1146, 2003), the pili then act to attach the bacterial clumps to CFTR in the membrane of gut epithelial cells. These sequential type IVB pilus-mediated events cannot be performed by (for example) S. enterica serovar Typhimurium, which may explain why only serovar Typhi causes epidemics of enteric fever in humans.
Collapse
Affiliation(s)
- Inez S M Tsui
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | |
Collapse
|