1
|
Matsue M, Ogura K, Sugiyama H, Miyoshi-Akiyama T, Takemori-Sakai Y, Iwata Y, Wada T, Okamoto S. Pathogenicity Characterization of Prevalent-Type Streptococcus dysgalactiae subsp. equisimilis Strains. Front Microbiol 2020; 11:97. [PMID: 32117127 PMCID: PMC7010647 DOI: 10.3389/fmicb.2020.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/17/2020] [Indexed: 12/26/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging human pathogen that causes severe invasive streptococcal diseases. Recent reports have shown that SDSE exhibits high pathogenicity with different mechanisms from that of Streptococcus pyogenes, although the two streptococci possess some common virulence factors such as streptolysin, streptokinase, and cell-binding proteins. To date, only a few studies have examined the variety of mechanisms expressing the pathogenicity of SDSE. Among nine SDSE clinical isolates sequenced in this study, we present in vitro and in vivo analyses of KNZ01 and KNZ03, whose emm and multilocus species types (MLSTs) are prevalent in Japan and other countries. For the comparison of pathogenicity, we also utilized the ATCC 12394 strain. The whole-genome analysis showed that KNZ03 and ATCC 12394 are categorized into an identical clonal complex by MLST and are phylogenetically close. However, the three strains exhibited different characteristics for pathogenicity in vitro; ATCC 12394 showed significant cytotoxicity to human keratinocytes and release of streptolysin O (SLO) compared to KNZ01 and KNZ03; KNZ03 exhibited significantly high hemolytic activity, but did not secrete SLO. KNZ01 and KNZ03 adhered to human keratinocytes at a higher rate than ATCC 12394; KNZ03 showed a higher rate of survival after a brief (30 min) incubation with human neutrophils compared to the other two strains; also, KNZ01 grew more rapidly in the presence of human serum. In vivo subcutaneous infection commonly resulted in ulcer formation in the three strains 7 days after infection. KNZ01-infected mice showed significant body weight loss 2 days after infection. Besides, on post-infection day 2, only KNZ01 remained in the cutaneous tissues of mice. Scanning electron microscopy analysis revealed that KNZ01 formed an extracellular structure (biofilm), which was probably composed of cell wall-anchoring proteins, in the presence of glucose and human serum. The extracellular structure of ATCC 12394 was also changed dramatically in response to culture conditions, whereas that of KNZ03 did not. Our study proposed that each SDSE strain possesses different virulence factors characteristics for mediating pathogenicity in humans.
Collapse
Affiliation(s)
- Miki Matsue
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hironori Sugiyama
- Division of Instrumental Analysis, Engineering and Technology Department, Kanazawa University, Kanazawa, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Yukiko Takemori-Sakai
- Division of Clinical Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Division of Infection Control, Kanazawa University, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Division of Clinical Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Biological Impact of a Large-Scale Genomic Inversion That Grossly Disrupts the Relative Positions of the Origin and Terminus Loci of the Streptococcus pyogenes Chromosome. J Bacteriol 2019; 201:JB.00090-19. [PMID: 31235514 DOI: 10.1128/jb.00090-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022] Open
Abstract
A large-scale genomic inversion encompassing 0.79 Mb of the 1.816-Mb-long Streptococcus pyogenes serotype M49 strain NZ131 chromosome spontaneously occurs in a minor subpopulation of cells, and in this report genetic selection was used to obtain a stable lineage with this chromosomal rearrangement. This inversion, which drastically displaces the ori site relative to the terminus, changes the relative length of the replication arms so that one replichore is approximately 0.41 Mb while the other is about 1.40 Mb in length. Genomic reversion to the original chromosome constellation is not observed in PCR-monitored analyses after 180 generations of growth in rich medium. Compared to the parental strain, the inversion surprisingly demonstrates a nearly identical growth pattern in the first phase of the exponential phase, but differences do occur when resources in the medium become limited. When cultured separately in rich medium during prolonged stationary phase or in an experimental acute infection animal model (Galleria mellonella), the parental strain and the invertant have equivalent survival rates. However, when they are coincubated together, both in vitro and in vivo, the survival of the invertant declines relative to the level for the parental strain. The accompanying aspect of the study suggests that inversions taking place near oriC always happen to secure the linkage of oriC to DNA sequences responsible for chromosome partition. The biological relevance of large-scale inversions is also discussed.IMPORTANCE Based on our previous work, we created to our knowledge the largest asymmetric inversion, covering 43.5% of the S. pyogenes genome. In spite of a drastic replacement of origin of replication and the unbalanced size of replichores (1.4 Mb versus 0.41 Mb), the invertant, when not challenged with its progenitor, showed impressive vitality for growth in vitro and in pathogenesis assays. The mutant supports the existing idea that slightly deleterious mutations can provide the setting for secondary adaptive changes. Furthermore, comparative analysis of the mutant with previously published data strongly indicates that even large genomic rearrangements survive provided that the integrity of the oriC and the chromosome partition cluster is preserved.
Collapse
|
3
|
Phenotypic Variation in the Group A Streptococcus Due to Natural Mutation of the Accessory Protein-Encoding Gene rocA. mSphere 2018; 3:3/5/e00519-18. [PMID: 30333182 PMCID: PMC6193603 DOI: 10.1128/msphere.00519-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Populations of a bacterial pathogen, whether recovered from a single patient or from a worldwide study, are often a heterogeneous mix of genetically and phenotypically divergent strains. Such heterogeneity is of value in changing environments and arises via mechanisms such as gene gain or gene mutation. Here, we identify an isolate of serotype M12 group A Streptococcus (GAS) (Streptococcus pyogenes) that has a natural mutation in rocA, which encodes an accessory protein to the virulence-regulating two-component system CovR/CovS (CovR/S). Disruption of RocA activity results in the differential expression of multiple GAS virulence factors, including the anti-phagocytic hyaluronic acid capsule and the chemokine protease SpyCEP. While some of our data regarding RocA-regulated genes overlaps with previous studies, which were performed with isolates of alternate GAS serotypes, some variability was also observed. Perhaps as a consequence of this alternate regulatory activity, we discovered that the contribution of RocA to the ability of the M12 isolate to survive and proliferate in human blood ex vivo is opposite that previously observed in M1, M3, and M18 GAS strains. Specifically, rocA mutation reduced, rather than enhanced, survival of the isolate. Finally, we also present data from an analysis of rocA transcription and show that rocA is transcribed in both mono- and polycistronic mRNAs. In aggregate, our data provide insight into the important regulatory role of RocA and into the mechanisms and consequences of GAS phenotypic heterogeneity.IMPORTANCE This study investigates the regulatory and phenotypic consequences of a naturally occurring mutation in a strain of the bacterial pathogen the group A Streptococcus (Streptococcus pyogenes). We show that this mutation, which occurs in a regulator-encoding gene, rocA, leads to altered virulence factor expression and reduces the ability of this isolate to survive in human blood. Critically, the blood survival phenotype and the assortment of genes regulated by RocA differ compared to previous studies into RocA activity. The data are consistent with there being strain- or serotype-specific variability in RocA function. Given that phenotypic variants can lead to treatment failures and escape from preventative regimes, our data provide information with regard to a mechanism of phenotypic variation in a prevalent Gram-positive pathogen.
Collapse
|
4
|
Chiang-Ni C, Tseng HC, Hung CH, Chiu CH. Acidic stress enhances CovR/S-dependent gene repression through activation of the covR/S promoter in emm1-type group A Streptococcus. Int J Med Microbiol 2017. [PMID: 28648357 DOI: 10.1016/j.ijmm.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus) is a clinically important gram-positive bacterium that causes severe diseases with high mortality. Spontaneous mutations in genes encoding the CovR/CovS two-component regulatory system have been shown to derepress expression of virulence factors and are significantly associated with invasiveness of infections. Sensor kinase CovS senses environmental signals and then regulates the levels of phosphorylated CovR. In addition, CovS is responsible for survival of group A Streptococcus under acidic stress. How this system regulates the expression of CovR-controlled genes under acidic stress is not clear. This study shows that the expression of CovR-controlled genes, including hasA, ska, and slo, is repressed under acidic conditions by a CovS-dependent mechanism. Inactivation of CovS kinase activity or CovR protein phosphorylation derepresses the transcription of these genes under acidic conditions, suggesting that the phosphorylation of CovR is required for the repression of the CovR-controlled genes. Furthermore, the promoter activity of the covR/covS operon (pcov) was upregulated after 15min of incubation under acidic conditions. Replacement of pcov with a constitutively activated promoter abrogated the acidic-stress-dependent repression of the genes, indicating that the pH-dependent pcov activity is directly involved in the repression of CovR-controlled genes. In summary, the present study shows that inactivation of CovS not only derepresses CovR-controlled genes but also abrogates the acidic-stress-dependent repression of the genes; these phenomena may significantly increase bacterial virulence during infection.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Tao-yuan, Taiwan.
| | - Huei-Chuan Tseng
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-yuan, Taiwan
| | - Chia-Hui Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-yuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Tao-yuan, Taiwan; Department of Pediatrics, Chang Gung Children's Hospital, Tao-yuan, Taiwan
| |
Collapse
|
5
|
Zhu L, Olsen RJ, Lee JD, Porter AR, DeLeo FR, Musser JM. Contribution of Secreted NADase and Streptolysin O to the Pathogenesis of Epidemic Serotype M1 Streptococcus pyogenes Infections. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:605-613. [PMID: 28034602 DOI: 10.1016/j.ajpath.2016.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Streptococcus pyogenes secretes many toxins that facilitate human colonization, invasion, and dissemination. NADase (SPN) and streptolysin O (SLO) are two toxins that play important roles in pathogenesis. We previously showed that increased production of SPN and SLO in epidemic serotype M1 and M89 S. pyogenes strains is associated with rapid intercontinental spread and enhanced virulence. The biological functions of SPN and SLO have been extensively studied using eukaryotic cell lines, but the relative contribution of each of these two toxins to pathogenesis of epidemic M1 or M89 strains remains unexplored. Herein, using a genetically representative epidemic M1 strain and a panel of isogenic mutant derivative strains, we evaluated the relative contributions of SPN and SLO toxins to virulence in mouse models of necrotizing myositis, bacteremia, and skin and soft tissue infection. We found that isogenic mutants lacking SPN, SLO, and both toxins are equally impaired in ability to cause necrotizing myositis. In addition, mutants lacking either SPN or SLO are significantly attenuated in the bacteremia and soft tissue infection models, and the mutant strain lacking production of both toxins is further attenuated. The mutant strain lacking both SPN and SLO production is severely attenuated in ability to resist killing by human polymorphonuclear leukocytes. We conclude that both SPN and SLO contribute significantly to S. pyogenes pathogenesis in these virulence assays.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jessica D Lee
- Department of Biosciences, Rice University, Houston, Texas
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
6
|
The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood. Infect Immun 2016; 84:1016-1031. [PMID: 26787724 DOI: 10.1128/iai.01296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes(the group A Streptococcus[GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the frulocus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fruoperon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-D-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment.
Collapse
|
7
|
Baruch M, Belotserkovsky I, Hertzog BB, Ravins M, Dov E, McIver KS, Le Breton YS, Zhou Y, Cheng CY, Chen CY, Hanski E. An extracellular bacterial pathogen modulates host metabolism to regulate its own sensing and proliferation. Cell 2014; 156:97-108. [PMID: 24439371 DOI: 10.1016/j.cell.2013.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/16/2013] [Accepted: 11/15/2013] [Indexed: 01/10/2023]
Abstract
Successful infection depends on the ability of the pathogen to gain nutrients from the host. The extracellular pathogenic bacterium group A Streptococcus (GAS) causes a vast array of human diseases. By using the quorum-sensing sil system as a reporter, we found that, during adherence to host cells, GAS delivers streptolysin toxins, creating endoplasmic reticulum stress. This, in turn, increases asparagine (ASN) synthetase expression and the production of ASN. The released ASN is sensed by the bacteria, altering the expression of ∼17% of GAS genes of which about one-third are dependent on the two-component system TrxSR. The expression of the streptolysin toxins is strongly upregulated, whereas genes linked to proliferation are downregulated in ASN absence. Asparaginase, a widely used chemotherapeutic agent, arrests GAS growth in human blood and blocks GAS proliferation in a mouse model of human bacteremia. These results delineate a pathogenic pathway and propose a therapeutic strategy against GAS infections.
Collapse
Affiliation(s)
- Moshe Baruch
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Ilia Belotserkovsky
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Eran Dov
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institut, University of Maryland, College Park, MD 20742, USA
| | - Yoann S Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institut, University of Maryland, College Park, MD 20742, USA
| | - Yiting Zhou
- Mechanism of Inflammation Program, Center for Research Excellence & Technological Enterprise (CREATE), National University of Singapore and The Hebrew University of Jerusalem (HUJI), Singapore 138602, Singapore
| | - Catherine Youting Cheng
- Mechanism of Inflammation Program, Center for Research Excellence & Technological Enterprise (CREATE), National University of Singapore and The Hebrew University of Jerusalem (HUJI), Singapore 138602, Singapore
| | | | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel; Mechanism of Inflammation Program, Center for Research Excellence & Technological Enterprise (CREATE), National University of Singapore and The Hebrew University of Jerusalem (HUJI), Singapore 138602, Singapore.
| |
Collapse
|
8
|
Abstract
We have characterized group A Streptococcus (GAS) genome-wide responses to hydrogen peroxide and assessed the role of the peroxide response regulator (PerR) in GAS under oxidative stress. Comparison of transcriptome changes elicited by peroxide in wild-type bacteria with those in a perR deletion mutant showed that 76 out of 237 peroxide-regulated genes are PerR dependent. Unlike the PerR-mediated upregulation of peroxidases and other peroxide stress defense mechanisms previously reported in gram-positive species, PerR-dependent genes in GAS were almost exclusively downregulated and encoded proteins involved in purine and deoxyribonucleotide biosynthesis, heme uptake, and amino acid/peptide transport, but they also included a strongly activated putative transcriptional regulator (SPy1198). Of the 161 PerR-independent loci, repressed genes (86 of 161) encoded proteins with functions similar to those coordinated by PerR, in contrast to upregulated loci that encoded proteins that function in DNA damage repair, cofactor metabolism, reactive oxygen species detoxification, pilus biosynthesis, and hypothetical proteins. Complementation of the perR deletion mutant with wild-type PerR restored PerR-dependent regulation, whereas complementation with either one of two PerR variants carrying single mutations in two predicted metal-binding sites did not rescue the mutant phenotype. Metal content analyses of the recombinant wild type and respective PerR mutants, in addition to regulation studies in metal-supplemented and iron-depleted media, showed binding of zinc and iron by PerR and an iron requirement for optimal responses to peroxide. Our findings reveal a novel physiological contribution of PerR in coordinating DNA and protein metabolic functions in peroxide and identify GAS adaptive responses that may serve to enhance oxidative stress resistance and virulence in the host.
Collapse
|
9
|
LaSarre B, Federle MJ. Regulation and consequence of serine catabolism in Streptococcus pyogenes. J Bacteriol 2011; 193:2002-12. [PMID: 21317320 PMCID: PMC3133027 DOI: 10.1128/jb.01516-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pyogenes (also called group A Streptococcus [GAS]), is found strictly in humans and is capable of causing a wide variety of infections. Here we demonstrate that serine catabolism in GAS is controlled by the transcriptional regulator Spy49_0126c. We have designated this regulator SerR (for serine catabolism regulator). Microarray and transcriptional reporter data show that SerR acts as a transcriptional repressor of multiple operons, including sloR and sdhBA. Purified recombinant SerR binds to the promoters of both sloR and sdhB, demonstrating that this regulation is direct. Deletion of serR results in a lower culture yield of the mutant than of the wild type when the strains are grown in defined medium unless additional serine is provided, suggesting that regulation of serine metabolism is important for maximizing bacterial growth. Deletion of sloR or sdhB in the ΔserR mutant background restores growth to wild-type levels, suggesting that both operons have roles in serine catabolism. While reports have linked sloR function to streptolysin O expression, transport experiments with radiolabeled l-serine reveal that the sloR operon is required for rapid acquisition of serine, suggesting a novel role for this operon in amino acid metabolism.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Microbiology and Immunology, College of Medicine
| | - Michael J. Federle
- Department of Microbiology and Immunology, College of Medicine
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
10
|
McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, Jia H, Kenton S, Najar F, Wu H, Scott J, Roe BA, Savic DJ. Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes. J Bacteriol 2008; 190:7773-85. [PMID: 18820018 PMCID: PMC2583620 DOI: 10.1128/jb.00672-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022] Open
Abstract
The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.
Collapse
Affiliation(s)
- W Michael McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, P.O. Box 26901, CPB307, Oklahoma City, OK, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The resurgence of severe invasive group A streptococcal infections in the 1980s is a typical example of the reemergence of an infectious disease. We found that this resurgence is a consequence of the diversification of particular strains of the bacteria. Among these strains is a highly virulent subclone of serotype M1T1 that has exhibited unusual epidemiologic features and virulence, unlike all other streptococcal strains. This clonal strain, commonly isolated from both noninvasive and invasive infection cases, is most frequently associated with severe invasive diseases. Because of its unusual prevalence, global spread, and increased virulence, we investigated the unique features that likely confer its unusual properties. In doing so, we found that the increased virulence of this clonal strain can be attributed to its diversification through phage mobilization and its ability to sense and adapt to different host environments; accordingly, the fittest members of this diverse bacterial community are selected to survive and invade host tissue.
Collapse
Affiliation(s)
- Ramy K Aziz
- Department of Microbiologyand Immunology, Cairo University, Cairo, Egypt.
| | | |
Collapse
|
12
|
Michos A, Gryllos I, Håkansson A, Srivastava A, Kokkotou E, Wessels MR. Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase. J Biol Chem 2006; 281:8216-23. [PMID: 16431917 DOI: 10.1074/jbc.m511674200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptolysin O (SLO) is a cholesterol-dependent cytolysin produced by the important human pathogen, group A Streptococcus (Streptococcus pyogenes or GAS). In addition to its cytolytic activity, SLO mediates the translocation of GAS NAD-glycohydrolase (NADase) into human epithelial cells in vitro. Production of both NADase and SLO is associated with augmented host cell injury beyond that produced by SLO alone, but the mechanism of enhanced cytotoxicity is not known. We have now shown that expression of NADase together with SLO dramatically enhanced the lytic activity of GAS culture supernatants for erythrocytes but had no effect on SLO-mediated poration of synthetic cholesterol-rich liposomes. This result revealed a previously unknown contribution of NADase to the cytolytic activity associated with GAS production of SLO. Purified recombinant SLO bound NADase in vitro, supporting a specific, physical interaction of the two proteins. Exposure of human keratinocytes to wild-type GAS, but not to a NADase-deficient mutant strain, resulted in profound depletion of cellular NAD+ and ATP. Furthermore, expression of recombinant GAS NADase in yeast, in the absence of SLO, induced growth arrest, depletion of NAD+ and ATP, and cell death. These findings have provided evidence that the augmentation of SLO-mediated cytotoxicity by NADase is a consequence of depletion of host cell energy stores through the enzymatic action of NADase. Together, the results have provided mechanistic insight into the cytotoxic effects of a unique bipartite bacterial toxin.
Collapse
Affiliation(s)
- Athanasios Michos
- Division of Infectious Diseases, Children's Hospital Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kimoto H, Fujii Y, Hirano S, Yokota Y, Taketo A. Genetic and biochemical properties of streptococcal NAD-glycohydrolase inhibitor. J Biol Chem 2005; 281:9181-9. [PMID: 16380378 DOI: 10.1074/jbc.m506879200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene encoding streptolysin O (slo), a cytolysin of hemolytic streptococci, is transcribed polycistronically from the promoter of the preceding NAD-glycohydrolase (NADase) gene (nga). Between nga and slo, a putative open reading frame (orf1) is located whose function has been totally unknown. Present investigation demonstrated that the orf1 encodes a protein designated as streptococcal NADase inhibitor (SNI). From its nucleotide sequence, SNI was inferred to comprise 161 amino acid residues and the deduced molecular weight was 18,800. This protein was detectable only within cells. Coexpression of SNI was essential for production of streptococcal NADase, and NADase precursor existed as an inactive complex with SNI, in recombinant Escherichia coli. Monomeric NADase and SNI rapidly formed in vitro a stable heterodimer complex in the ratio 1:1, resulting in complete suppression of the hydrolase activity. Unlike other bacterial NADase inhibitors, SNI was thermostable. This protein, coexpressed and complexed with NADase, may protect the producer cocci from exhaustion of NAD.
Collapse
Affiliation(s)
- Hisashi Kimoto
- Department of Molecular Genetics, Faculty of Medicine, Fukui University, 23-3 Shimoaizuki, Matsuoka, Fukui, Japan.
| | | | | | | | | |
Collapse
|
14
|
Nakata M, Podbielski A, Kreikemeyer B. MsmR, a specific positive regulator of the Streptococcus pyogenes FCT pathogenicity region and cytolysin-mediated translocation system genes. Mol Microbiol 2005; 57:786-803. [PMID: 16045622 DOI: 10.1111/j.1365-2958.2005.04730.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a prerequisite for colonization or causing local infections, Streptococcus pyogenes (group A streptococci, GAS) need to specifically adhere to eukaryotic cell surfaces. Predominantly responsible adhesin genes are contained in a genotype-specific pattern within the FCT region of the GAS genome. In this study, MsmR, belonging to AraC/XylS type transcriptional regulators, was identified in the FCT region as a positive regulator of the major fibronectin-binding adhesin protein F2 in a serotype M49 strain. Compared with the wild-type strain, the msmR mutant showed reduced binding to immobilized fibronectin and decreased adherence to and internalization into human pharyngeal epithelial cells. These results suggested that altered levels of fibronectin-binding proteins in the mutant affect eukaryotic cell attachment and internalization. Complete transcriptome and reporter fusion assay data revealed that MsmR positively regulates FCT region genes including Nra and cytolysin-mediated translocation system genes. Consistent with the genetic data, the mutant showed attenuated streptolysin O activity and eukaryotic cell cytotoxity. Direct binding of recombinant MsmR to nga, nra/cpa and prtF2 promoter regions was confirmed by EMSA assays. As prior analysis demonstrated the Nra regulator negatively affects gene expression from the FCT region, MsmR and Nra appear to adversely control crucial virulence factor expression in GAS and thus contribute to a fine-tuned balance between local destructive process and metastatic spreading of the bacteria.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Medical Microbiology and Hospital Hygiene, Hospital of the Rostock University, Schillingallee 70, 18057 Rostock, Germany
| | | | | |
Collapse
|
15
|
Kimoto H, Fujii Y, Yokota Y, Taketo A. Molecular characterization of NADase-streptolysin O operon of hemolytic streptococci. ACTA ACUST UNITED AC 2005; 1681:134-49. [PMID: 15627505 DOI: 10.1016/j.bbaexp.2004.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Whether slo, the gene encoding streptolysin O (SLO), a streptococcal cytolysin, has its own promoter or not is unsettled as yet. Present analyses demonstrate that slo is a member of an operon covering the upper-stream nusG and nga (NADase) genes, from which transcription of slo proceeds polycistronically, and major transcript is produced by readthrough from nga promoter. Mutational conversion of the sixth nucleotide T at the putative -10 region of chromosomal nga gene into C caused a drastic decrease in both NADase and SLO activities and the disappearance of the two corresponding mRNA bands from the Northern blot profile. The initiation site of the transcription was determined at 56 bp upstream (NusG gene) and 25 bp upstream (NADase gene) of each initiation codon. Although the promoter region of slo gene is highly conserved between group A and C streptococci, the proper slo promoter is nonfunctional in group C strain H46A. Moreover, commonly conserved arrangement was limited to the nusG-nga-orf1-slo region. These results indicate an intimate relationship between NADase and SLO in the regulation of their biosynthesis. Additional results suggest that NADase, synthesized as precursor with feeble activity, is activated by removing the carboxyl terminal region during or after secretion into culture medium.
Collapse
Affiliation(s)
- Hisashi Kimoto
- Department of Molecular Genetics, Faculty of Medicine, Fukui University, 23-3 Shimoaizuki, Matsuoka, Fukui 910-1193, Japan.
| | | | | | | |
Collapse
|
16
|
Abstract
Bacterial signalling network includes an array of numerous interacting components that monitor environmental and intracellular parameters and effect cellular response to changes in these parameters. The complexity of bacterial signalling systems makes comparative genome analysis a particularly valuable tool for their studies. Comparative studies revealed certain general trends in the organization of diverse signalling systems. These include (i) modular structure of signalling proteins; (ii) common organization of signalling components with the flow of information from N-terminal sensory domains to the C-terminal transmitter or signal output domains (N-to-C flow); (iii) use of common conserved sensory domains by different membrane receptors; (iv) ability of some organisms to respond to one environmental signal by activating several regulatory circuits; (v) abundance of intracellular signalling proteins, typically consisting of a PAS or GAF sensor domains and various output domains; (vi) importance of secondary messengers, cAMP and cyclic diguanylate; and (vii) crosstalk between components of different signalling pathways. Experimental characterization of the novel domains and domain combinations would be needed for achieving a better understanding of the mechanisms of signalling response and the intracellular hierarchy of different signalling pathways.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
17
|
Rudnick ST, Jost BH, Songer JG, Billington SJ. The gene encoding pyolysin, the pore-forming toxin of Arcanobacterium pyogenes, resides within a genomic islet flanked by essential genes. FEMS Microbiol Lett 2003; 225:241-7. [PMID: 12951248 DOI: 10.1016/s0378-1097(03)00527-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The plo gene, encoding the Arcanobacterium pyogenes cholesterol-dependent cytolysin, pyolysin (PLO), was localized to a 2.7-kb genomic islet of reduced %G+C content and alternate codon usage frequency. This islet, conserved among isolates from diverse hosts and geographical locations, separated the housekeeping genes smc and ftsY, which are found adjacent in many prokaryotes. The ftsY and ffh genes, located downstream of the plo islet, encode components of the signal recognition particle. Mutational analysis suggested that these genes were essential for viability in A. pyogenes. The A. pyogenes ffh gene was unable to complement a conditional ffh mutant of Escherichia coli and its overexpression was toxic in E. coli. Mutagenesis of the islet-encoded orf121 did not affect plo expression, indicating that it may not be involved directly in the regulation of plo expression. Regardless, the presence of the plo gene as part of a genomic islet inserted between genes essential for normal growth may provide selective pressure for the retention of this important virulence factor.
Collapse
Affiliation(s)
- Stefani T Rudnick
- Department of Veterinary Science and Microbiology, The University of Arizona, 1117 East Lowell Street, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
18
|
Savic DJ, Ferretti JJ. Novel genomic rearrangement that affects expression of the Streptococcus pyogenes streptolysin O (slo) gene. J Bacteriol 2003; 185:1857-69. [PMID: 12618450 PMCID: PMC150118 DOI: 10.1128/jb.185.6.1857-1869.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A RecA-independent chromosomal rearrangement in the upstream region of the streptolysin O (slo) gene of Streptococcus pyogenes which affects slo expression was identified. PCR analysis was used to demonstrate that this kind of rearrangement was found in several strains of different lineages. Chromosomal loci involved in the recombination were found to be 746 kb apart on the 1.85-Mb-long chromosome. The primary structure of the splicing region, the reproducibility of the rearrangement, and the fact that reconstructed recombinant molecules fused to erm and lacZ reporter genes affected their expression indicate that this event is not accidental but may play a role in the expression of the slo gene. In addition, the product of the recombining DNAs, including the splicing site, does not follow any example of a known recombination mechanism. The implications of this rearrangement for slo expression are discussed.
Collapse
Affiliation(s)
- Dragutin J Savic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | |
Collapse
|