1
|
Manisekaran T, Khairul WM, Foong YD, Tuan Johari SAT, Hashim F, Rahamathullah R, Mohammed M. Assessment on functionalized conjugated acetylide and its designated acetylide-imine moieties towards Acanthamoeba sp.: An in vitro bioindicator study. CHEMOSPHERE 2024; 364:143220. [PMID: 39233293 DOI: 10.1016/j.chemosphere.2024.143220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The demand for developing bioindicators to assess environmental pollution has increased significantly due to the awareness of potential threats of diseases. Herein, the eukaryotic ubiquitous microorganism Acanthamoeba sp. was used as a bioindicator to explore further the influence of functionalized organic molecules containing -CC- and -CHN- moieties prior application in the potential electronic components. The acetylide and hybrid acetylide-imine derivatives (FYD3A, FYD4B, and FYD4C) were tested for their cytotoxicity potentials based on dose-response analysis, morphological observation, and mode of cell death assessment on Acanthamoeba sp. (environmental-isolate). The biological activities of optimized compounds were evaluated by HOMO-LUMO energy gap and MEP analysis. The determination of the IC50 value through the MTT assay showed functionalized organic molecules of FYD3A, FYD4B, and FYD4C, revealing the inhibition growth of Acanthamoeba sp. with IC50 values in the 3.515-3.845 μg/mL range. Morphological observation displayed encystment with cellular agglutination and overall cell shrinkage. AO/PI-stained moieties-treated Acanthamoeba sp. cells appeared with shades of red to orange in necrotic Acanthamoeba cells whilst green to yellow apoptotic Acanthamoeba cells when compared to entirely green fluorescence untreated cells. Moreover, the results of the mitochondrial membrane potential (MMP) assay demonstrate the integrity and functionality potential of the mitochondrial membrane in cells, where a decrease in the MMP assay is linked to apoptosis. This study confirmed that the functionalized organic molecule featuring acetylide and its designated acetylide-imine moieties exhibit cytotoxicity towards the Acanthamoeba sp. by apoptotic and necrotic mode of cell death. This indicates that seeping these derivatives as electronic components can lead to the leaching of hazardous chemicals and contribute to environmental pollution that negatively affects the ecosystem. This study proposes the selection of efficient systems and elements for functionalized organic molecules that are safe to be released into the environment.
Collapse
Affiliation(s)
- Thivyan Manisekaran
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wan M Khairul
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Yinn Dorng Foong
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Syed Ahmad Tajudin Tuan Johari
- Centre for Research in Infectious Diseases and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, 20400, Kuala Terengganu, Terengganu, Malaysia
| | - Fatimah Hashim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Rafizah Rahamathullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Mas Mohammed
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
2
|
Fatima I, Safdar N, Akhtar W, Ayaz A, Ali S, Elansary HO, Moussa IM, Zaman W. Green solvent-based extraction of three Fabaceae species: A potential antioxidant, anti-diabetic, and anti-leishmanial agents. Heliyon 2024; 10:e33668. [PMID: 39044967 PMCID: PMC11263666 DOI: 10.1016/j.heliyon.2024.e33668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The Fabaceae is renowned for its diverse range of chemical compounds with significant biological activities, making it a valuable subject for pharmacological studies. The chemical composition and biological activities of three Fabaceae species were investigated using methanol separately and in combination with dimethyl sulfoxide (DMSO) and glycerol for extraction. The results revealed the highest phenolic (49.59 ± 0.38 mg gallic acid equivalent/g), flavonoid (29.16 ± 0.39 mg rutin equivalent/g), and alkaloid (14.23 ± 0.54 mg atropine equivalent/g) contents in the Caesalpinia decapetala methanol extracts. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and DNA protection activity were the highest (0.88 ± 0.43 μg/mL IC50 and 2149.26 band intensity) in Albizia julibrissin methanol extracts. The α-amylase activity was highest in all methanol extracts (<15 μg/mL IC50 values), while the α-glucosidase inhibition potential was highest (<1 μg/mL IC50 value) in the methanol-glycerol and methanol-DMSO extracts. Pearson coefficient analysis showed a strong positive correlation between the DPPH and α-amylase assays and phytochemicals. Anti-leishmanial activity was observed in decreasing order: A. julibrissin (74.75 %) > C. decapetala (70.86 %) > Indigofera atropurpurea (65.34 %). Gas chromatography-mass spectrometry revealed 33 volatile compounds and, aamong these (Z)-9-octadecenamide was detected in the highest concentration ranging from 21.85 to 38.61 %. Only the methanol extracts of the examined species could be assessed for in vivo studies for immediate applications.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
- Medicinal Botanic Center, PCSIR Laboratories Complex, Peshawar, 25120, Pakistan
| | - Naila Safdar
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
3
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
4
|
Ghasemian Yadegari J, Khudair Khalaf A, Ezzatkhah F, Shakibaie M, Mohammadi HR, Mahmoudvand H. Antileishmanial, cellular mechanisms, and cytotoxic effects of green synthesized zinc nanoparticles alone and in combined with glucantime against Leishmania major infection. Biomed Pharmacother 2023; 164:114984. [PMID: 37321058 DOI: 10.1016/j.biopha.2023.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND We decided to investigate the antileishmanial, cellular mechanisms, and cytotoxic effects of green synthesized Zinc nanoparticles (ZnNPs) alone and combined with glucantime against Leishmania major infection. METHODS The effect of green synthesized ZnNP on L. major amastigote was studied through macrophage cells. The mRNA expression level of iNOS and IFN-γ followed by the exposure of J774-A1 macrophage cells to ZnNPs was assessed by Real-time PCR. The Caspase-3-like activity of promastigotes exposed to ZnNPs was studied. Effects of ZnNPs alone and combined with glucantime (MA) were studied on cutaneous leishmaniasis in BALB/c mice. RESULTS ZnNPs displayed the spherical shape with sizes ranging from 30 to 80 nm. The obtained IC50 values for ZnNPs, MA, and ZnNPs + MA were 43.2, 26.3, and 12.6 µg/mL, respectively; indicating the synergistic effects of ZnNPs in combination with MA. CL lesions had completely improved in the mice received with ZnNPs in combination with MA. The mRNA expression level of iNOS, TNF-α, and IFN-γ was dose-dependently (p < 0.01) upregulated; whereas it was downregulated in IL-10. ZnNPs markedly stimulated the caspase-3 activation with no significant toxicity on normal cells. CONCLUSION Based on these in vitro and in vivo results, green synthesized ZnNPs, mainly along with MA, showed that has the potential to be introduced as a new drug for CL therapy. Triggering of NO production, and inhibition of infectivity rate are revealed as mechanisms of action ZnNPs on L. major. But, supplementary investigations are necessary to clear the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Javad Ghasemian Yadegari
- Department of Pharmacognosy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mojtaba Shakibaie
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Mohammadi
- Department of Pharmacognosy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Molecular and Cellular Laboratory, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
5
|
Jamshaid H, Din FU, Nousheen K, Khan SU, Fatima A, Khan S, Choi HG, Khan GM. Mannosylated imiquimod-terbinafine co-loaded transethosomes for cutaneous leishmaniasis; assessment of its anti-leishmanial potential, in vivo safety and immune response modulation. BIOMATERIALS ADVANCES 2023; 145:213266. [PMID: 36577194 DOI: 10.1016/j.bioadv.2022.213266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Current treatment options for cutaneous leishmaniasis are associated with myriad limiting factors including low penetration, poor efficacy, and drug toxicities. Herein, we reported imiquimod and terbinafine co-loaded mannosylated transethosomes (IMQ-TER-MTES) with enhanced cutaneous retention, macrophage targeting, anti-leishmanial potential, and dermal immunomodulation. IMQ-TER-MTES were optimized using Design Expert® followed by their loading into chitosan gel. Moreover, the antileishmanial response against amastigotes-infected macrophages and Leishmania-infected BALB/c mice was evaluated. Finally, the safety and immunomodulation activity of IMQ-TER-MTES gel was performed using BALB/c mice. Optimized IMQ-TER-MTES showed nano-sized particles with low poly-dispersibility index (PDI) and high drug entrapment. Mannosylation has augmented macrophage targeting and the internalization capability of TES. IMQ-TER-MTES showed significantly reduced IC50 value (19.56 ± 3.62 μg/ml), higher selectivity index (29.24), and synergism against Leishmania major (L. major) amastigotes. In L. major infected BALB/c mice, the cutaneous lesion healing potential of IMQ-TER-MTES was also elevated with reduced lesion size (1.52 ± 0.43 mm). Superior safety of IMQ-TER-MTES was observed in BALB/c mice along with adequate stimulation of dermal immune cells, in contrast to the ALDARA®. Moreover, incremented Nuclear factor Kappa-β (NF-κβ) and nitric oxide (NO) biosynthesis were observed with IMQ-TER-MTES.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Kainat Nousheen
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, KPK, Pakistan
| | - Anam Fatima
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Lahore School of Clinical Pharmacy, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Salman Khan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Han Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan; Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
6
|
Current and future strategies against cutaneous parasites. Pharm Res 2022; 39:631-651. [PMID: 35313360 PMCID: PMC9090711 DOI: 10.1007/s11095-022-03232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 10/26/2022]
Abstract
Cutaneous parasites are identified by their specific cutaneous symptoms which are elicited based on the parasite's interactions with the host. Standard anti-parasitic treatments primarily focus on the use of specific drugs to disrupt the regular function of the target parasite. In cases where secondary infections are induced by the parasite itself, antibiotics may also be used in tandem with the primary treatment to deal with the infection. Whilst drug-based treatments are highly effective, the development of resistance by bacteria and parasites, is increasingly prevalent in the modern day, thus requiring the development of non-drug based anti-parasitic strategies. Cutaneous parasites vary significantly in terms of the non-systemic methods that are required to deal with them. The main factors that need to be considered are the specifically elicited cutaneous symptoms and the relative cutaneous depth in which the parasites typically reside in. Due to the various differences in their migratory nature, certain cutaneous strategies are only viable for specific parasites, which then leads to the idea of developing an all-encompassing anti-parasitic strategy that works specifically against cutaneous parasites. The main benefit of this would be the overall time saved in regards to the period that is needed for accurate diagnosis of parasite, coupled with the prescription and application of the appropriate treatment based on the diagnosis. This review will assess the currently identified cutaneous parasites, detailing their life cycles which will allow for the identification of certain areas that could be exploited for the facilitation of cutaneous anti-parasitic treatment.
Collapse
|
7
|
Insecticidal, Antimalarial, and Antileishmanial Effects of Royal Jelly and Its Three Main Fatty Acids, trans-10-Hydroxy-2-decenoic Acid, 10-Hydroxydecanoic Acid, and Sebacic Acid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7425322. [PMID: 35096117 PMCID: PMC8794668 DOI: 10.1155/2022/7425322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Natural products and their derivatives as an inexpensive, accessible, and useful alternative medicine are broadly applied for the treatment of a wide range of diseases and infectious ones. The present study was designed to evaluate the insecticidal, antimalarial, antileishmanial, and cytotoxic effects of royal jelly and its three main fatty acids (trans-10-hydroxy-2-decenoic acid (10-H2DA), 10-hydroxydecanoic acid (10-HDAA), sebacic acid (1,10-decanedioic acid)). Insecticidal activity of RJ and 10-H2DA, 10-HDAA, and sebacic acid was performed against healthy 4th instar larvae at 25 ± 2°C. Antiplasmodial and antileishmanial effects of RJ and 10-H2DA, 10-HDAA, and sebacic acid were also performed against chloroquine-resistant Plasmodium falciparum K1-strain and Leishmania major amastigotes according to the Malstat method and macrophage model, respectively. In addition, the level of nitric oxide (NO) production in J774-A1 macrophages cells, plasma membrane permeability, and caspase-3-like activity and cytotoxicity effects of RJ and 10-H2DA, 10-HDAA, and sebacic acid against human embryonic kidney 293 (HEK239T cells) were evaluated. Considering the insecticidal activity, the results showed that the lethal concentration 50% value for RJ, 10-H2DA, 10-HDAA, and sebacic acid was 24.6, 31.4, 37.8, and 44.7 μg/mL μg/mL, respectively. RJ, 10-H2DA, 10-HDAA, and sebacic acid showed potent (P < 0.0001) antileishmanial effects with IC50 values ranging from 2.4 to 8.4 μg/mL. Various concentrations of RJ, 10-H2DA, 10-HDAA, and sebacic acid significantly (P < 0.05) increased the production of NO, plasma membrane permeability, and caspase-3-like activity level as a dose-dependent response. Considering the cytotoxicity, SIs > 10 of these compounds exhibited their specificity to parasites and safety against human HEK239T normal cells. The results of the present investigation revealed the promising insecticidal, antimalarial, and antileishmanial effects of RJ and its three main fatty acids (10-H2DA, 10-HDAA, and sebacic acid). However, more studies are required to confirm the mechanisms of action mode of these compounds as well as their efficacy in animal models and clinical settings.
Collapse
|
8
|
Pissarra J, Pagniez J, Petitdidier E, Séveno M, Vigy O, Bras-Gonçalves R, Lemesre JL, Holzmuller P. Proteomic Analysis of the Promastigote Secretome of Seven Leishmania Species. J Proteome Res 2021; 21:30-48. [PMID: 34806897 DOI: 10.1021/acs.jproteome.1c00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leishmaniasis is one of the most impactful parasitic diseases worldwide, endangering the lives of 1 billion people every year. There are 20 different species of Leishmania able to infect humans, causing cutaneous (CL), visceral (VL), and/or mucocutaneous leishmaniasis (MCL). Leishmania parasites are known to secrete a plethora of proteins to establish infection and modulate the host's immune system. In this study, we analyzed using tandem mass spectrometry the total protein content of the secretomes produced by promastigote forms from seven Leishmania species grown in serum-free in vitro cultures. The core secretome shared by all seven Leishmania species corresponds to up to one-third of total secreted proteins, suggesting conserved mechanisms of adaptation to the vertebrate host. The relative abundance confirms the importance of known virulence factors and some proteins uniquely present in CL- or VL-causing species and may provide further insight regarding their pathogenesis. Bioinformatic analysis showed that most proteins were secreted via unconventional mechanisms, with an important role for vesicle-based secretion for all species. Gene Ontology annotation and enrichment analyses showed a high level of functional conservation among species. This study contributes to the current knowledge on the biological significance of differently secreted proteins and provides new information on the correlation of Leishmania secretome to clinical outcomes and species-specific pathogenesis.
Collapse
Affiliation(s)
- Joana Pissarra
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Julie Pagniez
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Elodie Petitdidier
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Martial Séveno
- BCM, Univ. Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Oana Vigy
- IGF, Univ. Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Rachel Bras-Gonçalves
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Jean-Loup Lemesre
- UMR 177 INTERTRYP, Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), 34090 Montpellier, France
| |
Collapse
|
9
|
Albalawi AE. Antileishmanial Activity of Ziziphus spina-christi Leaves Extract and Its Possible Cellular Mechanisms. Microorganisms 2021; 9:microorganisms9102113. [PMID: 34683434 PMCID: PMC8541012 DOI: 10.3390/microorganisms9102113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
This experimental investigation was designed to assess the in vitro and in vivo antileishmanial effects of Z. spina-christi methanolic extract (ZSCME) and also aims to assess some of the antileishmanial mechanisms such as the NO production, apoptosis, and plasma membrane permeability. We assessed the in vitro leishmanicidal effects of ZSCME (10–200 µg/mL) against intracellular amastigote stage of the Leishmania major (MRHO/IR/75/ER) and, then, in vivo examined male BALB/c mice infected by L. major. In addition, the rate of infectivity, Caspase 3 activity, nitric oxide (NO) production, the plasma membrane permeability, and the cytotoxic effects of ZSCME were studied. The primary phytochemical analysis of ZSCME revealed the existence of high amounts of flavonoids, tannins, glycosides, alkaloids, and saponin in this plant. The findings exhibited that ZSCME meaningfully (p < 0.001) reduced the viability of amastigotes of L. major, whereas it prompted the creation and release of NO, apoptosis, and the plasma membrane permeability (p < 0.05) and indicated no cytotoxicity in macrophage cells. The in vivo results also demonstrated that ZSCME significantly decreased the parasite load and the diameter of the lesions in the infected mice. Our results demonstrate the promising in vitro and in vivo antileishmanial effects of ZSCME against of L. major. Although the findings of the present study showed some possible antileishmanial mechanisms of ZSCME, such as stimulating NO production, apoptosis, and increasing plasma membrane permeability, additional investigations are required to confirm these results.
Collapse
Affiliation(s)
- Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47913, Saudi Arabia
| |
Collapse
|
10
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Apoptosis-Like Cell Death in Leishmania major Treated with HESA-A: An Herbal Marine Compound. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.99060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The first drug for the treatment of leishmaniasis is pentavalent antimony compounds which have great side effects. Objectives: This study aimed to assess apoptosis induction by HESA-A, an herbal marine compound in Leishmania major promastigotes. Methods: Leishmania major promastigotes were treated with HESA-A in different increasing concentrations ranged 1.625 - 120 µg/mL, and amphotericin B and the phenomenon of apoptosis in the parasite were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and DNA fragmentation tests. Results: The IC50 value of the compound and amphotericin B at 72 h were estimated at 2.81 µg/mL and 40 µg/mL, respectively. After 72 h of the adjacency of Leishmania major promastigotes with IC50 dose (2.81 µg/mL), the percentage of promastigotes in early and late apoptosis phases in the treated group was 5.4% and 60.4%, respectively. DNA fragmentation of Leishmania major promastigotes treated with 2.81 µg/mL for 72 h was observed. Conclusions: HESA-A, with significant induction of apoptosis in Leishmania major promastigotes, can be plausible in the treatment of cutaneous Leishmaniasis.
Collapse
|
12
|
Albalawi AE, Khalaf AK, Alyousif MS, Alanazi AD, Baharvand P, Shakibaie M, Mahmoudvand H. Fe3O4 @piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Biomed Pharmacother 2021; 139:111566. [PMID: 33839494 DOI: 10.1016/j.biopha.2021.111566] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In recent years, magnetic nanoparticles (NMP) as novel materials have been widely used for biomedical, diagnostic and therapeutic purposes like microbial infection therapy. The purpose of this study is to synthesize PO coated iron oxide magnetic nanoparticles (Fe3O4@PO NPs) and their anti-leishmanial effects in vitro and in vivo against cutaneous leishmaniasis. METHODS Fe3O4 magnetic nanoparticles were synthesized by the coprecipitation of Fe2 + and Fe3 + ions and used as a nanocarrier for the production of Fe3O4@PO NPs. The in vitro antileishmanial effects of PO-coated Fe3O4 NPs and Fe3O4 NPs (10-200 µg/mL) was determined against the intracellular amastigotes of Leishmania major (MRHO/IR/75/ER) and, then, examined on cutaneous leishmaniasis induced in male BALB/c mice by L. major. The rate of infectivity, production of nitric oxide (NO), and cytotoxic activates of Fe3O4 NPs and Fe3O4@PO NPs on J774-A1 macrophage cells were determined. RESULTS The size scattering of the Fe3O4 NPs and Fe3O4@PO NPs were in the range among 1-40 and 5-55 nm, respectively. The obtained IC50 values were 62.3 ± 2.15 μg/mL, 31.3 ± 2.26 μg/mL, and 52.6 ± 2.15 μg/mL for the Fe3O4 NPs and Fe3O4@PO NPs, and MA, respectively. The results revealed that the mean number of parasites and the mean diameter of the lesions was considerably (p < 0.05) decreased in the infected mice treated with Fe3O4 NPs and Fe3O4@PO NPs. The Fe3O4 NPs and Fe3O4@PO NPs significantly (p < 0.05) prompted the production of NO as a dose-dependent manner. The promastigotes pre-incubated in Fe3O4 NPs and Fe3O4@PO NPs at the concentration of 5 µg/mL had the ability to infect only 41.7% and 28.3% of the macrophages cells. The selectivity index of greater than 10 for Fe3O4 NPs and Fe3O4@PO NPs showed its safety to the J774-A1 macrophage cells and specificity to the parasite. CONCLUSION The results of this survey indicated the high potency of Fe3O4@PO NPs to inhibit the growth of amastigote forms of L. major as well as recovery and improvement CL induced by L. major in BALB/c mice without significant cytotoxicity. The results also indicated that, although the possible anti-leishmanial mechanisms of Fe3O4@PO NPs have not been clearly understood, however, the triggering of NO may be considered as one of the possible anti-leishmanial mechanisms of these nanoparticles. However, additional studies, in particular in clinical contexts, are mandatory.
Collapse
Affiliation(s)
| | - Amal Khudair Khalaf
- Department of Microbiology, College of Medicine, University of Thiqar, Thiqar, Iraq
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia; Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Parastoo Baharvand
- Department of Community Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
13
|
Queiroz CM, de Oliveira Filho GB, Espíndola JWP, do Nascimento AV, Aliança ASDS, de Lorena VMB, Feitosa APS, da Silva PR, Alves LC, Leite ACL, Brayner FA. Thiosemicarbazone and thiazole: in vitro evaluation of leishmanicidal and ultrastructural activity on Leishmania infantum. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02619-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Abstract
Leishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis Team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 09, France
| |
Collapse
|
15
|
Cabral FV, Pelegrino MT, Sauter IP, Seabra AB, Cortez M, Ribeiro MS. Nitric oxide-loaded chitosan nanoparticles as an innovative antileishmanial platform. Nitric Oxide 2019; 93:25-33. [DOI: 10.1016/j.niox.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
16
|
Mojallal-Tabatabaei Z, Foroumadi P, Toolabi M, Goli F, Moghimi S, Kaboudanian-Ardestani S, Foroumadi A. 2-(Bipiperidin-1-yl)-5-(nitroaryl)-1,3,4-thiadiazoles: Synthesis, evaluation of in vitro leishmanicidal activity, and mechanism of action. Bioorg Med Chem 2019; 27:3682-3691. [DOI: 10.1016/j.bmc.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/01/2022]
|
17
|
Basmaciyan L, Robinson DR, Azas N, Casanova M. (De)glutamylation and cell death in Leishmania parasites. PLoS Negl Trop Dis 2019; 13:e0007264. [PMID: 31017892 PMCID: PMC6502457 DOI: 10.1371/journal.pntd.0007264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/06/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Trypanosomatids are flagellated protozoan parasites that are very unusual in terms of cytoskeleton organization but also in terms of cell death. Most of the Trypanosomatid cytoskeleton consists of microtubules, forming different substructures including a subpellicular corset. Oddly, the actin network appears structurally and functionally different from other eukaryotic actins. And Trypanosomatids have an apoptotic phenotype under cell death conditions, but the pathways involved are devoid of key mammal proteins such as caspases or death receptors, and the triggers involved in apoptotic induction remain unknown. In this article, we have studied the role of the post-translational modifications, deglutamylation and polyglutamylation, in Leishmania. We have shown that Leishmania apoptosis was linked to polyglutamylation and hypothesized that the cell survival process autophagy was linked to deglutamylation. A balance seems to be established between polyglutamylation and deglutamylation, with imbalance inducing microtubule or other protein modifications characterizing either cell death if polyglutamylation was prioritized, or the cell survival process of autophagy if deglutamylation was prioritized. This emphasizes the role of post-translational modifications in cell biology, inducing cell death or cell survival of infectious agents. Leishmania are unique unicellular organisms in terms of cytoskeleton organization and mechanisms of cell death. For example, the major cytoskeletal components of these parasites are microtubules, which form a subpellicular corset. In terms of cell death, an apoptotic phenotype has been characterized in Leishmania but the pathways remain unknown, being devoid of key mammal cell death proteins. In a previous article, we demonstrated that the cytoskeleton of this parasite is extensively glutamylated but, paradoxically, overexpression or inhibition of polyglutamylase expression have limited visible cellular consequences. In this manuscript, we have highlighted the link between polyglutamylation and Leishmania cell death, suggesting the importance of the polyglutamylation/deglutamylation balance in this parasite. Further, we have identified, for the first time in Leishmania, deglutamylases, among which one that, in an original manner, deglutamylates glutamates at branching points but also long glutamate side chains. This work emphasizes the role of post-translational modifications as essential regulators of protein function, not only of mammal cells such as neurons or ciliated/flagellated cells, but also of infectious agents. This work suggests an important and discernible “live or die”—“cell death or autophagy” balance pathway and the conceptual mechanism that is involved in cellular decision making.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
18
|
Oxidative Stress-Mediated Overexpression of Uracil DNA Glycosylase in Leishmania donovani Confers Tolerance against Antileishmanial Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4074357. [PMID: 29636843 PMCID: PMC5845521 DOI: 10.1155/2018/4074357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Leishmania donovani is an intracellular protozoan parasite that causes endemic tropical disease visceral leishmaniasis (VL). Present drugs used against this fatal disease are facing resistance and toxicity issues. Survival of leishmania inside the host cells depends on the parasite's capacity to cope up with highly oxidative environment. Base excision repair (BER) pathway in L. donovani remains unexplored. We studied uracil DNA glycosylase (UNG), the key enzyme involved in BER pathway, and found that the glycosylase activity of recombinant LdUNG (Leishmania donovani UNG) expressed in E. coli is in sync with the activity of the parasite lysate under different reaction conditions. Overexpression of UNG in the parasite enhances its tolerance towards various agents which produce reactive oxygen species (ROS) and shows a higher infectivity in macrophages. Surprisingly, exposure of parasite to amphotericin B and sodium antimony gluconate upregulates the expression of UNG. Further, we found that the drug resistant parasites isolated from VL patients show higher expression of UNG. Mechanisms of action of some currently used drugs include accumulation of ROS. Our findings strongly suggest that targeting LdUNG would be an attractive therapeutic strategy as well as potential measure to tackle the problem of drug resistance in the treatment of leishmaniasis.
Collapse
|
19
|
Marango SN, Khayeka-Wandabwa C, Makwali JA, Jumba BN, Choge JK, Adino EO, Anjili CO. Experimental therapeutic assays of Tephrosia vogelii against Leishmania major infection in murine model: in vitro and in vivo. BMC Res Notes 2017; 10:698. [PMID: 29208030 PMCID: PMC5718069 DOI: 10.1186/s13104-017-3022-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Background Conventional targeted leishmanicidal chemotherapy has persistently remained prohibitive for most economically deprived communities due to costs, associated time to accessing health services and duration for successful treatment programme. Alternatives are bound to be incorporated in rational management of leishmaniasis by choice or default due to accessibility and cultural beliefs. Therefore, there is need to rigorously investigate and appraise the activity of medicinal compounds that may have anti-leishmanicidal activity especially in the context of products that are already being utilized by the populations for other ailments but have limited information on their therapeutic value and possible cytoxicity. Hence, the study examined both in vivo and in vitro response of L. major infection to Tephrosia vogelii extracts in BALB/c mice as the mouse model. Methods A comparative study design was applied for the in vivo and in vitro assays of the extract with Pentostam (GlaxoSmithKline, UK) and Amphotericin B [Fungizone™, X-Gen Pharmaceuticals (US)] as standard drugs. Results In BALB/c mice where the chemotherapeutic extract was administered intraperitoneally, there was significantly (p < 0.05) larger reduction in lesion size and optimal control of parasite burden than those treated orally. However, standard drugs showed better activity. Tephrosia vogelii had 50% inhibitory concentration (IC50) and IC90 of 12 and 68.5 μg/ml respectively, while the standard drugs had IC50 and IC90 of 5.5 and 18 μg/ml for Pentostam and 7.8 and 25.5 μg/ml for Amphotericin B in that order. In the amastigote assay, the infection rates decreased with increase in chemotherapeutic concentration. The multiplication indices for L. major amastigotes in macrophages treated with 200 µg/ml of the standard drugs and extract were significantly different (p < 0.05). 200 µg/ml of T. vogelii extract showed a multiplication index of 20.57, 5.65% for Amphotericin B and 9.56% for Pentostam. There was also significant difference (p < 0.05) in levels of Nitric oxide produced in the macrophages. Conclusions The findings demonstrated that T. vogelii extract has anti-leishmanial activity and further assays should be done to ascertain the active compounds responsible for anti-leishmanial activity.
Collapse
Affiliation(s)
- Sylvia Naliaka Marango
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya
| | - Christopher Khayeka-Wandabwa
- School of Pharmaceutical Science and Technology (SPST), Health Sciences Platform, Tianjin University, Tianjin, 300072, China. .,African Population and Health Research Center (APHRC), P.O. Box 10787, Nairobi, 00100, Kenya. .,Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya.
| | - Judith Alice Makwali
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya
| | - Bernard Ngoitsi Jumba
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125, Eldoret, 30100, Kenya.,Applied Science Department, Sigalagala National Polytechnic, Kakamega, Kenya.,Department of Medical Laboratory Sciences, MasindeMuliro University of Science and Technology, Kakamega, Kenya
| | - Joseph K Choge
- University of Kabianga, P.O. Box 2030, Kericho, 20200, Kenya
| | | | - Christopher O Anjili
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840, Nairobi, 00200, Kenya
| |
Collapse
|
20
|
Bruno de Sousa C, Gangadhar KN, Morais TR, Conserva GAA, Vizetto-Duarte C, Pereira H, Laurenti MD, Campino L, Levy D, Uemi M, Barreira L, Custódio L, Passero LFD, Lago JHG, Varela J. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp Parasitol 2017; 174:1-9. [PMID: 28126391 DOI: 10.1016/j.exppara.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/10/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
The development of novel drugs for the treatment of leishmaniases continues to be crucial to overcome the severe impacts of these diseases on human and animal health. Several bioactivities have been described in extracts from macroalgae belonging to the Cystoseira genus. However, none of the studies has reported the chemical compounds responsible for the antileishmanial activity observed upon incubation of the parasite with the aforementioned extracts. Thus, this work aimed to isolate and characterize the molecules present in a hexane extract of Cystoseira baccata that was found to be bioactive against Leishmania infantum in a previous screening effort. A bioactivity-guided fractionation of the C. baccata extract was carried out and the inhibitory potential of the isolated compounds was evaluated via the MTT assay against promastigotes and murine macrophages as well as direct counting against intracellular amastigotes. Moreover, the promastigote ultrastructure, DNA fragmentation and changes in the mitochondrial potential were assessed to unravel their mechanism of action. In this process, two antileishmanial meroditerpenoids, (3R)- and (3S)-tetraprenyltoluquinol (1a/1b) and (3R)- and (3S)-tetraprenyltoluquinone (2a/2b), were isolated. Compounds 1 and 2 inhibited the growth of the L. infantum promastigotes (IC50 = 44.9 ± 4.3 and 94.4 ± 10.1 μM, respectively), inducing cytoplasmic vacuolization and the presence of coiled multilamellar structures in mitochondria as well as an intense disruption of the mitochondrial membrane potential. Compound 1 decreased the intracellular infection index (IC50 = 25.0 ± 4.1 μM), while compound 2 eliminated 50% of the intracellular amastigotes at a concentration > 88.0 μM. This work identified compound 2 as a novel metabolite and compound 1 as a biochemical isolated from Cystoseira algae displaying antileishmanial activity. Compound 1 can thus be an interesting scaffold for the development of novel chemotherapeutic molecules for canine and human visceral leishmaniases studies. This work reinforces the evidence of the marine environment as source of novel molecules.
Collapse
Affiliation(s)
| | - Katkam N Gangadhar
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Thiago R Morais
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Geanne A A Conserva
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Hugo Pereira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Márcia D Laurenti
- Laboratório de Patologia das Moléstias Infecciosas (LIM-50), Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lenea Campino
- Global Health and Tropical Medicine Centre, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Debora Levy
- Laboratório de Genética e Hematologia Molecular (LIM-31), Departamento de Clinica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Uemi
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luísa Barreira
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Luísa Custódio
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Luiz Felipe D Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - João Henrique G Lago
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - João Varela
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
21
|
Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N. Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 2017; 12:e0171306. [PMID: 28170432 PMCID: PMC5295687 DOI: 10.1371/journal.pone.0171306] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. METHODOLOGY/PRINCIPAL FINDINGS We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2- (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further, study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophage. CONCLUSIONS KalsomeTM10 induces apoptotic-like cell death in L. donovani parasites to exhibit its anti-leishmanial function.
Collapse
Affiliation(s)
- Md. Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohd. Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
22
|
Islamuddin M, Chouhan G, Want MY, Ozbak HA, Hemeg HA, Afrin F. Immunotherapeutic Potential of Eugenol Emulsion in Experimental Visceral Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0005011. [PMID: 27776125 PMCID: PMC5077126 DOI: 10.1371/journal.pntd.0005011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The therapy of visceral leishmaniasis (VL) is limited by resistance, toxicity and decreased bioavailability of the existing drugs coupled with dramatic increase in HIV-co-infection, non-availability of vaccines and down regulation of cell-mediated immunity (CMI). Thus, we envisaged combating the problem with plant-derived antileishmanial drug that could concomitantly mitigate the immune suppression of the infected hosts. Several plant-derived compounds have been found to exert leishmanicidal activity via immunomodulation. In this direction, we investigated the antileishmanial activity of eugenol emulsion (EE), complemented with its immunomodulatory and therapeutic efficacy in murine model of VL. METHODOLOGY/PRINCIPAL FINDINGS Oil-in-water emulsion of eugenol (EE) was prepared and size measured by dynamic light scattering (DLS). EE exhibited significant leishmanicidal activity with 50% inhibitory concentration of 8.43±0.96 μg ml-1 and 5.05±1.72 μg ml─1, respectively against the promastigotes and intracellular amastigotes of Leishmania donovani. For in vivo effectiveness, EE was administered intraperitoneally (25, 50 and 75 mg/kg b.w./day for 10 days) to 8 week-infected BALB/c mice. The cytotoxicity of EE was assessed in RAW 264.7 macrophages as well as in naive mice. EE induced a significant drop in hepatic and splenic parasite burdens as well as diminution in spleen and liver weights 10 days post-treatment, with augmentation of 24h-delayed type hypersensitivity (DTH) response and high IgG2a:IgG1, mirroring induction of CMI. Enhanced IFN-γ and IL-2 levels, with fall in disease-associated Th2 cytokines (IL-4 and IL-10) detected by flow cytometric bead-based array, substantiated the Th1 immune signature. Lymphoproliferation and nitric oxide release were significantly elevated upon antigen revoke in vitro. The immune-stimulatory activity of EE was further corroborated by expansion of IFN-γ producing CD4+ and CD8+ splenic T lymphocytes and up-regulation of CD80 and CD86 on peritoneal macrophages. EE treated groups exhibited induction of CD8+ central memory T cells as evidenced from CD62L and CD44 expression. No biochemical alterations in hepatic and renal enzymes were observed. CONCLUSIONS Our results demonstrate antileishmanial activity of EE, potentiated by Th1 immunostimulation without adverse side effects. The Th1 immune polarizing effect may help to alleviate the depressed CMI and hence complement the leishmanicidal activity.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antiprotozoal Agents/therapeutic use
- Cell Line
- Cytokines/blood
- Cytokines/immunology
- Disease Models, Animal
- Emulsions
- Eugenol/adverse effects
- Eugenol/chemistry
- Eugenol/pharmacology
- Eugenol/therapeutic use
- Female
- Hypersensitivity, Delayed
- Immunity, Cellular
- Immunomodulation
- Injections, Intraperitoneal
- Interleukin-10/blood
- Interleukin-10/genetics
- Interleukin-2/blood
- Interleukin-2/genetics
- Interleukin-4/blood
- Interleukin-4/genetics
- Leishmania donovani/drug effects
- Leishmania donovani/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/parasitology
- Leishmaniasis, Visceral/therapy
- Liver/parasitology
- Lymphocyte Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/parasitology
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/metabolism
- Spleen/parasitology
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Muzamil Yaqub Want
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Hani A. Ozbak
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Hassan A. Hemeg
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Farhat Afrin
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
- * E-mail: ,
| |
Collapse
|
23
|
Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M. New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 2016; 45:152-68. [DOI: 10.1039/c5cs00674k] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent progress in nanomedicine for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Víctor Gutiérrez
- Freie Universität Berlin
- Institute for Chemistry and Biochemistry
- 14195 Berlin
- Germany
| | - Amedea B. Seabra
- Exact and Earth Sciences Department
- Universidade Federal de São Paulo
- Diadema
- Brazil
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas
- Universidad de León
- León
- Spain
| | | | - Marcelo Calderón
- Freie Universität Berlin
- Institute for Chemistry and Biochemistry
- 14195 Berlin
- Germany
| |
Collapse
|
24
|
Kasuba KC, Vavilala SL, D'Souza JS. Apoptosis-like cell death in unicellular photosynthetic organisms — A review. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Implication of different domains of the Leishmania major metacaspase in cell death and autophagy. Cell Death Dis 2015; 6:e1933. [PMID: 26492367 PMCID: PMC4632311 DOI: 10.1038/cddis.2015.288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023]
Abstract
Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine–cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.
Collapse
|
26
|
Sadeghi S, Seyed N, Etemadzadeh MH, Abediankenari S, Rafati S, Taheri T. In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:385-94. [PMID: 26323836 PMCID: PMC4566512 DOI: 10.3347/kjp.2015.53.4.385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/24/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-γ/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Abediankenari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
27
|
Viana KF, Aguiar-Soares RDO, Ker HG, Resende LA, Souza-Fagundes EM, Dutra WO, Fujiwara RT, da Silveira-Lemos D, Sant'Ana RDCO, Wardini AB, Araújo MSS, Martins-Filho OA, Reis AB, Giunchetti RC. Setting the proportion of CD4+ and CD8+ T-cells co-cultured with canine macrophages infected with Leishmania chagasi. Vet Parasitol 2015; 211:124-32. [PMID: 26095951 PMCID: PMC7117022 DOI: 10.1016/j.vetpar.2015.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/06/2023]
Abstract
New methods for evaluating the canine immune system are necessary, not only to monitor immunological disorders, but also to provide insights for vaccine evaluations and therapeutic interventions, reducing the costs of assays using dog models, and provide a more rational way for analyzing the canine immune response. The present study intended to establish an in vitro toll to assess the parasitological/immunological status of dogs, applicable in pre-clinical trials of vaccinology, prognosis follow-up and therapeutics analysis of canine visceral leishmaniasis. We have evaluated the performance of co-culture systems of canine Leishmania chagasi–infected macrophages with different cell ratios of total lymphocytes or purified CD4+ and CD8+ T-cells. Peripheral blood mononuclear cells from uninfected dogs were used for the system set up. Employing the co-culture systems of L. chagasi–infected macrophages and purified CD4+ or CD8+ T-cell subsets we observed a microenvironment compatible with the expected status of the analyzed dogs. In this context, it was clearly demonstrated that, at this selected T-cell:target ratio, the adaptive immune response of uninfected dogs, composed by L. chagasi-unprimed T-cells was not able to perform the in vitro killing of L. chagasi–infected macrophages. Our data demonstrated that the co-culture system with T-cells from uninfected dogs at 1:5 and 1:2 ratio did not control the infection, yielding to patent in vitro parasitism (≥80%), low NO production (≤5 μM) and IL-10 modulated (IFN-γ/IL-10≤2) immunological profile in vitro. CD4+ or CD8+ T-cells at 1:5 or 1:2 ratio to L. chagasi–infected macrophages seems to be ideal for in vitro assays. This co-culture system may have great potential as a canine immunological analysis method, as well as in vaccine evaluations, prognosis follow-up and therapeutic interventions.
Collapse
Affiliation(s)
- Kelvinson Fernandes Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Biomoléculas e Vacinas, Departamento de Ciências Agrárias e Tecnológicas, Universidade Federal do Tocantins, Gurupi, Tocantins, Brazil; Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rodrigo Dian Oliveira Aguiar-Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Henrique Gama Ker
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Elaine Maria Souza-Fagundes
- Laboratório de Biologia Celular e Molecular, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise da Silveira-Lemos
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Rita de Cássia Oliveira Sant'Ana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda Brito Wardini
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo Assis Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Islamuddin M, Chouhan G, Tyagi M, Abdin MZ, Sahal D, Afrin F. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. Front Microbiol 2014; 5:626. [PMID: 25505453 PMCID: PMC4243575 DOI: 10.3389/fmicb.2014.00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL), the second-most dreaded parasitic disease after malaria, is currently endemic in 88 countries. Dramatic increases in the rates of infection, drug resistance, and non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents from natural sources. In this study, we showed the leishmanicidal effect of essential oil from Artemisia annua leaves (AALEO) against Leishmania donovani in vitro and in vivo. AALEO was extracted by hydrodistillation and characterized by GC-MS, the most abundant compounds were found to be camphor (52.06 %) followed by β-caryophyllene (10.95 %). AALEO exhibited significant leishmanicidal activity against L. donovani, with 50 % inhibitory concentration of 14.63 ± 1.49 μg ml(-1) and 7.3 ± 1.85 μg ml(-1), respectively, against the promastigotes and intracellular amastigotes. The effect was mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labeling assay, dyskinetoplastidy, cell cycle arrest at sub-G0-G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation in promastigotes and nitric oxide generation in ex vivo model. AALEO presented no cytotoxic effects against mammalian macrophages even at 200 μg ml(-1). Intra-peritoneal administration of AALEO (200 mg/ kg.b.w.) to infected BALB/c mice reduced the parasite burden by almost 90% in the liver and spleen with significant reduction in weight. There was no hepato- or nephro-toxicity as demonstrated by normal levels of serum enzymes. The promising antileishmanial activity shown by camphor-rich AALEO may provide a new lead in the treatment of VL.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Maujiram Tyagi
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Malik Z Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard (Hamdard University) New Delhi, India
| | - Dinkar Sahal
- Malaria Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Farhat Afrin
- Department of Medical Laboratories Technology, Faculty of Applied Sciences, Taibah University Medina, Saudi Arabia
| |
Collapse
|
29
|
The calpain inhibitor MDL28170 induces the expression of apoptotic markers in Leishmania amazonensis promastigotes. PLoS One 2014; 9:e87659. [PMID: 24498160 PMCID: PMC3909198 DOI: 10.1371/journal.pone.0087659] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/26/2013] [Indexed: 11/19/2022] Open
Abstract
Background Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. Methodology/Principal Findings In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. Conclusions/Significance The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the potential clinical utility of calpain inhibitors in the chemotherapy of leishmaniases.
Collapse
|
30
|
Medel Flores O, Gómez García C, Sánchez Monroy V, Villalba Magadaleno JDA, Nader García E, Pérez Ishiwara DG. Entamoeba histolytica P-glycoprotein (EhPgp) inhibition, induce trophozoite acidification and enhance programmed cell death. Exp Parasitol 2013; 135:532-40. [DOI: 10.1016/j.exppara.2013.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/15/2013] [Accepted: 08/25/2013] [Indexed: 12/31/2022]
|
31
|
Costa ISF, de Souza GFP, de Oliveira MG, Abrahamsohn IDA. S-nitrosoglutathione (GSNO) is cytotoxic to intracellular amastigotes and promotes healing of topically treated Leishmania major or Leishmania braziliensis skin lesions. J Antimicrob Chemother 2013; 68:2561-8. [DOI: 10.1093/jac/dkt210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Branquinha MH, Marinho FA, Sangenito LS, Oliveira SSC, Goncalves KC, Ennes-Vidal V, d'Avila-Levy CM, Santos ALS. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr Med Chem 2013; 20:3174-85. [PMID: 23899207 PMCID: PMC4181241 DOI: 10.2174/0929867311320250010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 12/03/2022]
Abstract
The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids.
Collapse
Affiliation(s)
- M H Branquinha
- Laboratório de Investigação de Peptidases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes-IMPG, Centro de Ciências da Saúde-CCS, Bloco Esubsolo, Sala 05, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis 2012; 3:e385. [PMID: 22951982 PMCID: PMC3461358 DOI: 10.1038/cddis.2012.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite's single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.
Collapse
Affiliation(s)
- E Castanys-Muñoz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | |
Collapse
|
34
|
Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania. Cell Death Differ 2012; 19:1972-82. [PMID: 22767185 PMCID: PMC3504711 DOI: 10.1038/cdd.2012.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved.
Collapse
|
35
|
Immunomodulation by chemotherapeutic agents against Leishmaniasis. Int Immunopharmacol 2011; 11:1668-79. [DOI: 10.1016/j.intimp.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 01/24/2023]
|
36
|
Van Assche T, Deschacht M, da Luz RAI, Maes L, Cos P. Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 2011; 51:337-51. [PMID: 21620959 DOI: 10.1016/j.freeradbiomed.2011.05.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/24/2011] [Accepted: 05/07/2011] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is a neglected tropical disease that affects about 350 million individuals worldwide. The protozoan parasite has a relatively simple life cycle with two principal stages: the flagellated mobile promastigote living in the gut of the sandfly vector and the intracellular amastigote within phagolysosomal vesicles of the vertebrate host macrophage. This review presents a state-of-the-art overview of the redox biology at the parasite-macrophage interface. Although Leishmania species are susceptible in vitro to exogenous superoxide radical, hydrogen peroxide, nitric oxide, and peroxynitrite, they manage to survive the endogenous oxidative burst during phagocytosis and the subsequent elevated nitric oxide production in the macrophage. The parasite adopts various defense mechanisms to cope with oxidative stress: the lipophosphoglycan membrane decreases superoxide radical production by inhibiting NADPH oxidase assembly and the parasite also protects itself by expressing antioxidant enzymes and proteins. Some of these enzymes could be considered potential drug targets because they are not expressed in mammals. In respect to antileishmanial therapy, the effects of current drugs on parasite-macrophage redox biology and its involvement in the development of drug resistance and treatment failure are presented.
Collapse
Affiliation(s)
- Tim Van Assche
- Laboratory of Microbiology Parasitology, and Hygiene, University of Antwerp, B-2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
37
|
Degrossoli A, Arrais-Silva WW, Colhone MC, Gadelha FR, Joazeiro PP, Giorgio S. The Influence of Low Oxygen on Macrophage Response to Leishmania Infection. Scand J Immunol 2011; 74:165-75. [DOI: 10.1111/j.1365-3083.2011.02566.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Muregi FW, Ohta I, Masato U, Kino H, Ishih A. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness. PLoS One 2011; 6:e21251. [PMID: 21698180 PMCID: PMC3116895 DOI: 10.1371/journal.pone.0021251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/25/2011] [Indexed: 01/09/2023] Open
Abstract
Background The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. Methodology/Principal Findings To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. Conclusions/Significance The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance.
Collapse
Affiliation(s)
- Francis W Muregi
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | |
Collapse
|
39
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
40
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Zalila H, González IJ, El-Fadili AK, Delgado MB, Desponds C, Schaff C, Fasel N. Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in Leishmania major. Mol Microbiol 2010; 79:222-39. [PMID: 21166905 PMCID: PMC3047009 DOI: 10.1111/j.1365-2958.2010.07443.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.
Collapse
Affiliation(s)
- Habib Zalila
- Department of Biochemistry, University of Lausanne, 155 Chemin des Boveresses, 1066 Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Jowkar F, Dehghani F, Jamshidzadeh A. Is topical nitric oxide and cryotherapy more effective than cryotherapy in the treatment of old world cutaneous leishmaniasis? J DERMATOL TREAT 2010; 23:131-5. [PMID: 20964568 DOI: 10.3109/09546634.2010.495380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Current systemic treatments for cutaneous leishmaniasis are limited by their toxicity, high cost, side effects and the emergence of drug resistance. New approaches, including topical therapies, are urgently needed. Nitric oxide (NO) produced by human and canine macrophages has long been demonstrated to be involved in the intracellular killing of Leishmania. OBJECTIVE This study was designed to determine the clinical responses (healing, or non-healing) and effectiveness of NO plus cryotherapy for the treatment of old world cutaneous leishmaniasis (CL). METHODS A double-blind, randomized, placebo-controlled clinical trial was performed for the evaluation of therapy with topical nitric oxide 3% and cryotherapy in 63 Iranian patients with CL in the south of Iran. RESULTS Thirty of 36 participants (83.3%) had complete improvement in the treatment group as did 20 of 27 (74.1%) from the control group (p = 0.627). Erythema, a burning sensation and irritation occurred in seven participants from the treatment group and one patient from the placebo group (p = 0.063). CONCLUSION This study could not show any more effectiveness from combining a 12-week course of treatment with 3% nitric oxide cream and a once-weekly treatment with cryotherapy in comparison with cryotherapy and placebo in patients with CL.
Collapse
Affiliation(s)
- Farideh Jowkar
- Dermatology Department, Shiraz University of Medical Science, Shiraz, Iran.
| | | | | |
Collapse
|
43
|
Wanderley JLM, Barcinski MA. Apoptosis and apoptotic mimicry: the Leishmania connection. Cell Mol Life Sci 2010; 67:1653-9. [PMID: 20140747 PMCID: PMC11115723 DOI: 10.1007/s00018-010-0291-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 12/16/2022]
Abstract
Different death-styles have been described in unicellular organisms. In most cases they evolve with phenotypic features similar to apoptotic death of animal cells, such as phosphatidylserine (PS) exposure, oligonucleosomal DNA fragmentation, and loss of mitochondrial transmembrane potential, hinting that similar mechanisms operate in both situations. However, the biochemical pathways underlying death in unicellular organisms are still unclear. Host recognition of PS exposed on the surface of unicellular parasites is an important feature of the process of infection and progression of the disease. Here, we discuss data showing that entirely different mechanisms of PS exposure co-exist during the life-cycle of Leishmania amazonensis: in the case of promastigotes, a sub-population dies by apoptosis; in the case of amastigotes, the entire population exposes PS, not necessarily followed by apoptotic death. This phenomenon has been called apoptotic mimicry. The elusive caspase-like activities described in protozoa are also discussed.
Collapse
Affiliation(s)
- João Luiz M. Wanderley
- Division of Experimental Medicine, National Cancer Institute, Rio de Janeiro, Brazil
- Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcello A. Barcinski
- Departamento de Parasitogia, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1374, São Paulo, SP 05508-900 Brazil
| |
Collapse
|
44
|
Githinji EK, Irungu LW, Tonui WK, Rukunga GM, Mutai C, Muthaura CN, Lugalia R, Gikandi G, Wainaina CW, Ingonga JM, Wanjoya A. In vitro effects of Warburgia ugandensis, Psiadia punctulata and Chasmanthera dependens on Leishmania major promastigotes. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2010; 7:264-75. [PMID: 21461155 PMCID: PMC3025625 DOI: 10.4314/ajtcam.v7i3.54791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plant extracts from Warburgia ugandensis Sprague (Family: Canellaceae), Psiadia punctulata Vatke (Family: Compositae) and Chasmanthera dependens Hoschst (Family: Menispermaceae) were tested for activity on Leishmania major promastigotes (Strain IDU/KE/83 = NLB-144) and infected macrophages in vitro. Plants were collected from Baringo district, dried, extracted, weighed and tested for antileishmanial activity. Serial dilutions of the crude extracts were assayed for their activity against Leishmania major in cell free cultures and in infected macrophages in vitro. Inhibitory concentrations and levels of cytotoxicity were determined. Warburgia ugandensis, Psiadia punctulata and Chasmanthera dependens had an IC(50) of 1.114 mg/ml, 2.216 mg/ml and 4.648 mg/ml, respectively. The cytotoxicity of the drugs on BALB/c peritoneal macrophage cells was insignificant as compared to the highly toxic drug of choice Pentostam(®). The supernatants from control and Leishmania infected macrophages were analyzed for their nitrite contents by Griess reaction and nitrite absorbance measured at 540 nm. Warburgia ugandensis (stem bark water extract), Chasmanthera dependens (stem bark water extract) and Psiadia punctulata (stem bark methanol extract) produced 112.3%, 94% and 88.5% more nitric oxide than the untreated infected macrophages respectively. Plant crude extracts had significant (p<0.05) anti-leishmanial and immunomodulative effects but insignificant cytotoxic effects at 1mg/ml concentration. All experiments were performed in triplicate. Statistical analysis of the differences between mean values obtained from the experimental group compared to the controls was done by students't test. ANOVA was used to determine the differences between the various treatment groups. The analysis program Probit was used to determine IC(50)s.
Collapse
|
45
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|
46
|
Kumar P, Lodge R, Trudel N, Ouellet M, Ouellette M, Tremblay MJ. Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis 2010; 4:e642. [PMID: 20361030 PMCID: PMC2846936 DOI: 10.1371/journal.pntd.0000642] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 02/09/2010] [Indexed: 01/23/2023] Open
Abstract
Background Visceral leishmaniasis has now emerged as an important opportunistic disease in patients coinfected with human immunodeficiency virus type-1 (HIV-1). Although the effectiveness of HIV-1 protease inhibitors, such as nelfinavir, in antiretroviral therapies is well documented, little is known of the impact of these drugs on Leishmania in coinfected individuals. Methodology and Principal Findings Here, we show that nelfinavir generates oxidative stress in the parasite, leading to altered physiological parameters such as an increase in the sub-G1 DNA content, nuclear DNA fragmentation and loss of mitochondrial potential, which are all characteristics of apoptosis. Pretreatment of axenic amastigotes with the caspase inhibitor z-VAD-fmk did not inhibit the increase in sub-G1 DNA content in nelfinavir-treated parasites, suggesting therefore that this antiviral agent does not kill Leishmania amastigotes in a caspase-dependent manner. Furthermore, we observed that the mitochondrial resident protein endonuclease G is involved. We also demonstrate that parasites overexpressing GSH1 (the rate limiting enzyme of glutathione biosynthesis) were more resistant to nelfinavir when compared to untransfected controls. Conclusions and Significance These data suggest that nelfinavir induces oxidative stress in Leishmania amastigotes, culminating in caspase-independent apoptosis, in which DNA is degraded by endonuclease G. This study provides a rationale for future, long-term design of new therapeutic strategies to test nelfinavir as a potential antileishmanial agent as well as for possible future use in Leishmania/HIV-1 coinfections. Visceral leishmaniasis is the most severe form of disease caused by the parasite Leishmania. It is a major concern in South America, Africa, India and the Middle East. Additionally, it has now emerged as an important opportunistic disease in patients coinfected with HIV-1. This is due, in part, to the increasing overlap between urban centers and rural areas endemic for Leishmania. Although more efficient combinatorial antiviral drug regimens for treating HIV-1 infection have been developed, the impact of such therapies on HIV-1/Leishmania coinfection is yet to be explored. In this study, we investigated the effect of nelfinavir, a well-characterized anti-HIV-1 drug, on Leishmania. Treating the parasite with nelfinavir activates events that are hallmarks of programmed cell death (also called apoptosis). Among these are oxidative stress, changes in DNA replication and fragmentation, and release of mitochondrial enzymes. Furthermore, these events occur without the participation of caspases, which are classically linked to apoptosis; however, this atypical apoptosis requires the translocation of endonuclease G from mitochondria to the cytoplasm. These findings provide insights for the design of new anti-parasitic therapies, particularly in the case of Leishmania/HIV-1 coinfections.
Collapse
Affiliation(s)
- Pranav Kumar
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Département de Microbiologie et Immunologie, Université Laval, Québec, Canada
| | - Robert Lodge
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Département de Microbiologie et Immunologie, Université Laval, Québec, Canada
| | - Nathalie Trudel
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Département de Microbiologie et Immunologie, Université Laval, Québec, Canada
| | - Michel Ouellet
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Département de Microbiologie et Immunologie, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Département de Microbiologie et Immunologie, Université Laval, Québec, Canada
| | - Michel J. Tremblay
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Département de Microbiologie et Immunologie, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
47
|
Santos LER, Colhone MC, Daghastanli KRP, Stabeli RG, Silva-Jardim I, Ciancaglini P. Lipid microspheres loaded with antigenic membrane proteins of the Leishmania amazonensis as a potential biotechnology application. J Colloid Interface Sci 2009; 340:112-8. [PMID: 19747691 DOI: 10.1016/j.jcis.2009.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/14/2009] [Accepted: 08/14/2009] [Indexed: 11/26/2022]
Abstract
Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine's formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 nm, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis.
Collapse
Affiliation(s)
- Luiz E R Santos
- Depto. Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
48
|
Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol. J Med Microbiol 2009; 58:1058-1066. [DOI: 10.1099/jmm.0.009290-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the absence of effective and safe treatment for visceral leishmaniasis or Kala-azar – a devastating parasitic disease caused by Leishmania donovani – the search for anti-leishmanial agents from natural resources in common use is imperative. Recently, the comparative in vitro anti-leishmanial activity of methanolic extracts from two landraces of Piper betle – P. betle landrace Bangla Mahoba (PB-BM) and P. betle landrace Kapoori Vellaikodi (PB-KV) – has been reported. Here, the putative pathway responsible for death induced by the effective extract of PB-BM methanolic extract in promastigotes, as well as the intracellular amastigote form of L. donovani, was assessed using various biochemical approaches. It was found that PB-BM was capable of selectively inhibiting both stages of Leishmania parasites by accelerating apoptotic events by generation of reactive oxygen species targeting the mitochondria without any cytotoxicity towards macrophages. The study was extended to determine the presence or absence of activity of the methanolic extract of PB-BM and PB-KV on the basis of differences in essential oil composition present in the extract assessed by GC and MS. The essential oil from PB-BM was found to be rich in eugenol compared with that from PB-KV. The anti-leishmanial efficacy of PB-BM methanolic extract mediated through apoptosis is probably due to the higher content of eugenol in the active landrace. This observation emphasizes the need to extend studies related to traditional medicines from bioactive plants below the species level to the gender/landrace level for better efficacy and reproducibility.
Collapse
|
49
|
|
50
|
An orally effective dihydropyrimidone (DHPM) analogue induces apoptosis-like cell death in clinical isolates of Leishmania donovani overexpressing pteridine reductase 1. Parasitol Res 2009; 105:1317-25. [PMID: 19621245 PMCID: PMC2745541 DOI: 10.1007/s00436-009-1557-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 06/30/2009] [Indexed: 12/21/2022]
Abstract
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. The enzyme pteridine reductase 1 (PTR1) of L. donovani acts as a metabolic bypass for drugs targeting dihydrofolate reductase (DHFR); therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities. Leishmania cells overexpressing PTR1 tagged at the N-terminal with green fluorescent protein were established to screen for proprietary dihydropyrimidone (DHPM) derivatives of DHFR specificity synthesised in our laboratory. A cell-permeable molecule with impressive antileishmanial in vitro and in vivo oral activity was identified. Structure activity relationship based on homology model drawn on our recombinant enzyme established the highly selective inhibition of the enzyme by this analogue. It was seen that the leishmanicidal effect of this analogue is triggered by programmed cell death mediated by the loss of plasma membrane integrity as detected by binding of annexin V and propidium iodide (PI), loss of mitochondrial membrane potential culminating in cell cycle arrest at the sub-G0/G1 phase and oligonucleosomal DNA fragmentation. Hence, this DHPM analogue [(4-fluoro-phenyl)-6-methyl-2-thioxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylic acid ethyl ester] is a potent antileishmanial agent that merits further pharmacological investigation.
Collapse
|