1
|
Wiebe M, Ingebritson A, Sholeh M, Tichenor C, Visek C, Victoria J, Beck M, Tiwari R, Hardwidge P, Zhu L. Streptococcus suis manganese transporter mutant as a live attenuated vaccine: Safety, efficacy, and virulence reversion mechanisms. Vet Microbiol 2025; 305:110521. [PMID: 40239440 DOI: 10.1016/j.vetmic.2025.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Streptococcus suis is the leading cause of mortality in piglets and is responsible for severe economic losses in the global pork industry. Severe invasive diseases caused by S. suis include sepsis, meningitis, arthritis, and endocarditis. S. suis disease prevention is hampered by the lack of safe and efficacious vaccines. In this study, we constructed an S. suis live attenuated vaccine candidate lacking the major streptococcal manganese transporter, a known virulence determinant of this organism. The safety and efficacy of this live vaccine were evaluated in swine. Our clinical study results showed that when administered at a dose of 1010 CFU, the vaccine strain was safe and efficacious. However, a lower dose of 109 CFU failed to generate significant immune protection. To investigate if an adjuvant could enhance the efficacy of the vaccine at a lower dose, we spiked the vaccine with a polymeric adjuvant and evaluated its performance. Surprisingly, four pigs receiving the adjuvanted vaccine died during the vaccination phase. Pathology, microbiology, and genetic analyses suggested that the vaccine strain reverted to virulence in these animals. Functional genetic analysis found that the vaccine strain acquired compensatory mutations that upregulated the expression of a secondary manganese transporter, which in turn restored the virulence of the vaccine strain. Our results provide a new understanding of S. suis host adaptation mechanisms and useful information for the design of future live-attenuated vaccines.
Collapse
Affiliation(s)
- Michelle Wiebe
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Melody Sholeh
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Callie Visek
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Michael Beck
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | - Raksha Tiwari
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA
| | | | - Luchang Zhu
- Boehringer Ingelheim Animal Health USA, Inc., Ames, IA, USA.
| |
Collapse
|
2
|
Pawlik K, Ostrowska M, Gumienna-Kontecka E. Systematic Model Peptide Studies: A Crucial Step To Understand the Coordination Chemistry of Mn(II) and Fe(II) in Proteins. Inorg Chem 2025; 64:5472-5486. [PMID: 40067133 PMCID: PMC11938343 DOI: 10.1021/acs.inorgchem.4c05380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Pathogenic bacteria and all other species require Mn(II) and Fe(II) ions for proper growth. Microbes use a variety of assimilation pathways to obtain the necessary metal ions, and their metal homeostasis mechanisms are still not fully uncovered. The knowledge of the poorly discovered complexation chemistry of Mn(II) and Fe(II) ions could help us to understand the basis of those processes better. We have designed six model peptides (L1 - Ac-HHHHHH-NH2, L2 - Ac-HHHHHHHHH-NH2, L3 - Ac-HAHAHAHAH-NH2, L4 - Ac-HHAAAAAAAAAHHHH-NH2, L5 - Ac-HDHDHDHDH-NH2, and L6 - Ac-HEHEHEHEH-NH2) inspired by Mn(II) and Fe(II) binding motifs that are prevalent in nature, in order to clarify their coordination preferences. Spectrometric, spectroscopic, and potentiometric techniques were used to determine the thermodynamic and structural properties of the studied systems. All of the investigated ligands possess efficient Mn(II), Fe(II), and Zn(II) binding sites. Complex stability and metal affinity are significantly influenced by the length of the peptide sequences, as well as the location and quantity of coordinating amino acid residues like His, Asp, and Glu.
Collapse
Affiliation(s)
- Karolina Pawlik
- Faculty of Chemistry, University of Wrocław, Wrocław 50-383, Poland
| | | | | |
Collapse
|
3
|
Makthal N, Saha S, Huang E, John J, Meena H, Aggarwal S, Högbom M, Kumaraswami M. Manganese uptake by MtsABC contributes to the pathogenesis of human pathogen group A streptococcus by resisting host nutritional immune defenses. Infect Immun 2024; 92:e0007724. [PMID: 38869295 PMCID: PMC11238556 DOI: 10.1128/iai.00077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Subhasree Saha
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Elaine Huang
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Science, Stockholm, Sweden
| | - Himani Meena
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Science, Stockholm, Sweden
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
5
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Martinez Pastor M, Sakrikar S, Hwang S, Hackley R, Soborowski A, Maupin-Furlow J, Schmid A. TroR is the primary regulator of the iron homeostasis transcription network in the halophilic archaeon Haloferax volcanii. Nucleic Acids Res 2024; 52:125-140. [PMID: 37994787 PMCID: PMC10783522 DOI: 10.1093/nar/gkad997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Maintaining the intracellular iron concentration within the homeostatic range is vital to meet cellular metabolic needs and reduce oxidative stress. Previous research revealed that the haloarchaeon Halobacterium salinarum encodes four diphtheria toxin repressor (DtxR) family transcription factors (TFs) that together regulate the iron response through an interconnected transcriptional regulatory network (TRN). However, the conservation of the TRN and the metal specificity of DtxR TFs remained poorly understood. Here we identified and characterized the TRN of Haloferax volcanii for comparison. Genetic analysis demonstrated that Hfx. volcanii relies on three DtxR transcriptional regulators (Idr, SirR, and TroR), with TroR as the primary regulator of iron homeostasis. Bioinformatics and molecular approaches revealed that TroR binds a conserved cis-regulatory motif located ∼100 nt upstream of the start codon of iron-related target genes. Transcriptomics analysis demonstrated that, under conditions of iron sufficiency, TroR repressed iron uptake and induced iron storage mechanisms. TroR repressed the expression of one other DtxR TF, Idr. This reduced DtxR TRN complexity relative to that of Hbt. salinarum appeared correlated with natural variations in iron availability. Based on these data, we hypothesize that variable environmental conditions such as iron availability appear to select for increasing TRN complexity.
Collapse
Affiliation(s)
| | - Saaz Sakrikar
- Center for Genomics and System Biology at NYU Department of Biology, New York University, NY, NY 10003, USA
| | - Sungmin Hwang
- Division of Practical Research, Honam National Institute of Biological Resources, Jeollanam-do, Mokpo-si 58762, Republic of Korea
| | - Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Andrew L Soborowski
- Department of Biology, Duke University, Durham, NC 27708, USA
- Computational Biology and Bioinformatics graduate program, Duke University, Durham, NC 27708, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
- Computational Biology and Bioinformatics graduate program, Duke University, Durham, NC 27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Hong Y, Mackenzie ES, Firth SJ, Bolton JRF, Stewart LJ, Waldron KJ, Djoko KY. Mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in Streptococcus pyogenes. Metallomics 2023; 15:mfad064. [PMID: 37849243 PMCID: PMC10644519 DOI: 10.1093/mtomcs/mfad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
All bacteria possess homeostastic mechanisms that control the availability of micronutrient metals within the cell. Cross-talks between different metal homeostasis pathways within the same bacterial organism have been reported widely. In addition, there have been previous suggestions that some metal uptake transporters can promote adventitious uptake of the wrong metal. This work describes the cross-talk between Cu and the Zn and Mn homeostasis pathways in Group A Streptococcus (GAS). Using a ∆copA mutant strain that lacks the primary Cu efflux pump and thus traps excess Cu in the cytoplasm, we show that growth in the presence of supplemental Cu promotes downregulation of genes that contribute to Zn or Mn uptake. This effect is not associated with changes in cellular Zn or Mn levels. Co-supplementation of the culture medium with Zn or, to a lesser extent, Mn alleviates key Cu stress phenotypes, namely bacterial growth and secretion of the fermentation end-product lactate. However, neither co-supplemental Zn nor Mn influences cellular Cu levels or Cu availability in Cu-stressed cells. In addition, we provide evidence that the Zn or Mn uptake transporters in GAS do not promote Cu uptake. Together, the results from this study strengthen and extend our previous proposal that mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in GAS.
Collapse
Affiliation(s)
- YoungJin Hong
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Eilidh S Mackenzie
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha J Firth
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Jack R F Bolton
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Louisa J Stewart
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Kevin J Waldron
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Previous affiliation: Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Karrera Y Djoko
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
8
|
Spangler JR, Cooper DN, Malanoski AP, Walper SA. Promoter Identification and Optimization for the Response of Lactobacillus plantarum WCFS1 to the Gram-Negative Pathogen-Associated Molecule N-3-Oxododecanoyl Homoserine Lactone. ACS Biomater Sci Eng 2023; 9:5111-5122. [PMID: 35708239 DOI: 10.1021/acsbiomaterials.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) in bacteria has been well studied as a cellular communication phenomenon for decades. In recent years, such systems have been repurposed for the use of biosensors in both cellular and cell-free contexts as well as for inducible protein expression in nontraditional chassis organisms. Such biosensors are particularly intriguing when considering the association between the pathogenesis of some bacteria and their signaling intermediates. Considering this relationship and considering the recent demonstration of the species Lactobacillus plantarum WCFS1 as both a synthetic biology chassis and an organism capable of detecting a pathogen-associated QS molecule, we wanted to develop this organism as a QS sentinel. We used an approach combining techniques from both systems and synthetic biology to identify a number of native QS-response genes and to alter associated promoter activity to tune the output of L. plantarum cultures exposed to N-3-oxododecanoyl homoserine lactone. The resulting engineered QS sentinel reinforces the potential of modified lactic acid bacteria (LAB) for use in human-health-promoting applications and also demonstrates a simple rational workflow to engineer sentinel organisms to respond to any environmental or chemical stimuli.
Collapse
Affiliation(s)
- Joseph R Spangler
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Denver N Cooper
- Spelman College, 350 Spelman Ln SW, Atlanta, Georgia 30314, United States
| | - Anthony P Malanoski
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Scott A Walper
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| |
Collapse
|
9
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
10
|
He LY, Yu YB, Liu Y, Le YJ, Li S, Yang XY. Immunization with the lipoprotein FtsB stimulates protective immunity against Streptococcus pyogenes infection in mice. Front Microbiol 2022; 13:969490. [PMID: 36016779 PMCID: PMC9396372 DOI: 10.3389/fmicb.2022.969490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is one of the main pathogenic bacteria that causes disease in humans. It is reported that over 18 million cases of S. pyogenes disease occurred in the world, and more than 500,000 deaths occur annually worldwide. An effective vaccine is widely regarded as the most reliable way to control and prevent streptococcal infections. However, there is currently no approved vaccine for S. pyogenes. In this study, we evaluated the potential of lipoprotein FtsB as a new vaccine candidate to prevent S. pyogenes infection. Mice vaccinated with purified FtsB protein elicited high titers of IgG, IgG1 and IgG2a antibodies in mouse serum. Vaccinated with FtsB can reduce bacterial systemic dissemination in the blood, heart, and spleen and reduce organ damage in the mouse bacteremia model. In addition, active immunization with FtsB protected against streptococcal abscess formation. Furthermore, immunization with FtsB was efficient in inducing a mixed cellular immune response and promoting the maturation of dendritic cells in mice. The lipoprotein HtsA was served as a positive control because it has been reported to protect mice from S. pyogenes infection in both active and passive immunization. These findings demonstrated that lipoprotein FtsB may serve as a candidate vaccine for the prevention of S. pyogenes infection.
Collapse
|
11
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
12
|
Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0098522. [PMID: 35658538 PMCID: PMC9239048 DOI: 10.1128/mbio.00985-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT.
Collapse
|
13
|
Aggarwal S, Kumaraswami M. Managing Manganese: The Role of Manganese Homeostasis in Streptococcal Pathogenesis. Front Cell Dev Biol 2022; 10:921920. [PMID: 35800897 PMCID: PMC9253540 DOI: 10.3389/fcell.2022.921920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic streptococci require manganese for survival in the host. In response to invading pathogens, the host recruits nutritional immune effectors at infection sites to withhold manganese from the pathogens and control bacterial growth. The manganese scarcity impairs several streptococcal processes including oxidative stress defenses, de novo DNA synthesis, bacterial survival, and virulence. Emerging evidence suggests that pathogens also encounter manganese toxicity during infection and manganese excess impacts streptococcal virulence by manganese mismetallation of non-cognate molecular targets involved in bacterial antioxidant defenses and cell division. To counter host-imposed manganese stress, the streptococcal species employ a sophisticated sensory system that tightly coordinates manganese stress-specific molecular strategies to negate host induced manganese stress and proliferate in the host. Here we review the molecular details of host-streptococcal interactions in the battle for manganese during infection and the significance of streptococcal effectors involved to bacterial pathophysiology.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
14
|
Liu Y, Yoo BB, Hwang CA, Martinez MR, Datta AR, Fratamico PM. Involvement of a putative ATP-Binding Cassette (ABC) Involved in manganese transport in virulence of Listeria monocytogenes. PLoS One 2022; 17:e0268924. [PMID: 35617277 PMCID: PMC9135185 DOI: 10.1371/journal.pone.0268924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis, a disease associated with high fatality (20–30%) and hospitalization rates (>95%). ATP-Binding Cassette (ABC) transporters have been demonstrated to be involved in the general stress response. In previous studies, in-frame deletion mutants of the ABC transporter genes, LMOf2365_1875 and LMOf2365_1877, were constructed and analyzed; however, additional work is needed to investigate the virulence potential of these deletion mutants. In this study, two in vitro methods and one in vivo model were used to investigate the virulence potential of in-frame deletion mutants of ABC transporter genes. First, the invasion efficiency in host cells was measured using the HT-29 human cell line. Second, cell-to-cell spread activity was measured using a plaque forming assay. Lastly, virulence potential of the mutants was tested in the Galleria mellonella wax moth model. Our results demonstrated that the deletion mutant, ⊿LMOf2365_1875, displayed decreased invasion and cell-to-cell spread efficiency in comparison to the wild-type, LMOf2365, indicating that LMOf2365_1875 may be required for virulence. Furthermore, the reduced virulence of these mutants was confirmed using the Galleria mellonella wax moth model. In addition, the expression levels of 15 virulence and stress-related genes were analyzed by RT-PCR assays using stationary phase cells. Our results showed that virulence-related gene expression levels from the deletion mutants were elevated (15/15 genes from ⊿LMOf2365_1877 and 7/15 genes from ⊿LMOf2365_1875) compared to the wild type LMOf2365, suggesting that ABC transporters may negatively regulate virulence gene expression under specific conditions. The expression level of the stress-related gene, clpE, also was increased in both deletion mutants, indicating the involvement of ABC transporters in the stress response. Taken together, our findings suggest that ABC transporters may be used as potential targets to develop new therapeutic strategies to control L. monocytogenes.
Collapse
Affiliation(s)
- Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
- * E-mail:
| | - Brian ByongKwon Yoo
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Cheng-An Hwang
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| | - Mira Rakic Martinez
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| |
Collapse
|
15
|
Zhang HC, Zhang R, Shi H. The effect of manganese and iron on mediating resuscitation of lactic acid-injured Escherichia coli. Lett Appl Microbiol 2022; 75:161-170. [PMID: 35395105 DOI: 10.1111/lam.13715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023]
Abstract
Lactic acid can induce sublethal injury of E. coli through oxidative stress. In this study, we investigated changes in SOD activity, CAT activity, GSH production and ROS production during sublethal injury and resuscitation of E. coli. Then, the effect of manganese and iron during resuscitation were studied. Both cations (≥1 mmol l-1 ) significantly promoted the resuscitation of sublethally injured E. coli induced by lactic acid and shortened the repair time (P < 0·05). Conversely, addition of N,N,N',N'-tetrakis (2-pyridylmethyl) which is a metal chelator extended the repair time. Compared with minA, manganese and iron significantly improved SOD activity at 40, 80 and 120 min and decreased ROS production at 40 and 80 min, thereby recovering injured E. coli quickly (P < 0·05). The deletion of sodA encoding Mn-SOD, sodB encoding Fe-SOD or gshA/gshB encoding GSH significantly strengthened sublethal injury and extended the repair time (P < 0·05). It meant these genes-related oxidative stress played important roles in the acid resistance of E. coli and recovery of sublethal injury. Therefore, manganese and iron can promote the recovery of lactic-injured E. coli by the way of increasing SOD activity, scavenging ROS, and relieving oxidative stress.
Collapse
Affiliation(s)
- H C Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - R Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - H Shi
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Banerji R, Iyer P, Saroj SD. Spermidine enhances the survival of Streptococcus pyogenes M3 under oxidative stress. Mol Oral Microbiol 2022; 37:53-62. [PMID: 34994090 DOI: 10.1111/omi.12360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Streptococcus pyogenes, a host-restricted gram-positive pathogen during infection, initially adheres to the epithelia of the nasopharynx and respiratory tract of the human host, followed by disseminating to other organs and evading the host immune system. Upon phagocytosis, S. pyogenes encounters oxidative stress inside the macrophages. The role of polyamines in regulating various physiological functions including stress resistance in bacteria has been reported widely. Since S. pyogenes lacks the machinery for the biosynthesis of polyamines, the study aimed to understand the role of extracellular polyamines in the survival of S. pyogenes under oxidative stress environments. S. pyogenes being a catalase-negative organism, we report that its survival within the macrophages and H2 O2 is enhanced by the presence of spermidine. The increased survival can be attributed to the upregulation of oxidative stress response genes such as sodM, npx, and mtsABC. In addition, spermidine influences the upregulation of virulence factors such as sagA, slo, and hasA. Also, spermidine leads to a decrease in hydrophobicity of the cell membrane and an increase in hyaluronic acid. This study suggests a role for extracellular spermidine in the survival of S. pyogenes under oxidative stress environments. Recognizing the factors that modulate S. pyogenes survival and virulence under stress will assist in understanding its interactions with the host.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Parvati Iyer
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
17
|
Kuznetsova A, Masrati G, Vigonsky E, Livnat-Levanon N, Rose J, Grupper M, Baloum A, Yang JG, Rees DC, Ben-Tal N, Lewinson O. Titratable transmembrane residues and a hydrophobic plug are essential for manganese import via the Bacillus anthracis ABC transporter MntBC-A. J Biol Chem 2021; 297:101087. [PMID: 34416234 PMCID: PMC8487065 DOI: 10.1016/j.jbc.2021.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/07/2022] Open
Abstract
All extant life forms require trace transition metals (e.g., Fe2/3+, Cu1/2+, and Mn2+) to survive. However, as these are environmentally scarce, organisms have evolved sophisticated metal uptake machineries. In bacteria, high-affinity import of transition metals is predominantly mediated by ABC transporters. During bacterial infection, sequestration of metal by the host further limits the availability of these ions, and accordingly, bacterial ABC transporters (importers) of metals are key virulence determinants. However, the structure–function relationships of these metal transporters have not been fully elucidated. Here, we used metal-sensitivity assays, advanced structural modeling, and enzymatic assays to study the ABC transporter MntBC-A, a virulence determinant of the bacterial human pathogen Bacillus anthracis. We find that despite its broad metal-recognition profile, MntBC-A imports only manganese, whereas zinc can function as a high-affinity inhibitor of MntBC-A. Computational analysis shows that the transmembrane metal permeation pathway is lined with six titratable residues that can coordinate the positively charged metal, and mutagenesis studies show that they are essential for manganese transport. Modeling suggests that access to these titratable residues is blocked by a ladder of hydrophobic residues, and ATP-driven conformational changes open and close this hydrophobic seal to permit metal binding and release. The conservation of this arrangement of titratable and hydrophobic residues among ABC transporters of transition metals suggests a common mechanism. These findings advance our understanding of transmembrane metal recognition and permeation and may aid the design and development of novel antibacterial agents.
Collapse
Affiliation(s)
- Anastasiya Kuznetsova
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elena Vigonsky
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat-Levanon
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Jessica Rose
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Moti Grupper
- Infectious Disease Unit, Rambam Health Care Campus, Haifa, Israel
| | - Adan Baloum
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Copper intoxication in group B Streptococcus triggers transcriptional activation of the cop operon that contributes to enhanced virulence during acute infection. J Bacteriol 2021; 203:e0031521. [PMID: 34251869 DOI: 10.1128/jb.00315-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can utilize Copper (Cu) as a trace element to support cellular processes; however, excess Cu can intoxicate bacteria. Here, we characterize the cop operon in group B streptococcus (GBS), and establish its role in evasion of Cu intoxication and the response to Cu stress on virulence. Growth of GBS mutants deficient in either the copA Cu exporter, or the copY repressor, were severely compromised in Cu-stress conditions. GBS survival of Cu stress reflected a mechanism of CopY de-repression of the CopA efflux system. However, neither mutant was attenuated for intracellular survival in macrophages. Analysis of global transcriptional responses to Cu by RNA-sequencing revealed a stress signature encompassing homeostasis of multiple metals. Genes induced by Cu stress included putative metal transporters for manganese import, whereas a system for iron export was repressed. In addition, copA promoted the ability of GBS to colonize the blood, liver and spleen of mice following disseminated infection. Together, these findings show that GBS copA mediates resistance to Cu intoxication, via regulation by the Cu-sensing transcriptional repressor, copY. Cu stress responses in GBS reflect a transcriptional signature that heightens virulence and represents an important part of the bacteria's ability to survive in different environments. Importance Understanding how bacteria manage cellular levels of metal ions, such as copper, helps to explain how microbial cells can survive in different stressful environments. We show how the opportunistic pathogen group B Streptococcus (GBS) achieves homeostasis of intracellular copper through the activities of the genes that comprise the cop operon, and describe how this helps GBS survive in stressful environments, including in the mammalian host during systemic disseminated infection.
Collapse
|
19
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Abstract
Pathogenic microorganisms can spread throughout the world population, as the current COVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogens and other microorganisms can come from the use of photoactive materials as antimicrobial agents able to hinder, or at least limit, their spreading by means of photocatalytically assisted processes activated by light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can kill microorganisms in different matrices such as water or different surfaces without affecting human health. In this review, we focus the attention on TiO2 nanoparticle-based antimicrobial materials, intending to provide an overview of the most promising synthetic techniques, toward possible large-scale production, critically review the capability of such materials to promote pathogen (i.e., bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications.
Collapse
|
21
|
Identification of Zinc-Dependent Mechanisms Used by Group B Streptococcus To Overcome Calprotectin-Mediated Stress. mBio 2020; 11:mBio.02302-20. [PMID: 33173000 PMCID: PMC7667036 DOI: 10.1128/mbio.02302-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease. Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.
Collapse
|
22
|
Genome-Wide Assessment of Streptococcus agalactiae Genes Required for Survival in Human Whole Blood and Plasma. Infect Immun 2020; 88:IAI.00357-20. [PMID: 32747604 DOI: 10.1128/iai.00357-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.
Collapse
|
23
|
Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation. mBio 2020; 11:mBio.00728-20. [PMID: 32518186 PMCID: PMC7373188 DOI: 10.1128/mbio.00728-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GBS is a leading cause of mortality in newborn babies in high- and low-income countries worldwide. Different strains of GBS are characterized by different degrees of virulence, where some are harmlessly carried by humans or animals and others are much more likely to cause disease.
The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host.
These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted. Streptococcus agalactiae (group B streptococcus; GBS) is a colonizer of the gastrointestinal and urogenital tracts, and an opportunistic pathogen of infants and adults. The worldwide population of GBS is characterized by clonal complexes (CCs) with different invasive potentials. CC17, for example, is a hypervirulent lineage commonly associated with neonatal sepsis and meningitis, while CC1 is less invasive in neonates and more commonly causes invasive disease in adults with comorbidities. The genetic basis of GBS virulence and the extent to which different CCs have adapted to different host environments remain uncertain. We have therefore applied a pan-genome-wide association study (GWAS) approach to 1,988 GBS strains isolated from different hosts and countries. Our analysis identified 279 CC-specific genes associated with virulence, disease, metabolism, and regulation of cellular mechanisms that may explain the differential virulence potential of particular CCs. In CC17 and CC23, for example, we have identified genes encoding pilus, quorum-sensing proteins, and proteins for the uptake of ions and micronutrients which are absent in less invasive lineages. Moreover, in CC17, carriage and disease strains were distinguished by the allelic variants of 21 of these CC-specific genes. Together our data highlight the lineage-specific basis of GBS niche adaptation and virulence. The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host. These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted.
Collapse
|
24
|
Harbison-Price N, Ferguson SA, Heikal A, Taiaroa G, Hards K, Nakatani Y, Rennison D, Brimble MA, El-Deeb IM, Bohlmann L, McDevitt CA, von Itzstein M, Walker MJ, Cook GM. Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2. mSphere 2020; 5:e00157-20. [PMID: 32188750 PMCID: PMC7082140 DOI: 10.1128/msphere.00157-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis In this work, we show that PBT2 functions as a Zn2+/H+ ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely.IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer's and Huntington's diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.
Collapse
Affiliation(s)
| | - Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adam Heikal
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yoshio Nakatani
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Lisa Bohlmann
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mark J Walker
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, Cantu CC, Ojeda Saavedra M, Pensar J, Corander J, Jenkins L, Kao L, Granillo A, Porter AR, DeLeo FR, Musser JM. New Pathogenesis Mechanisms and Translational Leads Identified by Multidimensional Analysis of Necrotizing Myositis in Primates. mBio 2020; 11:e03363-19. [PMID: 32071274 PMCID: PMC7029145 DOI: 10.1128/mbio.03363-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Leslie Jenkins
- Comparative Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lillian Kao
- Department of Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Alejandro Granillo
- Department of Internal Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
26
|
Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity. J Bacteriol 2020; 202:JB.00547-19. [PMID: 31818924 DOI: 10.1128/jb.00547-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The Bacillus subtilis MntR and Zur transcriptional regulators control homeostasis of manganese and zinc, two essential elements required in various cellular processes. In this work, we describe the global impact of mntR and zur deletions at the protein level. Using a comprehensive proteomic approach, we showed that 33 and 55 proteins are differentially abundant in ΔmntR and Δzur cells, respectively, including proteins involved in metal acquisition, translation, central metabolism, and cell wall homeostasis. In addition, both mutants showed modifications in intracellular metal ion pools, with significant Mg2+ accumulation in the ΔmntR mutant. Phenotypic and morphological analyses of ΔmntR and Δzur mutants revealed their high sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress. Mutant strains had a modified cell wall thickness and accumulated lower levels of intracellular reactive oxygen species (ROS) than the wild-type strain. Remarkably, our results highlight an intimate connection between MntR, Zur, antibiotic sensitivity, and cell wall structure.IMPORTANCE Manganese and zinc are essential transition metals involved in many fundamental cellular processes, including protection against external oxidative stress. In Bacillus subtilis, Zur and MntR are key transcriptional regulators of zinc and manganese homeostasis, respectively. In this work, proteome analysis of B. subtilis wild-type, ΔmntR, and Δzur strains provided new insights into bacterial adaptation to deregulation of essential metal ions. Deletions of mntR and zur genes increased bacterial sensitivity to lysozyme, beta-lactam antibiotics, and external oxidative stress and impacted the cell wall thickness. Overall, these findings highlight that Zur and MntR regulatory networks are connected to antibiotic sensitivity and cell wall plasticity.
Collapse
|
27
|
Do H, Makthal N, Chandrangsu P, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Metal sensing and regulation of adaptive responses to manganese limitation by MtsR is critical for group A streptococcus virulence. Nucleic Acids Res 2019; 47:7476-7493. [PMID: 31188450 PMCID: PMC6698748 DOI: 10.1093/nar/gkz524] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023] Open
Abstract
Pathogenic bacteria encounter host-imposed manganese (Mn) limitation during infection. Herein we report that in the human pathogen Streptococcus pyogenes, the adaptive response to Mn limitation is controlled by a DtxR family metalloregulator, MtsR. Genes upregulated by MtsR during Mn limitation include Mn (mtsABC) and Fe acquisition systems (sia operon), and a metal-independent DNA synthesis enzyme (nrdFEI.2). To elucidate the mechanism of metal sensing and gene regulation by MtsR, we determined the crystal structure of MtsR. MtsR employs two Mn-sensing sites to monitor metal availability, and metal occupancy at each site influences MtsR regulatory activity. The site 1 acts as the primary Mn sensing site, and loss of metal at site 1 causes robust upregulation of mtsABC. The vacant site 2 causes partial induction of mtsABC, indicating that site 2 functions as secondary Mn sensing site. Furthermore, we show that the C-terminal FeoA domains of adjacent dimers participate in the oligomerization of MtsR on DNA, and multimerization is critical for MtsR regulatory activity. Finally, the mtsR mutant strains defective in metal sensing and oligomerization are attenuated for virulence in a mouse model of invasive infection, indicating that Mn sensing and gene regulation by MtsR are critical processes during S. pyogenes infection.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.,W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps College, Claremont, CA 91711, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
28
|
Yu Y, Tsitrin T, Bekele S, Thovarai V, Torralba MG, Singh H, Wolcott R, Doerfert SN, Sizova MV, Epstein SS, Pieper R. Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419875089. [PMID: 31555049 PMCID: PMC6753514 DOI: 10.1177/1178626419875089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/27/2022]
Abstract
Aerococcus urinae (Au) and Globicatella sanguinis (Gs) are gram-positive bacteria belonging to the family Aerococcaceae and colonize the human immunocompromised and catheterized urinary tract. We identified both pathogens in polymicrobial urethral catheter biofilms (CBs) with a combination of 16S rDNA sequencing, proteomic analyses, and microbial cultures. Longitudinal sampling of biofilms from serially replaced catheters revealed that each species persisted in the urinary tract of a patient in cohabitation with 1 or more gram-negative uropathogens. The Gs and Au proteomes revealed active glycolytic, heterolactic fermentation, and peptide catabolic energy metabolism pathways in an anaerobic milieu. A few phosphotransferase system (PTS)-based sugar uptake and oligopeptide ABC transport systems were highly expressed, indicating adaptations to the supply of nutrients in urine and from exfoliating squamous epithelial and urothelial cells. Differences in the Au vs Gs metabolisms pertained to citrate lyase and utilization and storage of glycogen (evident only in Gs proteomes) and to the enzyme Xfp that degrades d-xylulose-5'-phosphate and the biosynthetic pathways for 2 protein cofactors, pyridoxal 6'-phosphate and 4'-phosphopantothenate (expressed only in Au proteomes). A predicted ZnuA-like transition metal ion uptake system was identified for Gs while Au expressed 2 LPXTG-anchored surface proteins, one of which had a predicted pilin D adhesion motif. While these proteins may contribute to fitness and virulence in the human host, it cannot be ruled out that Au and Gs fill a niche in polymicrobial biofilms without being the direct cause of injury in urothelial tissues.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, Rockville,
MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Radka CD, Labiuk SL, DeLucas LJ, Aller SG. Structures of the substrate-binding protein YfeA in apo and zinc-reconstituted holo forms. Acta Crystallogr D Struct Biol 2019; 75:831-840. [PMID: 31478906 PMCID: PMC6719664 DOI: 10.1107/s2059798319010866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/02/2019] [Indexed: 12/23/2022] Open
Abstract
In the structural biology of bacterial substrate-binding proteins (SBPs), a growing number of comparisons between substrate-bound and substrate-free forms of metal atom-binding (cluster A-I) SBPs have revealed minimal structural differences between forms. These observations contrast with SBPs that bind substrates such as amino acids or nucleic acids and may undergo >60° rigid-body rotations. Substrate transfer in these SBPs is described by a Venus flytrap model, although this model may not apply to all SBPs. In this report, structures are presented of substrate-free (apo) and reconstituted substrate-bound (holo) YfeA, a polyspecific cluster A-I SBP from Yersinia pestis. It is demonstrated that an apo cluster A-I SBP can be purified by fractionation when co-expressed with its cognate transporter, adding an alternative strategy to the mutagenesis or biochemical treatment used to generate other apo cluster A-I SBPs. The apo YfeA structure contains 111 disordered protein atoms in a mobile helix located in the flexible carboxy-terminal lobe. Metal binding triggers a 15-fold reduction in the solvent-accessible surface area of the metal-binding site and reordering of the 111 protein atoms in the mobile helix. The flexible lobe undergoes a 13.6° rigid-body rotation that is driven by a spring-hammer metal-binding mechanism. This asymmetric rigid-body rotation may be unique to metal atom-binding SBPs (i.e. clusters A-I, A-II and D-IV).
Collapse
Affiliation(s)
- Christopher D. Radka
- Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shaunivan L. Labiuk
- Canadian Macromolecular Crystallography Facility, Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - Lawrence J. DeLucas
- Division of Human Exploration and Spaceflight, Aerospace Corporation, El Segundo, CA 90245, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE. Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. mBio 2019; 10:e01321-19. [PMID: 31387906 PMCID: PMC6686040 DOI: 10.1128/mbio.01321-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.
Collapse
Affiliation(s)
- Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
31
|
An ion for an iron: streptococcal metal homeostasis under oxidative stress. Biochem J 2019; 476:699-703. [PMID: 30819932 DOI: 10.1042/bcj20190017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
The ability of opportunistic pathogens such as Group A Streptococcus (GAS) to transition between mucosal colonisation and invasive disease requires complex systems for adapting to markedly different host environments. The battle to acquire essential trace metals such as manganese and iron from the host is central to pathogenesis. Using a molecular genetic approach, Turner et al. [Biochem. J. (2019) 476, 595-611] show that it is not just individual metal concentrations that are important, but the ratio of iron to manganese within cells. Increasing this ratio by knocking out pmtA, encoding the Fe(II) exporter PmtA, or by disrupting mtsA, encoding an MtsABC Mn(II)-import system component, led to reductions in superoxide dismutase (SodA) activity and increased sensitivity to oxidative stress. The authors show that SodA is at least 4-fold more active with Mn bound than with Fe and speculate that high intracellular Fe:Mn ratios reduce superoxide dismutase activity through the mismetalation of SodA. Challenging wild-type GAS with 1 mM H2O2 led to a decrease in Fe:Mn ratio and a 3-fold increase in SodA activity, indicating that modulation of the balance between intracellular Fe and Mn may play an important role in adaptation to oxidative stress. This work unravels some of the key mechanisms for maintaining appropriate Mn and Fe concentrations within bacterial cells and underscores the need for future studies that take an holistic view to metal ion homeostasis in bacteria. Strategies aimed at interfering with the balance of intracellular metal ions represent a promising approach for the control of invasive microbial infections.
Collapse
|
32
|
Group A Streptococcus co-ordinates manganese import and iron efflux in response to hydrogen peroxide stress. Biochem J 2019; 476:595-611. [PMID: 30670571 DOI: 10.1042/bcj20180902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens encounter a variety of adverse physiological conditions during infection, including metal starvation, metal overload and oxidative stress. Here, we demonstrate that group A Streptococcus (GAS) utilises Mn(II) import via MtsABC during conditions of hydrogen peroxide stress to optimally metallate the superoxide dismutase, SodA, with Mn. MtsABC expression is controlled by the DtxR family metalloregulator MtsR, which also regulates the expression of Fe uptake systems in GAS. Our results indicate that the SodA in GAS requires Mn for full activity and has lower activity when it contains Fe. As a consequence, under conditions of hydrogen peroxide stress where Fe is elevated, we observed that the PerR-regulated Fe(II) efflux system PmtA was required to reduce intracellular Fe, thus protecting SodA from becoming mismetallated. Our findings demonstrate the co-ordinate action of MtsR-regulated Mn(II) import by MtsABC and PerR-regulated Fe(II) efflux by PmtA to ensure appropriate Mn(II) metallation of SodA for optimal superoxide dismutase function.
Collapse
|
33
|
Kim YS, Yoon NK, Karisa N, Seo SH, Lee JS, Yoo SS, Yoon IJ, Kim YC, Lee H, Ahn J. Identification of novel immunogenic proteins against Streptococcus parauberis in a zebrafish model by reverse vaccinology. Microb Pathog 2019; 127:56-59. [DOI: 10.1016/j.micpath.2018.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
34
|
Hu Y, Hu Q, Wei R, Li R, Zhao D, Ge M, Yao Q, Yu X. The XRE Family Transcriptional Regulator SrtR in Streptococcus suis Is Involved in Oxidant Tolerance and Virulence. Front Cell Infect Microbiol 2019; 8:452. [PMID: 30687648 PMCID: PMC6335249 DOI: 10.3389/fcimb.2018.00452] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that harbors anti-oxidative stress genes, which have been reported to be associated with virulence. Serial passage has been widely used to obtain phenotypic variant strains to investigate the functions of important genes. In the present study, S. suis serotype 9 strain DN13 was serially passaged in mice 30 times. The virulence of a single colony from passage 10 (SS9-P10) was found to increase by at least 140-fold as indicated by LD50 values, and the increased virulence was stable for single colonies from passage 20 (SS0-P20) and 30 (SS0-P30). Compared to the parental strain, the mouse-adapted strains were more tolerant to oxidative and high temperature stress. Genome-wide analysis of nucleotide variations found that reverse mutations occurred in seven genes, as indicated by BLAST analysis. Three of the reverse mutation genes or their homologs in other bacteria were reported to be virulence-associated, including ideSsuis in S. suis, a homolog of malR of Streptococcus pneumoniae, and a homolog of the prepilin peptidase-encoding gene in Legionella pneumophila. However, these genes were not involved in the stress response. Another gene, srtR (stress response transcriptional regulator), encoding an XRE family transcriptional regulator, which had an internal stop in the parental strain, was functionally restored in the adapted strains. Further analysis of DN13 and SS9-P10-background srtR-knock-out and complementing strains supported the contribution of this gene to stress tolerance in vitro and virulence in mice. srtR and its homologs are widely distributed in Gram-positive bacteria including several important human pathogens such as Enterococcus faecium and Clostridioides difficile, indicating similar functions in these bacteria. Taken together, our study identified the first member of the XRE family of transcriptional regulators that is involved in stress tolerance and virulence. It also provides insight into the mechanism of enhanced virulence after serial passage in experimental animals.
Collapse
Affiliation(s)
- Yuli Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qian Hu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Rong Wei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qing Yao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
35
|
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE. Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during Staphylococcus aureus Infection. Infect Immun 2019; 87:e00642-18. [PMID: 30348827 PMCID: PMC6300641 DOI: 10.1128/iai.00642-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jamie Zhu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
36
|
Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog 2018; 14:e1007102. [PMID: 30235334 PMCID: PMC6147510 DOI: 10.1371/journal.ppat.1007102] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Ana L. Flores-Mireles
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon P. Baker
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristi L. Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aaron J. L. Lynch
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
37
|
Hua X, Yang Q, Zhang W, Dong Z, Yu S, Schwarz S, Liu S. Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol 2018; 9:619. [PMID: 29950995 PMCID: PMC6008372 DOI: 10.3389/fphar.2018.00619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/23/2018] [Indexed: 12/03/2022] Open
Abstract
This study aimed at investigating the antibacterial activity of aspidinol, an extract from Dryopteris fragrans (L.) Schott, against methicillin-resistant Staphylococcus aureus (MRSA). MRSA isolates were treated with aspidinol to determine the differential expression of genes and associated pathways following the drug treatment. Aspidinol displayed significant anti-MRSA activity, both in vivo (minimum inhibitory concentration = 2 μg/mL) and in vitro, and achieved an antibacterial effect comparable to that of vancomycin. In the lethal septicemic mouse study, a dose of 50 mg/kg of either aspidinol or vancomycin provided significant protection from mortality. In the non-lethal septicemic mouse study, aspidinol and vancomycin produced a significant reduction in mean bacterial load in murine organs, including the spleen, lung, and liver. After treatment with aspidinol, we found through RNA-seq and RT-PCR experiments that the inhibition of the formation of ribosomes was the primary S. aureus cell-killing mechanism, and the inhibition of amino acid synthesis and the reduction of virulence factors might play a secondary role.
Collapse
Affiliation(s)
- Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qin Yang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Siguo Liu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
38
|
Song Y, Zhang X, Cai M, Lv C, Zhao Y, Wei D, Zhu H. The Heme Transporter HtsABC of Group A Streptococcus Contributes to Virulence and Innate Immune Evasion in Murine Skin Infections. Front Microbiol 2018; 9:1105. [PMID: 29887858 PMCID: PMC5981463 DOI: 10.3389/fmicb.2018.01105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Group A Streptococcus (GAS) requires iron for growth, and heme is an important source of iron for GAS. Streptococcus heme transporter A (HtsA) is the lipoprotein component of the GAS heme-specific ABC transporter (HtsABC). The objective of this study is to examine the contribution of HtsABC to virulence and host interaction of hypervirulent M1T1 GAS using an isogenic htsA deletion mutant (ΔhtsA). The htsA deletion exhibited a significantly increased survival rate, reduced skin lesion size, and reduced systemic GAS dissemination in comparison to the wild type strain. The htsA deletion also decreased the GAS adhesion rate to Hep-2 cells, the survival in human blood and rat neutrophils, and increased the production of cytokine IL-1β, IL-6, and TNF-α levels in air pouch exudate of a mouse model of subcutaneous infection. Complementation of ΔhtsA restored the wild type phenotype. These findings support that the htsA gene is required for GAS virulence and that the htsA deletion augments host innate immune responses.
Collapse
Affiliation(s)
- Yingli Song
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaolan Zhang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Deqin Wei
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. J Bacteriol 2018; 200:JB.00051-18. [PMID: 29507090 DOI: 10.1128/jb.00051-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae, systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter (iutBCD) and that is flanked by two genes (iutA and iutE) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters associated primarily with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding abilities. We demonstrated that the iutABCD genes are cotranscribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner and was repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe.IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to the pathogenesis of many disease-causing organisms. Here, we describe a gene cluster in C. diphtheriae that encodes a metal importer that is homologous to broadly distributed metal transport systems, some with important roles in virulence in other bacterial pathogens. Two metal binding components of the gene cluster encode surface exposed proteins, and studies of such proteins may guide the development of second-generation vaccines for C. diphtheriae.
Collapse
|
40
|
Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Appl Environ Microbiol 2018. [PMID: 29305506 DOI: 10.1128/aem.02483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
To overcome the adverse impacts of environmental stresses during growth, different adaptive regulation mechanisms can be activated in Lactococcus lactis In this study, the transcription levels of eight transcriptional regulators of L. lactis subsp. lactis F44 under acid stress were analyzed using quantitative reverse transcription-PCR. Eight gene-overexpressing strains were then constructed to examine their influences on acid-resistant capability. Overexpressing ythA, a PspC family transcriptional regulator, increased the survival rate by 3.2-fold compared to the control at the lethal pH 3.0 acid shock. Moreover, the nisin yield was increased by 45.50%. The ythA-overexpressing strain FythA appeared to have higher intracellular pH stability and nisin-resistant ability. Subsequently, transcriptome analysis revealed that the vast majority of genes associated with amino acid biosynthesis, including arginine, serine, phenylalanine, and tyrosine, were predominantly upregulated in FythA. Arginine biosynthesis (argG and argH), arginine deiminase pathway, and polar amino acid transport (ysfE and ysfF) were proposed to be the main regulation mechanisms of YthA. Furthermore, the transcription of genes associated with pyrimidine and exopolysaccharide biosynthesis were upregulated. The transcriptional levels of nisIPRKFEG genes were substantially higher in FythA, which directly contributed to the yield and resistance of nisin. Three potential DNA-binding sequences were predicted by computer analysis using the upstream regions of genes with prominent changes. This study showed that YthA could increase acid resistance and nisin yield and revealed a putative regulation mechanism of YthA.IMPORTANCE Nisin, produced by Lactococcus lactis subsp. lactis, is widely used as a safe food preservative. Acid stress becomes the primary restrictive factor of cell growth and nisin yield. In this research, we found that the transcriptional regulator YthA was conducive to enhancing the acid resistance of L. lactis F44. Overexpressing ythA could significantly improve the survival rate and nisin yield. The stability of intracellular pH and nisin resistance were also increased. Transcriptome analysis showed that nisin immunity and the biosynthesis of some amino acids, pyrimidine, and exopolysaccharides were enhanced in the engineered strain. This study elucidates the regulation mechanism of YthA and provides a novel strategy for constructing robust industrial L. lactis strains.
Collapse
|
41
|
Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach. Appl Environ Microbiol 2018; 84:AEM.02483-17. [PMID: 29305506 DOI: 10.1128/aem.02483-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022] Open
Abstract
To overcome the adverse impacts of environmental stresses during growth, different adaptive regulation mechanisms can be activated in Lactococcus lactis In this study, the transcription levels of eight transcriptional regulators of L. lactis subsp. lactis F44 under acid stress were analyzed using quantitative reverse transcription-PCR. Eight gene-overexpressing strains were then constructed to examine their influences on acid-resistant capability. Overexpressing ythA, a PspC family transcriptional regulator, increased the survival rate by 3.2-fold compared to the control at the lethal pH 3.0 acid shock. Moreover, the nisin yield was increased by 45.50%. The ythA-overexpressing strain FythA appeared to have higher intracellular pH stability and nisin-resistant ability. Subsequently, transcriptome analysis revealed that the vast majority of genes associated with amino acid biosynthesis, including arginine, serine, phenylalanine, and tyrosine, were predominantly upregulated in FythA. Arginine biosynthesis (argG and argH), arginine deiminase pathway, and polar amino acid transport (ysfE and ysfF) were proposed to be the main regulation mechanisms of YthA. Furthermore, the transcription of genes associated with pyrimidine and exopolysaccharide biosynthesis were upregulated. The transcriptional levels of nisIPRKFEG genes were substantially higher in FythA, which directly contributed to the yield and resistance of nisin. Three potential DNA-binding sequences were predicted by computer analysis using the upstream regions of genes with prominent changes. This study showed that YthA could increase acid resistance and nisin yield and revealed a putative regulation mechanism of YthA.IMPORTANCE Nisin, produced by Lactococcus lactis subsp. lactis, is widely used as a safe food preservative. Acid stress becomes the primary restrictive factor of cell growth and nisin yield. In this research, we found that the transcriptional regulator YthA was conducive to enhancing the acid resistance of L. lactis F44. Overexpressing ythA could significantly improve the survival rate and nisin yield. The stability of intracellular pH and nisin resistance were also increased. Transcriptome analysis showed that nisin immunity and the biosynthesis of some amino acids, pyrimidine, and exopolysaccharides were enhanced in the engineered strain. This study elucidates the regulation mechanism of YthA and provides a novel strategy for constructing robust industrial L. lactis strains.
Collapse
|
42
|
Serata M, Yasuda E, Sako T. Effect of superoxide dismutase and manganese on superoxide tolerance in Lactobacillus casei strain Shirota and analysis of multiple manganese transporters. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 37:31-38. [PMID: 29662735 PMCID: PMC5897238 DOI: 10.12938/bmfh.17-018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022]
Abstract
The Lactobacillus casei/paracasei group accumulates a high level of manganese, which works to scavenge superoxide anions produced during aerobic growth. The genome of L.
casei strain Shirota, however, also codes the gene for superoxide dismutase (SOD), sodA, which catalyzes the dismutation of superoxide anion into hydrogen peroxide and oxygen. We anticipated
that the SOD and/or manganese may contribute to the aerobic growth of L. casei Shirota and tried to clarify how L. casei Shirota can eliminate the toxicity of superoxide anion. When the
sodA of L. casei Shirota was cloned and expressed in Escherichia coli as well as in L. casei Shirota, there was no increase in SOD activity detected,
meaning that the protein is in an inactive form, even if it is produced in L. casei Shirota. We next focused on the role of the manganese transport system of L. casei Shirota. One
ABC-type manganese transporter (mtsCBA cluster) and three NRAMP-type manganese transporters (mntH1, mntH2, and mntH3) are coded in the genome. To
clarify the role of these genes, we disrupted one or more of these manganese transporter genes in different combinations and analyzed the intracellular manganese levels. As a result, we found that NRAMP-type manganese
transporters coded by mntH1 and mntH2 and ABC-type manganese transporter coded by mtsCBA cluster are complementarily involved in the accumulation of intracellular
manganese and are necessary for aerobic growth of L. casei Shirota. These results indicate that intracellular manganese accumulated by multiple complementary manganese transporters, but not SOD, plays a
pivotal role in tolerance to superoxide in L. casei Shirota.
Collapse
Affiliation(s)
- Masaki Serata
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Emi Yasuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Tomoyuki Sako
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
43
|
Gao L, Guo Z, Wang Y, Wang Y, Wang K, Li B, Shen L. The Two-Operon-Coded ABC Transporter Complex FpvWXYZCDEF is Required for Pseudomonas aeruginosa Growth and Virulence Under Iron-Limiting Conditions. J Membr Biol 2017; 251:91-104. [PMID: 28975384 DOI: 10.1007/s00232-017-9979-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Iron is essential for all organisms. Bacteria have devolved sophisticated systems to maintain intracellular iron homeostasis. FpvCDEF(PA2407-2410) has been reported as an ABC transporter involved in pyoverdine-Fe uptake which does not affect growth under iron-limiting condition, when it is deleted in PAO1. In this study, we proved that fpvCDEF and fpvWXYZ(PA2403-2406) constituted an ABC transporter complex containing two operons: fpvWXYZCDE and fpvF. The operon fpvWXYZCDE was regulated by iron negatively and the single gene operon fpvF was constitutively expressed. Inactivation of any one of the components, fpvW, fpvC, fpvD, fpvE, and fpvF, led to increased expression of fpvWXYZCDE suggesting that each component of fpvWXYZCDEF could be involved in iron uptake. The ABC transporter complex encoded by fpvWXYZCDEF plays important roles in growth, oxidative stress resistance, and virulence, since the deletion of fpvWXYZCDEF resulted in defective growth, increased sensitivity to H2O2, and decreased virulence compared with PAO1(ΔfpvCDEF) and the wild type PAO1 under iron-limiting condition.
Collapse
Affiliation(s)
- Lang Gao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yue Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yulu Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kerong Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bo Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
44
|
Shabayek S, Spellerberg B. Acid Stress Response Mechanisms of Group B Streptococci. Front Cell Infect Microbiol 2017; 7:395. [PMID: 28936424 PMCID: PMC5594096 DOI: 10.3389/fcimb.2017.00395] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Group B streptococcus (GBS) is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review
Collapse
Affiliation(s)
- Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of UlmUlm, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal UniversityIsmailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of UlmUlm, Germany
| |
Collapse
|
45
|
Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
iTRAQ-based quantitative proteomic analysis reveals potential virulence factors of Erysipelothrix rhusiopathiae. J Proteomics 2017; 160:28-37. [DOI: 10.1016/j.jprot.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 12/28/2022]
|
47
|
Sudden death and toxic metals following ingestion of a button battery. Int J Legal Med 2017; 131:1009-1010. [PMID: 28303394 DOI: 10.1007/s00414-017-1572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
|
48
|
The Group A Streptococcus (GAS) and Oxidative Stress Interaction. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Barwinska-Sendra A, Waldron KJ. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv Microb Physiol 2017; 70:315-379. [PMID: 28528650 DOI: 10.1016/bs.ampbs.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals.
Collapse
Affiliation(s)
- Anna Barwinska-Sendra
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|