1
|
Wang X, Lyu Y, Wang S, Zheng Q, Feng E, Zhu L, Pan C, Wang S, Wang D, Liu X, Wang H. Application of CRISPR/Cas9 System for Plasmid Elimination and Bacterial Killing of Bacillus cereus Group Strains. Front Microbiol 2021; 12:536357. [PMID: 34177818 PMCID: PMC8222586 DOI: 10.3389/fmicb.2021.536357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/19/2021] [Indexed: 11/28/2022] Open
Abstract
The CRISPR-Cas system has been widely applied in prokaryotic genome editing with its high efficiency and easy operation. We constructed some "scissors plasmids" via using the temperature-sensitive pJOE8999 shuttle plasmid, which carry the different 20nt (N20) guiding the Cas9 nuclease as a scissors to break the target DNA. We successfully used scissors plasmids to eliminate native plasmids from Bacillus anthracis and Bacillus cereus, and specifically killed B. anthracis. When curing pXO1 and pXO2 virulence plasmids from B. anthracis A16PI2 and A16Q1, respectively, we found that the plasmid elimination percentage was slightly higher when the sgRNA targeted the replication initiation region (96-100%), rather than the non-replication initiation region (88-92%). We also tried using a mixture of two scissors plasmids to simultaneously eliminate pXO1 and pXO2 plasmids from B. anthracis, and the single and double plasmid-cured rates were 29 and 14%, respectively. To our surprise, when we used the scissor plasmid containing two tandem sgRNAs to cure the target plasmids pXO1 and pXO2 from wild strain B. anthracis A16 simultaneously, only the second sgRNA could guide Cas9 to cleave the target plasmid with high efficiency, while the first sgRNA didn't work in all the experiments we designed. When we used the CRISPR/cas9 system to eliminate the pCE1 mega-virulence plasmid from B. cereus BC307 by simply changing the sgRNA, we also obtained a plasmid-cured isogenic strain at a very high elimination rate (69%). The sterilization efficiency of B. anthracis was about 93%, which is similar to the efficiency of plasmid curing, and there was no significant difference in the efficiency of among the scissors plasmids containing single sgRNA, targeting multi-sites, or single-site targeting and the two tandem sgRNA. This simple and effective curing method, which is applicable to B. cereus group strains, provides a new way to study these bacteria and their virulence profiles.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yufei Lyu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Siya Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- Experimental Teaching Center, Shenyang Normal University, Shenyang, China
| | - Qingfang Zheng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
- College of Food Science and Technology, Shanghai Ocean University, Ministry of Agriculture Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation, Shanghai, China
| | - Erling Feng
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Shenghou Wang
- Experimental Teaching Center, Shenyang Normal University, Shenyang, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiankai Liu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Zaide G, Elia U, Cohen-Gihon I, Israeli M, Rotem S, Israeli O, Ehrlich S, Cohen H, Lazar S, Beth-Din A, Shafferman A, Zvi A, Cohen O, Chitlaru T. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA-Disrupted and Parental Wild Type Strains. Microorganisms 2020; 8:microorganisms8121896. [PMID: 33265965 PMCID: PMC7760947 DOI: 10.3390/microorganisms8121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.
Collapse
|
3
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. Distinct Contribution of the HtrA Protease and PDZ Domains to Its Function in Stress Resilience and Virulence of Bacillus anthracis. Front Microbiol 2019; 10:255. [PMID: 30833938 PMCID: PMC6387919 DOI: 10.3389/fmicb.2019.00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Anthrax is a lethal disease caused by the Gram-positive spore-producing bacterium Bacillus anthracis. We previously demonstrated that disruption of htrA gene, encoding the chaperone/protease HtrABA (High Temperature Requirement A of B. anthracis) results in significant virulence attenuation, despite unaffected ability of ΔhtrA strains (in which the htrA gene was deleted) to synthesize the key anthrax virulence factors: the exotoxins and capsule. B. anthracis ΔhtrA strains exhibited increased sensitivity to stress regimens as well as silencing of the secreted starvation-associated Neutral Protease A (NprA) and down-modulation of the bacterial S-layer. The virulence attenuation associated with disruption of the htrA gene was suggested to reflect the susceptibility of ΔhtrA mutated strains to stress insults encountered in the host indicating that HtrABA represents an important B. anthracis pathogenesis determinant. As all HtrA serine proteases, HtrABA exhibits a protease catalytic domain and a PDZ domain. In the present study we interrogated the relative impact of the proteolytic activity (mediated by the protease domain) and the PDZ domain (presumably necessary for the chaperone activity and/or interaction with substrates) on manifestation of phenotypic characteristics mediated by HtrABA. By inspecting the phenotype exhibited by ΔhtrA strains trans-complemented with either a wild-type, truncated (ΔPDZ), or non-proteolytic form (mutated in the catalytic serine residue) of HtrABA, as well as strains exhibiting modified chromosomal alleles, it is shown that (i) the proteolytic activity of HtrABA is essential for its N-terminal autolysis and subsequent release into the extracellular milieu, while the PDZ domain was dispensable for this process, (ii) the PDZ domain appeared to be dispensable for most of the functions related to stress resilience as well as involvement of HtrABA in assembly of the bacterial S-layer, (iii) conversely, the proteolytic activity but not the PDZ domain, appeared to be dispensable for the role of HtrABA in mediating up-regulation of the extracellular protease NprA under starvation stress, and finally (iv) in a murine model of anthrax, the HtrABA PDZ domain, was dispensable for manifestation of B. anthracis virulence. The unexpected dispensability of the PDZ domain may represent a unique characteristic of HtrABA amongst bacterial serine proteases of the HtrA family.
Collapse
Affiliation(s)
- Ma'ayan Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
5
|
Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. INFECTION GENETICS AND EVOLUTION 2018; 65:55-64. [PMID: 30006047 DOI: 10.1016/j.meegid.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.
Collapse
|
6
|
Sharma A, Ponmariappan S, Sarita R, Alam SI, Kamboj DV, Shukla S. Identification of Cross Reactive Antigens of C. botulinum Types A, B, E & F by Immunoproteomic Approach. Curr Microbiol 2018; 75:531-540. [PMID: 29332140 DOI: 10.1007/s00284-017-1413-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/05/2017] [Indexed: 02/01/2023]
Abstract
Diseases triggered by microorganisms can be controlled by vaccines, which need neutralizing antigens. Hence, it is very crucial to identify extremely efficient immunogens for immune prevention. Botulism, a fatal neuroparalytic disease, is caused by botulinum neurotoxins produced by the anaerobic, Gram-positive spore-forming bacteria, Clostridium botulinum. Food-borne botulism and iatrogenic botulism are caused by botulinum toxin. Wound botulism, infant botulism, and adult intestinal botulism are caused by primarily C. botulinum followed by secondary intoxication. To identify protective antigens, whole cell proteome of C. botulinum type B was separated by two-dimensional gel electrophoresis. 2-D gel of whole cell proteins was probed with hyper immune sera of whole cell proteins of C. botulinum types A, E, and F. Six cross immunoreactive proteins were identified. These immunoreactive proteins will be further tested for developing vaccines and serodiagnostic markers against botulism.
Collapse
Affiliation(s)
- Arti Sharma
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474 002, India.
| | | | - Rani Sarita
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474 002, India
| | - Syed Imtiaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474 002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474 002, India
| | - Sangeeta Shukla
- School of Studies in Zoology, Jiwaji University Gwalior, Gwalior, Madhya Pradesh, India
| |
Collapse
|
7
|
Chitlaru T, Israeli M, Rotem S, Elia U, Bar-Haim E, Ehrlich S, Cohen O, Shafferman A. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes. Vaccine 2017; 35:6030-6040. [DOI: 10.1016/j.vaccine.2017.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
|
8
|
Liu X, Sun J, Wu H. Glycolysis-related proteins are broad spectrum vaccine candidates against aquacultural pathogens. Vaccine 2017; 35:3813-3816. [PMID: 28587729 DOI: 10.1016/j.vaccine.2017.05.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/16/2022]
Abstract
Reverse vaccinology (RV) has become a popular method for developing vaccines. Although Edwardsiella tarda is deemed to be an important fish pathogen, so far, no reports have used a genome-based approach to screen vaccine candidates against E. tarda. In the current study, protective antigens of E. tarda were screened using RV. Large-scale cloning, expression and purification of potential candidates were carried out, and their immunoprotective potential was evaluated. A candidate fructose-bisphosphate aldolase (FBA) exhibited broad spectrum protection, as did another glycolysis-related protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which we reported previously, indicating the potential of other glycolysis-related proteins of E. tarda as broad spectrum protective antigens. In total, half (5 out 10) of these proteins showed prominent immunoprotective potential. Therefore, we suggest that glycolysis-related proteins are a class of potential broad spectrum protective antigens and that these proteins should be preferentially selected.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Jiamin Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China.
| |
Collapse
|
9
|
Dwivedi P, Alam SI, Tomar RS. Secretome, surfome and immunome: emerging approaches for the discovery of new vaccine candidates against bacterial infections. World J Microbiol Biotechnol 2016; 32:155. [PMID: 27465855 DOI: 10.1007/s11274-016-2107-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Functional genomics has made possible advanced structure-to-function investigation of pathogens and helped characterize virulence mechanisms. Proteomics has been become a tool for large-scale identification of proteins involved during invasion and infection by the pathogens. Bacterial surface and secreted proteins play key role in the interaction between the bacterial cell and the host environment. Thus exoproteome and surface proteome of a microorganism are hypothesized to contain components of effective vaccines. Surfome and exoproteome analysis strategy facilitates identification of novel vaccine antigen and overall helps in progress of discovery of vaccine. The study of the antibody response can advance how proteomics is used, because it investigates antibody-antigen interactions and also unravel the relationship of antibody responses to pathogen and host characteristics. System immunology integrating with proteome i.e. immunoproteomics is applicable to those infections that are having tendency of diverse antibody target recognition and thus accurately reflects progression of the infection.
Collapse
Affiliation(s)
- Pratistha Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India.
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence R & D Establishment, DRDO, Gwalior, India
| | - Rajesh Singh Tomar
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| |
Collapse
|
10
|
Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei. Anaerobe 2016; 39:77-83. [PMID: 26971466 DOI: 10.1016/j.anaerobe.2016.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/18/2023]
Abstract
Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates.
Collapse
|
11
|
Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain. Sci Rep 2016; 6:18908. [PMID: 26732659 PMCID: PMC4702213 DOI: 10.1038/srep18908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/17/2022] Open
Abstract
Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10–104-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization.
Collapse
|
12
|
Immunoprotective potential of in silico predicted Acinetobacter baumannii outer membrane nuclease, NucAb. Int J Med Microbiol 2016; 306:1-9. [DOI: 10.1016/j.ijmm.2015.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
|
13
|
Kim YH, Kim KA, Kim YR, Choi MK, Kim HK, Choi KJ, Chun JH, Cha K, Hong KJ, Lee NG, Yoo CK, Oh HB, Kim TS, Rhie GE. Immunoproteomically identified GBAA_0345, alkyl hydroperoxide reductase subunit C is a potential target for multivalent anthrax vaccine. Proteomics 2014; 14:93-104. [PMID: 24273028 DOI: 10.1002/pmic.201200495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
Anthrax is caused by the spore-forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA-acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent-spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.
Collapse
Affiliation(s)
- Yeon Hee Kim
- Division of High-risk Pathogen Research, Korea National Institute of Health, Chungbuk, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jagusztyn-Krynicka EK, Dadlez M, Grabowska A, Roszczenko P. Proteomic technology in the design of new effective antibacterial vaccines. Expert Rev Proteomics 2014; 6:315-30. [DOI: 10.1586/epr.09.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Levy H, Glinert I, Weiss S, Sittner A, Schlomovitz J, Altboum Z, Kobiler D. Toxin-independent virulence of Bacillus anthracis in rabbits. PLoS One 2014; 9:e84947. [PMID: 24416317 PMCID: PMC3885664 DOI: 10.1371/journal.pone.0084947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play a major role in pathogenicity. In the guinea pig (GP) model we have previously shown that deletion of all three toxin components results in a relatively moderate attenuation in virulence, indicating that B. anthracis possesses an additional toxin-independent virulence mechanism. To characterize this toxin-independent mechanism in anthrax disease, we developed a new rabbit model by intravenous injection (IV) of B. anthracis encapsulated vegetative cells, artificially creating bacteremia. Using this model we were able to demonstrate that also in rabbits, B. anthracis mutants lacking the toxins are capable of killing the host within 24 hours. This virulent trait depends on the activity of AtxA in the presence of pXO2, as, in the absence of the toxin genes, deletion of either component abolishes virulence. Furthermore, this IV virulence depends mainly on AtxA rather than the whole pXO1. A similar pattern was shown in the GP model using subcutaneous (SC) administration of spores of the mutant strains, demonstrating the generality of the phenomenon. The virulent strains showed higher bacteremia levels and more efficient tissue dissemination; however our interpretation is that tissue dissemination per se is not the main determinant of virulence whose exact nature requires further elucidation.
Collapse
Affiliation(s)
- Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
- * E-mail:
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josef Schlomovitz
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Zeev Altboum
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
16
|
Liu X, Wang D, Ren J, Tong C, Feng E, Wang X, Zhu L, Wang H. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. PLoS One 2013; 8:e57959. [PMID: 23516421 PMCID: PMC3596338 DOI: 10.1371/journal.pone.0057959] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/29/2013] [Indexed: 01/03/2023] Open
Abstract
Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.
Collapse
Affiliation(s)
- Xiankai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Jingxiao Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Chao Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Erling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xuefang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail: (LZ); (HW)
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, People's Republic of China
- * E-mail: (LZ); (HW)
| |
Collapse
|
17
|
McWilliams BD, Palzkill T, Weinstock GM, Petrosino JF. Identification of novel and cross-species seroreactive proteins from Bacillus anthracis using a ligation-independent cloning-based, SOS-inducible expression system. Microb Pathog 2012; 53:250-8. [PMID: 22975444 DOI: 10.1016/j.micpath.2012.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The current standard for Bacillus anthracis vaccination is the Anthrax Vaccine Adsorbed (AVA, BioThrax). While effective, the licensed vaccine schedule requires five intramuscular injections in the priming series and yearly boosters to sustain protection. One potential approach to maintain or improve the protection afforded by an anthrax vaccine, but requiring fewer doses, is through the use of purified proteins to enhance an antibody response, which could be used on their own or in combination with the current vaccine. This study describes a novel, high-throughput system to amplify and clone every gene in the B. anthracis pXO1 and pXO2 virulence plasmids. We attempted to express each cloned gene in Escherichia coli, and obtained full-length expression of 57% of the proteins. Expressed proteins were then used to identify immunogens using serum from three different mammalian infection models: Dutch-belted rabbits, BALB/c mice, and rhesus macaque monkeys. Ten proteins were detected by antibodies in all of these models, eight of which have not been identified as immunoreactive in other studies to date. Serum was also collected from humans who had received the AVA vaccine, and similar screens showed that antigens that were detected in the infection models were not present in the serum of vaccinated humans, suggesting that antibodies elicited by the current AVA vaccine do not react with the immunoreactive proteins identified in this study. These results will contribute to the future selection of targets in antigenicity and protection studies as one or more of these proteins may prove to be worthy of inclusion in future vaccine preparations.
Collapse
Affiliation(s)
- Brian D McWilliams
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
18
|
Liebenberg J, Pretorius A, Faber F, Collins N, Allsopp B, van Kleef M. Identification of Ehrlichia ruminantium proteins that activate cellular immune responses using a reverse vaccinology strategy. Vet Immunol Immunopathol 2012; 145:340-9. [DOI: 10.1016/j.vetimm.2011.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/08/2011] [Accepted: 12/05/2011] [Indexed: 12/24/2022]
|
19
|
Kulshreshtha P, Aggarwal S, Jaiswal H, Bhatnagar R. S-layer homology motif is an immunogen and confers protection to mouse model against anthrax. Mol Immunol 2011; 50:18-25. [PMID: 22178119 DOI: 10.1016/j.molimm.2011.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/10/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
SLH proteins bear an S-layer homology motif comprised of three S-layer homology (SLH) domains. Several SLH proteins in Bacillus anthracis have been recognized as immunogenic in recent past. We hypothesized that the SLH motif, the most common moiety amongst all the SLH proteins could be responsible for their immunogenicity. To test this hypothesis, we checked the immunogenic capacity of recombinant SLH motif. The rSLH fragment on immunization in mice led to the development of a potent humoral and T Helper immune response as compared to the only adjuvant immunized group. Antibodies raised against rSLH could identify the surface of B. anthracis Ames strain vegetative forms. rSLH immunization protected 50% mice challenged with B. anthracis compared to 0% survival in group of mice immunized with only adjuvant. But when rSLH immunization was synergized with a single sub-optimal dose of rPA (Protective Antigen), 80% immunized mice survived the lethal challenge of B. anthracis. Taken together, for the first time we demonstrate the immunogenic and protective potential of SLH motif of the SLH proteins of B. anthracis.
Collapse
Affiliation(s)
- Parul Kulshreshtha
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
20
|
Thomas RJ. Receptor mimicry as novel therapeutic treatment for biothreat agents. Bioeng Bugs 2011; 1:17-30. [PMID: 21327124 DOI: 10.4161/bbug.1.1.10049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/20/2022] Open
Abstract
The specter of intentional release of pathogenic microbes and their toxins is a real threat. This article reviews the literature on adhesins of biothreat agents, their interactions with oligosaccharides and the potential for anti-adhesion compounds as an alternative to conventional therapeutics. The minimal binding structure of ricin has been well characterised and offers the best candidate for successful anti-adhesion therapy based on the Galβ1-4GlcNAc structure. The botulinum toxin serotypes A-F bind to a low number of gangliosides (GT1b, GQ1b, GD1a and GD1b) hence it should be possible to determine the minimal structure for binding. The minimal disaccharide sequence of GalNAcβ1-4Gal found in the gangliosides asialo-GM1 and asialo-GM2 is required for adhesion for many respiratory pathogens. Although a number of adhesins have been identified in bacterial biothreat agents such as Yersinia pestis, Bacillus anthracis, Francisella tularensis, Brucella species and Burkholderia pseudomallei, specific information regarding their in vivo expression during pneumonic infection is lacking. Limited oligosaccharide inhibition studies indicate the potential of GalNAcβ1-4Gal, GalNAcβ-3Gal and the hydrophobic compound, para-nitrophenol as starting points for the rational design of generic anti-adhesion compounds. A cocktail of multivalent oligosaccharides based on the minimal binding structures of identified adhesins would offer the best candidates for anti-adhesion therapy.
Collapse
|
21
|
Chitlaru T, Zaide G, Ehrlich S, Inbar I, Cohen O, Shafferman A. HtrA is a major virulence determinant of Bacillus anthracis. Mol Microbiol 2011; 81:1542-59. [PMID: 21801240 DOI: 10.1111/j.1365-2958.2011.07790.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Chitlaru T, Altboum Z, Reuveny S, Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 2011; 239:221-36. [PMID: 21198675 DOI: 10.1111/j.1600-065x.2010.00969.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | |
Collapse
|
23
|
Yuan F, Fu S, Hu J, Li J, Chang H, Hu L, Chen H, Tian Y, Bei W. Evaluation of recombinant proteins of Haemophilus parasuis strain SH0165 as vaccine candidates in a mouse model. Res Vet Sci 2011; 93:51-6. [PMID: 21596404 DOI: 10.1016/j.rvsc.2011.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/16/2011] [Accepted: 04/27/2011] [Indexed: 11/26/2022]
Abstract
The recently completed genome sequence of Haemophilus parasuis strain SH0165 allowed us to screen putative OMPs for the development of recombinant vaccines. The objective of this study was to evaluate the immunogenicity and protective efficacy of three OMPs of H. parasuis. Three putative OMPs (SmpA, YgiW and FOG) were cloned, expressed and purified by Ni affinity chromatography using nitriloacetic acid resin. Mice were immunized either individually (individual protein, IP) or synergistically (synergistic protein, SP) with the recombinant proteins. A significant increase in IgG titer was detected in all protein-immunized mice. Isotyping studies revealed that the antibodies produced were predominantly IgG2a-type, indicating a predominant Th1 response. A significant increase was observed in IL-2, IL-4 and IFN-γ levels in the culture supernatants of splenocytes isolated from immunized mice. Furthermore, mice were challenged intraperitoneally with 6×10(9)CFU (5×LD(50)) of highly virulent homologous serovar 5 strain (SH0165) or 7.0×10(9) CFU (5×LD(50)) of the heterologous serovar 4 strain (MD0322) at fourteen days after the last immunization. All of the recombinant proteins enhanced survival and reduced histopathological lesions. Our results indicated that the three OMPs showed protection both individually and synergistically against infection with the highly virulent H. parasuis in mice.
Collapse
Affiliation(s)
- Fangyan Yuan
- Hubei key laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Investigating the genome diversity of B. cereus and evolutionary aspects of B. anthracis emergence. Genomics 2011; 98:26-39. [PMID: 21447378 DOI: 10.1016/j.ygeno.2011.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/08/2011] [Accepted: 03/21/2011] [Indexed: 12/25/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.
Collapse
|
25
|
Comparative proteome analysis of Bacillus anthracis with pXO1 plasmid content. J Microbiol 2011; 48:771-7. [PMID: 21221933 DOI: 10.1007/s12275-010-0136-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/21/2010] [Indexed: 12/20/2022]
Abstract
Bacillus anthracis the causative agent of anthrax, is an important pathogen among the Bacillus cereus group of species because of its physiological characteristics and its importance as a biological warfare agent. Tripartite anthrax toxin proteins and a poly-D-glutamic acid capsule are produced by B. anthracis vegetative cells during mammalian hosts infection and when cultured in conditions that are thought to mimic the host environment. To identify the factors regulating virulence in B. anthracis the whole cell proteins were extracted from two B. anthracis strains and separated by narrow range immobilized pH gradient (IPG) strips (pH 4-7), followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins that were differentially expressed were identified by the peptide fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A total of 23 proteins were identified as being either upregulated or downregulated in the presence or absence of the virulence plasmid pXO1. Two plasmid encoded proteins and 12 cellular proteins were identified and documented as potential virulence factors.
Collapse
|
26
|
Nieves W, Heang J, Asakrah S, Höner zu Bentrup K, Roy CJ, Morici LA. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization. PLoS One 2010; 5:e14361. [PMID: 21179405 PMCID: PMC3003680 DOI: 10.1371/journal.pone.0014361] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/15/2010] [Indexed: 01/18/2023] Open
Abstract
Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.
Collapse
Affiliation(s)
- Wildaliz Nieves
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Julie Heang
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Saja Asakrah
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Kerstin Höner zu Bentrup
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Chad J. Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Curing the Plasmid pXO2 from Bacillus anthracis A16 Using Plasmid Incompatibility. Curr Microbiol 2010; 62:703-9. [DOI: 10.1007/s00284-010-9767-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 09/12/2010] [Indexed: 10/19/2022]
|
28
|
Sinha K, Bhatnagar R. GroEL provides protection against Bacillus anthracis infection in BALB/c mice. Mol Immunol 2010; 48:264-71. [PMID: 20832865 DOI: 10.1016/j.molimm.2010.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 08/06/2010] [Accepted: 08/07/2010] [Indexed: 01/22/2023]
Abstract
Heat shock proteins (Hsps) of the HSP60 and HSP70 family are highly conserved and essential to all living organisms. Hsps are immunodominant in numerous microbial infections and have been investigated for their vaccine potential. We investigated the immunogenicity and protective efficacy of GroEL and DnaK of B. anthracis in murine model. Both Hsps were found to be highly immunogenic with mixed antibody response (both IgG1 and IgG2a), indicating stimulation of both humoral and cell-mediated immunity. Cytokine profile also confirmed robust T-cell response with increase in lymphocyte proliferation. Immunization with GroEL conferred 100% protection to mice against B. anthracis infection whereas DnaK couldn't provide protection.
Collapse
Affiliation(s)
- Kanchan Sinha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | | |
Collapse
|
29
|
Barh D, Misra AN, Kumar A, Vasco A. A novel strategy of epitope design in Neisseria gonorrhoeae. Bioinformation 2010; 5:77-85. [PMID: 21346868 PMCID: PMC3039994 DOI: 10.6026/97320630005077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/17/2010] [Accepted: 06/08/2010] [Indexed: 11/23/2022] Open
Abstract
In spite of genome sequences of both human and N. gonorrhoeae in hand, vaccine for gonorrhea is yet not available. Due to availability of several host and pathogen genomes and numerous tools for in silico prediction of effective B-cell and T-cell epitopes; recent trend of vaccine designing has been shifted to peptide or epitope based vaccines that are more specific, safe, and easy to produce. In order to design and develop such a peptide vaccine against the pathogen, we adopted a novel computational approache based on sequence, structure, QSAR, and simulation methods along with fold level analysis to predict potential antigenic B-cell epitope derived T-cell epitopes from four vaccine targets of N. gonorrhoeae previously identified by us [Barh and Kumar (2009) In Silico Biology 9, 1-7]. Four epitopes, one from each protein, have been designed in such a way that each epitope is highly likely to bind maximum number of HLA molecules (comprising of both the MHC-I and II) and interacts with most frequent HLA alleles (A*0201, A*0204, B*2705, DRB1*0101, and DRB1*0401) in human population. Therefore our selected epitopes are highly potential to induce both the B-cell and T-cell mediated immune responses. Of course, these selected epitopes require further experimental validation.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB-721172, India
| | - Amarendra Narayan Misra
- Department of Biosciences and Biotechnology, School of Biotechnology, Fakir Mohan University, Jnan Bigyan Vihar, Balasore-756020, Orissa, India
| | - Anil Kumar
- School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, MP-452001, India
| | - Azevedo Vasco
- Laboratorio de Genetica Celular eMolecular, Departmento de Biologia Geral, Instituto de Ciencias Biologics, Universidade Federal de Minas Gerais CP 486, CEP 31270-901 Belo
Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Lahner E, Bernardini G, Santucci A, Annibale B. Helicobacter pylori immunoproteomics in gastric cancer and gastritis of the carcinoma phenotype. Expert Rev Proteomics 2010; 7:239-248. [PMID: 20377390 DOI: 10.1586/epr.10.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori infection is linked to the development of gastric cancer. Atrophic body gastritis is considered the first important step in the histogenesis of such neoplasia. H. pylori infection is involved in the induction of atrophic body gastritis, but documentation of H. pylori infection is difficult because of the progressive disappearance of the bacterium. Host-pathogen interactions may be investigated by means of immunoproteomics, which provides global information regarding the host humoral response to H. pylori infection and allows the identification of relevant specific and nonspecific antigens, and can be used for diagnostic or prognostic purposes. In the present review, we describe how several research groups used H. pylori immunoproteomics to investigate highly immunoreactive bacterial antigens related to the development of gastric cancer.
Collapse
Affiliation(s)
- Edith Lahner
- Digestive and Liver Disease Unit, University La Sapienza, Dipartimento di Scienze Cliniche, Ospedale Sant'Andrea, Rome, Italy
| | | | | | | |
Collapse
|
31
|
Ayalew S, Confer AW, Hartson SD, Shrestha B. Immunoproteomic analyses of outer membrane proteins of Mannheimia haemolytica and identification of potential vaccine candidates. Proteomics 2010; 10:2151-64. [DOI: 10.1002/pmic.200900557] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
The antigenome: from protein subunit vaccines to antibody treatments of bacterial infections? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:90-117. [PMID: 20047038 PMCID: PMC7123057 DOI: 10.1007/978-1-4419-1132-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New strategies are needed to master infectious diseases. The so-called "passive vaccination", i.e., prevention and treatment with specific antibodies, has a proven record and potential in the management of infections and entered the medical arena more than 100 years ago. Progress in the identification of specific antigens has become the hallmark in the development of novel subunit vaccines that often contain only a single immunogen, frequently proteins, derived from the microbe in order to induce protective immunity. On the other hand, the monoclonal antibody technology has enabled biotechnology to produce antibody species in unlimited quantities and at reasonable costs that are more or less identical to their human counterparts and bind with high affinity to only one specific site of a given antigen. Although, this technology has provided a robust platform for launching novel and successful treatments against a variety of devastating diseases, it is up till now only exceptionally employed in therapy of infectious diseases. Monoclonal antibodies engaged in the treatment of specific cancers seem to work by a dual mode; they mark the cancerous cells for decontamination by the immune system, but also block a function that intervenes with cell growth. The availability of the entire genome sequence of pathogens has strongly facilitated the identification of highly specific protein antigens that are suitable targets for neutralizing antibodies, but also often seem to play an important role in the microbe's life cycle. Thus, the growing repertoire of well-characterized protein antigens will open the perspective to develop monoclonal antibodies against bacterial infections, at least as last resort treatment, when vaccination and antibiotics are no options for prevention or therapy. In the following chapter we describe and compare various technologies regarding the identification of suitable target antigens and the foundation of cognate monoclonal antibodies and discuss their possible applications in the treatment of bacterial infections together with an overview of current efforts.
Collapse
|
33
|
Rinaudo CD, Telford JL, Rappuoli R, Seib KL. Vaccinology in the genome era. J Clin Invest 2009; 119:2515-25. [PMID: 19729849 DOI: 10.1172/jci38330] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vaccination has played a significant role in controlling and eliminating life-threatening infectious diseases throughout the world, and yet currently licensed vaccines represent only the tip of the iceberg in terms of controlling human pathogens. However, as we discuss in this Review, the arrival of the genome era has revolutionized vaccine development and catalyzed a shift from conventional culture-based approaches to genome-based vaccinology. The availability of complete bacterial genomes has led to the development and application of high-throughput analyses that enable rapid targeted identification of novel vaccine antigens. Furthermore, structural vaccinology is emerging as a powerful tool for the rational design or modification of vaccine antigens to improve their immunogenicity and safety.
Collapse
|
34
|
Abstract
Bacillus anthracis is a Gram-positive, spore-forming bacterium representing the etiological cause of anthrax, a rare lethal disease of animals and humans. Development of anthrax countermeasures has gained increasing attention owing to the potential use of B. anthracis spores as a bioterror weapon. The various forms of infection by B. anthracis are characterized both by toxemia and septicemia, both of which are the result of spore entry into the host followed by their germination into rapidly multiplying, toxin-producing bacilli. Following the publication of the bacterial genome, proteomic studies were carried out to determine the protein composition of the spore and identify exposed vegetative (membrane-located or secreted) proteins. These studies included comparison of strains differing in their virulence, cultured under different conditions and, in some cases, were complemented by serological inspection, which addressed expression during infection of proteomically identified proteins and their immunogenicity. The proteomic approach emerged as a valuable strategy for the generation of a pool of potential B. anthracis protein targets for further evaluation in detection, diagnostics, therapy and prophylaxis, and contributed to the elucidation of some aspects of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100, Israel
| | - Avigdor Shafferman
- Department of Biochemistry & Molecular Genetics, Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100, Israel
| |
Collapse
|
35
|
Sela-Abramovich S, Chitlaru T, Gat O, Grosfeld H, Cohen O, Shafferman A. Novel and unique diagnostic biomarkers for Bacillus anthracis infection. Appl Environ Microbiol 2009; 75:6157-67. [PMID: 19648366 PMCID: PMC2753070 DOI: 10.1128/aem.00766-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/22/2009] [Indexed: 01/28/2023] Open
Abstract
A search for bacterium-specific biomarkers in peripheral blood following infection with Bacillus anthracis was carried out with rabbits, using a battery of specific antibodies generated by DNA vaccination against 10 preselected highly immunogenic bacterial antigens which were identified previously by a genomic/proteomic/serologic screen of the B. anthracis secretome. Detection of infection biomarkers in the circulation of infected rabbits could be achieved only after removal of highly abundant serum proteins by chromatography using a random-ligand affinity column. Besides the toxin component protective antigen, the following three secreted proteins were detected in the circulation of infected animals: the chaperone and protease HtrA (BA3660), an NlpC/P60 endopeptidase (BA1952), and a protein of unknown function harboring two SH3 (Src homology 3) domains (BA0796). The three proteins could be detected in plasma samples from infected animals exhibiting 10(3) to 10(5) CFU/ml blood and also in standard blood cultures at 3 to 6 h post-bacterial inoculation at a bacteremic level as low as 10(3) CFU/ml. Furthermore, the three biomarkers appear to be present only in the secretome of B. anthracis, not in those of the related pathogens B. thuringiensis and B. cereus. To the best of our knowledge, this is the first report of direct detection of B. anthracis-specific proteins, other than the toxin components, in the circulation of infected animals.
Collapse
Affiliation(s)
- Sagit Sela-Abramovich
- Department of Biochemistry and Molecular Genetics, Life Science Research Israel Ltd, 2 Ness-Ziona 74100, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Liao Y, Deng J, Zhang A, Zhou M, Hu Y, Chen H, Jin M. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiol 2009; 9:172. [PMID: 19695095 PMCID: PMC2741471 DOI: 10.1186/1471-2180-9-172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 08/20/2009] [Indexed: 11/18/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia, a highly contagious respiratory infection in pigs, and all the 15 serotypes are able to cause disease. Current vaccines including subunit vaccines could not provide satisfactory protection against A. pleuropneumoniae. In this study, the immunoproteomic approach was applied to the analysis of extracellular and outer membrane proteins of A. pleuropneumoniae JL03 serotype 3 for the identification of novel immunogenic proteins for A. pleuropneumoniae. Results A total of 30 immunogenic proteins were identified from outer membrane and extracellular proteins of JL03 serotype 3, of which 6 were known antigens and 24 were novel immunogenic proteins for A. pleuropneumoniae. Conclusion These data provide information about novel immunogenic proteins for A. pleuropneumoniae serotype 3, and are expected to aid in development of novel vaccines against A. pleuropneumoniae.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Huazhong Agricultural University, Hubei, PR China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Fouet A. The surface of Bacillus anthracis. Mol Aspects Med 2009; 30:374-85. [PMID: 19607856 DOI: 10.1016/j.mam.2009.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Bacillus anthracis is a Gram positive organism possessing a complex parietal structure. An S-layer, a bi-dimensional crystalline layer, and a peptidic capsule surround the thick peptidoglycan of bacilli harvested during infection. A review of the current literature indicates that elements from each of these three structures, as well as membrane components, have been studied. So-called cell-wall secondary polymers, be they attached to the cell-wall or to the membrane play important functions, either per se or because they permit the anchoring of proteins. Some surface proteins, whichever compartment they are attached to, play, as had been hypothesized, key roles in virulence. Others, of yet unknown function, are nevertheless expressed in vivo. This review will focus on well-studied polymers or proteins and indicate, when appropriate, the mechanisms by which they are targeted to their respective locations.
Collapse
Affiliation(s)
- Agnès Fouet
- Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA2172, F-75015 Paris, France.
| |
Collapse
|
38
|
Herrera-Najera C, Piña-Aguilar R, Xacur-Garcia F, Ramirez-Sierra MJ, Dumonteil E. Mining the Leishmania genome for novel antigens and vaccine candidates. Proteomics 2009; 9:1293-301. [PMID: 19206109 DOI: 10.1002/pmic.200800533] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniasis is a neglected disease with an estimated 12 million infected people. The recent completion of the sequencing of the Leishmania major genome has opened opportunities for the identification of targets for vaccine development. We present here the first attempt at identifying novel vaccine candidates by whole genome analysis. We predicted CD8(+) T cell epitopes from the L. major proteome and validated in vivo in mice the immunogenicity of some of the best predicted epitopes. Consensus epitope predictions from 8272 annotated protein sequences with 5-8 different algorithms allowed the identification of 78 class I CD8(+) epitopes. BALB/c mice were immunized with 26 synthetic peptides corresponding to the most likely epitopes. Fourteen (54%) resulted immunogenic, with eight being strong inducers of T cell IFNgamma production. None of the proteins from which the epitopes are derived are differentially expressed, only two may be surface proteins, eight have putative enzymatic, and metabolic activities. These epitopes and proteins represent new antigen candidates for further studies. While pathogen genomes have not yet delivered their full promise in terms of human health applications, our study opens the way for extensive genome mining for antigen identification and vaccine development against Leishmania and other pathogens.
Collapse
Affiliation(s)
- Carla Herrera-Najera
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autónoma de Yucatan, Mérida, Yucatan, Mexico
| | | | | | | | | |
Collapse
|
39
|
Mukhopadhyay S, Akmal A, Stewart AC, Hsia RC, Read TD. Identification of Bacillus anthracis spore component antigens conserved across diverse Bacillus cereus sensu lato strains. Mol Cell Proteomics 2009; 8:1174-91. [PMID: 19208616 DOI: 10.1074/mcp.m800403-mcp200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We sought to identify proteins in the Bacillus anthracis spore, conserved in other strains of the closely related Bacillus cereus group, that elicit an immune response in mammals. Two high throughput approaches were used. First, an in silico screening identified 200 conserved putative B. anthracis spore components. A total of 192 of those candidate genes were expressed and purified in vitro, 75 of which reacted with the rabbit immune sera generated against B. anthracis spores. The second approach was to screen for cross-reacting antigens in the spore proteome of 10 diverse B. cereus group strains. Two-dimensional electrophoresis resolved more than 200 protein spots in each spore preparation. About 72% of the protein spots were found in all the strains. 18 of these conserved proteins reacted against anti-B. anthracis spore rabbit immune sera, two of which (alanine racemase, Dal-1 and the methionine transporter, MetN) overlapped the set of proteins identified using the in silico screen. A conserved repeat domain protein (Crd) was the most immunoreactive protein found broadly across B. cereus sensu lato strains. We have established an approach for finding conserved targets across a species using population genomics and proteomics. The results of these screens suggest the possibility of a multiepitope antigen for broad host range diagnostics or therapeutics against Bacillus spore infection.
Collapse
Affiliation(s)
- Sanghamitra Mukhopadhyay
- Biological Defense Research Directorate, Naval Medical Research Center, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Liu L, Cheng G, Wang C, Pan X, Cong Y, Pan Q, Wang J, Zheng F, Hu F, Tang J. Identification and experimental verification of protective antigens against Streptococcus suis serotype 2 based on genome sequence analysis. Curr Microbiol 2009; 58:11-7. [PMID: 18839251 DOI: 10.1007/s00284-008-9258-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 11/29/2022]
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that can cause severe disease and even death in both humans and swine. No effective vaccine is clinically available. In this study, a reverse vaccinology method was first applied to identify protective antigens against S. suis 2. As a consequence, 153 genes encoding vaccine candidates were selected from the whole genome sequence by means of bioinformatics analysis, from which 10 genes were selected based on experimental evidences arising from the study of related bacteria such as Streptococcus pneumoniae, group B streptococcus, S. suis and so on. Of 10 target genes, 8 were successfully expressed in Escherichia coli Rosetta, and expressed proteins were purified and used as the immunogens for evaluating vaccine efficacy in a mouse infection model. The results have confirmed that RTX family exoprotein A (RfeA), epidermal surface antigen (ESA), immunoglobulin G (IgG)-binding protein (IBP), and suilysin (SLY) can induce a protective response of the vaccinated animals against S. suis 2, whereas RfeA, ESA, and IBP mainly induce humoral-mediated immunity, and SLY elicits a combined pattern of both humoral- and cellular-mediated immunity. Although immunoprotection of SLY against S. suis 2 was reported previously, RfeA, ESA, and IBP were explored first in this study.
Collapse
Affiliation(s)
- Lina Liu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Immunoproteomic analysis of Bordetella pertussis and identification of new immunogenic proteins. Vaccine 2009; 27:542-8. [DOI: 10.1016/j.vaccine.2008.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 11/21/2022]
|
43
|
Gat O, Zaide G, Inbar I, Grosfeld H, Chitlaru T, Levy H, Shafferman A. Characterization of Bacillus anthracis iron-regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol 2008; 70:983-99. [PMID: 18826411 DOI: 10.1111/j.1365-2958.2008.06460.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three iron-regulated surface determinant (Isd) proteins, containing NEAr Transporter (NEAT) domains (GBAA4789-7), constitute part of an eight-member Bacillus anthracis operon. GBAA4789 (IsdC), previously characterized by others as a haem-binding protein, and two novel Isd proteins characterized in this study, GBAA4788 (IsdJ) and GBAA4787 (IsdK) proteins, can be translated from two alternative overlapping transcriptional units. The three NEAT-containing Isd proteins are shown to be expressed in vivo during B. anthracis infection. Expression in vitro is regulated by iron ions independent of the virulence plasmids pXO1 and pXO2, yet their presence affects the range of response to iron ion concentration. The expression of IsdC, J and K is strongly repressed under high CO(2) tension, conditions that are optimal for B. anthracis toxin and capsule expression, suggesting that these Isd proteins are elements of a B. anthracis'air-regulon'. Deletion mutants of isdC, isdK or the entire isdCJK locus are as virulent and pathogenic to guinea pigs as the fully virulent wild-type Vollum strain. The isdC-deleted mutant is defective in sequestration of haemin, consistent with previous biochemical observations, while the DeltaisdK mutant is defective in haemoglobin uptake. Studies with recombinant IsdK demonstrate specific binding to haemoglobin.
Collapse
Affiliation(s)
- Orit Gat
- Department of Biochemistry and Molecular Genetics, Israel Institute for biological Research, Ness Ziona, Israel.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kaushik DK, Sehgal D. Developing Antibacterial Vaccines in Genomics and Proteomics Era. Scand J Immunol 2008; 67:544-52. [DOI: 10.1111/j.1365-3083.2008.02107.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Chung MC, Popova TG, Jorgensen SC, Dong L, Chandhoke V, Bailey CL, Popov SG. Degradation of circulating von Willebrand factor and its regulator ADAMTS13 implicates secreted Bacillus anthracis metalloproteases in anthrax consumptive coagulopathy. J Biol Chem 2008; 283:9531-42. [PMID: 18263586 DOI: 10.1074/jbc.m705871200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathology data from the anthrax animal models show evidence of significant increases in vascular permeability coincident with hemostatic imbalances manifested by thrombocytopenia, transient leucopenia, and aggressive disseminated intravascular coagulation. In this study we hypothesized that anthrax infection modulates the activity of von Willebrand factor (VWF) and its endogenous regulator ADAMTS13, which play important roles in hemostasis and thrombosis, including interaction of endothelial cells with platelets. We previously demonstrated that purified anthrax neutral metalloproteases Npr599 and InhA are capable of cleaving a variety of host structural and regulatory proteins. Incubation of human plasma with these proteases at 37 degrees C in the presence of urea as a mild denaturant results in proteolysis of VWF. Also in these conditions, InhA directly cleaves plasma ADAMTS13 protein. Npr599 and InhA digest synthetic VWF substrate FRETS-VWF73. Amino acid sequencing of VWF fragments produced by InhA suggests that one of the cleavage sites of VWF is located at domain A2, the target domain of ADAMTS13. Proteolysis of VWF by InhA impairs its collagen binding activity (VWF:CBA) and ristocetin-induced platelet aggregation activity. In plasma from anthrax spore-challenged DBA/2 mice, VWF antigen levels increase up to 2-fold at day 3 post-infection with toxigenic Sterne 34F(2) strain, whereas VWF:CBA levels drop in a time-dependent manner, suggesting dysfunction of VWF instead of its quantitative deficiency. This conclusion is further supported by significant reduction in the amount of VWF circulating in blood in the ultra-large forms. In addition, Western blot analysis shows proteolytic depletion of ADAMTS13 from plasma of spore-challenged mice despite its increased expression in the liver. Our results suggest a new mechanism of anthrax coagulopathy affecting the levels and functional activities of both VWF and its natural regulator ADAMTS13. This mechanism may contribute to hemorrhage and thrombosis typical in anthrax.
Collapse
Affiliation(s)
- Myung-Chul Chung
- National Center for Biodefense and Infectious Diseases, College of Sciences, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Gat O, Grosfeld H, Shafferman A. In vitro screen of bioinformatically selected Bacillus anthracis vaccine candidates by coupled transcription, translation, and immunoprecipitation analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2007; 375:211-33. [PMID: 17634604 DOI: 10.1007/978-1-59745-388-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The availability of the Bacillus anthracis genome sequence allowed for in silico selection of a few hundred open reading frames (ORFs) as putative vaccine candidates. To screen such a vast number of candidate ORFs, without resorting to laborious cloning and protein purification procedures, methods were developed for generation of PCR elements, compatible with in vitro transcription-translation and immunoprecipitation, as well as with their evaluation as DNA vaccines. Protocols will be provided for application of these methods to analyze the anti-B. anthracis antibody repertoire of hyperimmune sera or sera from convalescent and from DNA-vaccinated animals.
Collapse
Affiliation(s)
- Orit Gat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | | | | |
Collapse
|
47
|
Chitlaru T, Gat O, Grosfeld H, Inbar I, Gozlan Y, Shafferman A. Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infect Immun 2007; 75:2841-52. [PMID: 17353282 PMCID: PMC1932864 DOI: 10.1128/iai.02029-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/15/2007] [Accepted: 03/04/2007] [Indexed: 01/24/2023] Open
Abstract
In a previous comparative proteomic study of Bacillus anthracis examining the influence of the virulence plasmids and of various growth conditions on the composition of the bacterial secretome, we identified 64 abundantly expressed proteins (T. Chitlaru, O. Gat, Y. Gozlan, N. Ariel, and A. Shafferman, J. Bacteriol. 188:3551-3571, 2006). Using a battery of sera from B. anthracis-infected animals, in the present study we demonstrated that 49 of these proteins are immunogenic. Thirty-eight B. anthracis immunogens are documented in this study for the first time. The relative immunogenicities of the 49 secreted proteins appear to span a >10,000-fold range. The proteins eliciting the highest humoral response in the course of infection include, in addition to the well-established immunogens protective antigen (PA), Sap, and EA1, GroEL (BA0267), AhpC (BA0345), MntA (BA3189), HtrA (BA3660), 2,3-cyclic nucleotide diesterase (BA4346), collagen adhesin (BAS5205), an alanine amidase (BA0898), and an endopeptidase (BA1952), as well as three proteins having unknown functions (BA0796, BA0799, and BA0307). Of these 14 highly potent secreted immunogens, 11 are known to be associated with virulence and pathogenicity in B. anthracis or in other bacterial pathogens. Combining the results reported here with the results of a similar study of the membranal proteome of B. anthracis (T. Chitlaru, N. Ariel, A. Zvi, M. Lion, B. Velan, A. Shafferman, and E. Elhanany, Proteomics 4:677-691, 2004) and the results obtained in a functional genomic search for immunogens (O. Gat, H. Grosfeld, N. Ariel, I. Inbar, G. Zaide, Y. Broder, A. Zvi, T. Chitlaru, Z. Altboum, D. Stein, S. Cohen, and A. Shafferman, Infect. Immun. 74:3987-4001, 2006), we generated a list of 84 in vivo-expressed immunogens for future evaluation for vaccine development, diagnostics, and/or therapeutic intervention. In a preliminary study, the efficacies of eight immunogens following DNA immunization of guinea pigs were compared to the efficacy of a PA DNA vaccine. All eight immunogens induced specific high antibody titers comparable to the titers elicited by PA; however, unlike PA, none of them provided protection against a lethal challenge (50 50% lethal doses) of virulent B. anthracis strain Vollum spores.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Ectoparasites of livestock are of great economic and social importance but their effective control remains difficult. The feasibility of vaccination as a novel control measure was established over a decade ago with the commercial release of a recombinant vaccine against the cattle tick Boophilus microplus. Since then, research has continued on ticks and other ectoparasites. While some ectoparasite species will undoubtedly be refractory to immunological control, for others there has been a steady accumulation of knowledge of partially protective antigens, now accelerating through the application of genomic technologies. Nevertheless, progress towards usable, commercially available vaccines has been limited by a number of factors. The number of highly effective antigens is still very small. Although some classes of antigen have been investigated in more detail than others, we have no systematic knowledge of what distinguishes an effective antigen. Much hope has been placed on the potential of multi-antigen mixtures to deliver the efficacy required of a successful vaccine but with little experimental evidence. The application of current knowledge across parasite and host species needs to be explored but little has been done. In most cases, the path to commercial delivery is uncertain. Although many constraints and challenges remain, the need for vaccines and our capacity to develop them can only increase.
Collapse
Affiliation(s)
- P Willadsen
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 Australia.
| |
Collapse
|
49
|
Knaust A, Weber MVR, Hammerschmidt S, Bergmann S, Frosch M, Kurzai O. Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 2007; 189:3246-55. [PMID: 17307854 PMCID: PMC1855851 DOI: 10.1128/jb.01966-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasminogen recruitment is a common strategy of pathogenic bacteria and results in a broad-spectrum surface-associated protease activity. Neisseria meningitidis has previously been shown to bind plasminogen. In this study, we show by several complementary approaches that endolase, DnaK, and peroxiredoxin, which are usually intracellular proteins, can also be located in the outer membrane and act as plasminogen receptors. Internal binding motifs, rather than C-terminal lysine residues, are responsible for plasminogen binding of the N. meningitidis receptors. Recombinant receptor proteins inhibit plasminogen association with N. meningitidis in a concentration-dependent manner. Besides binding purified plasminogen, N. meningitidis can also acquire plasminogen from human serum. Activation of N. meningitidis-associated plasminogen by urokinase results in functional activity and allows the bacteria to degrade fibrinogen. Furthermore, plasmin bound to N. meningitidis is protected against inactivation by alpha(2)-antiplasmin.
Collapse
Affiliation(s)
- Andreas Knaust
- Institute of Hygiene and Environmental Medicine, University of Giessen, Friedrichsstrasse 16, 35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Durant L, Metais A, Soulama-Mouze C, Genevard JM, Nassif X, Escaich S. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infect Immun 2006; 75:1916-25. [PMID: 17145948 PMCID: PMC1865706 DOI: 10.1128/iai.01269-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains cause a large spectrum of infections. The majority of ExPEC strains are closely related to the B2 or the D phylogenetic group. The aim of our study was to develop a protein-based vaccine against these ExPEC strains. To this end, we identified ExPEC-specific genomic regions, using a comparative genome analysis, between the nonpathogenic E. coli strain K-12 MG1655 and ExPEC strains C5 (meningitis isolate) and CFT073 (urinary tract infection isolate). The analysis of these genomic regions allowed the selection of 40 open reading frames, which are conserved among B2/D clinical isolates and encode proteins with putative outer membrane localization. These genes were cloned, and recombinant proteins were purified and assessed as vaccine candidates. After immunization of BALB/c mice, five proteins induced a significant protective immunity against a lethal challenge with a clinical E. coli strain of the B2 group. In passive immunization assays, antigen-specific antibodies afforded protection to naive mice against a lethal challenge. Three of these antigens were related to iron acquisition metabolism, an important virulence factor of the ExPEC, and two corresponded to new, uncharacterized proteins. Due to the large number of genetic differences that exists between commensal and pathogenic strains of E. coli, our results demonstrate that it is possible to identify targets that elicit protective immune responses specific to those strains. The five protective antigens could constitute the basis for a preventive subunit vaccine against diseases caused by ExPEC strains.
Collapse
Affiliation(s)
- Lionel Durant
- Mutabilis SA, 102 route de Noisy, 93230 Romainville, France
| | | | | | | | | | | |
Collapse
|