1
|
Waqas MS, Xu X, Zhang P, Guo J, Hu S, You Y, Zhang L. Characterization of temporal expression of immune genes in female locust challenged by fungal pathogen, Aspergillus sp. Front Immunol 2025; 16:1565964. [PMID: 40356898 PMCID: PMC12066608 DOI: 10.3389/fimmu.2025.1565964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The innate immune system provides defense against invading pathogens in insects and mammals. Methods We conducted transcriptomic analyses of the locust Locusta migratoria under Aspergillus oryzae infection to clarify temporal variation in its molecular immune response. Results We found that fat body cells and hemocytes play different roles in the immune response of locusts to Aspergillus infection at different time points after inoculation, and melanization was the main process underlying the immune response of female locusts. Most pattern recognition receptors (PRR) genes were up-regulated in fat body cells and down-regulated in hemocytes from 24 h to 72 h after inoculation. This means that fat body cells, but not hemocytes, would be able to precisely recognize invading pathogens. Most serine protease inhibitors (SERPINs) genes and clip domain serine proteinase (CLIP) genes were up-regulated in fat body cells. However, most SERPINs were down-regulated in hemocytes, which indicated that serine proteinases may be inhibited to activate downstream reactions involving the prophenoloxidase (PPO), peroxidase (POD), and Toll pathways. Most lysozymes, PPOs, and peroxiredoxin (PRDX) are effectors that were up-regulated in fat body cells 24 h after inoculation but down-regulated 48 h and 72 h after inoculation. Similar patterns were observed for effectors in hemocytes, which indicates that locust immune genes expression was suppressed by A. oryzae 72 h after inoculation, and might result in the weak melanization of locusts in response to Aspergillus infection. Discussion Our findings enhance our understanding of insect-fungi interactions, as well as have implications for the development of more effective microbial control strategies for the management of locust populations.
Collapse
Affiliation(s)
- Muhammad Saad Waqas
- Institute of Plant Protection, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiao Xu
- Institute of Plant Protection, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Pengfei Zhang
- Hebei Provincial Jujube Kernel Utilization Technology Innovation Center, Department of Chemical Engineering and Biotechnology, Xingtai University, Xingtai, China
| | - Jin Guo
- Institute of Plant Protection, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Shaojing Hu
- Institute of Plant Protection, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yinwei You
- Institute of Plant Protection, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Long Zhang
- Institute of Plant Protection, Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
El Fakhouri K, Ramdani C, Aasfar A, Boulamtat R, Sijilmassi B, El Bouhssini M, Kadmiri IM. Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Sci Rep 2023; 13:21647. [PMID: 38062128 PMCID: PMC10703873 DOI: 10.1038/s41598-023-48976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The Opuntia ficus-indica (L.) cactus, a crucial crop in Morocco, is threatened by the wild cochineal, Dactylopius opuntiae (Cockerell). The aim of this research was to investigate the efficacy of nine bacterial strains against both D. opuntiae nymphs and adults females applied individually or after black soap in the laboratory, greenhouse, and field conditions. Using the partial 16S ribosomal DNA, the bacterial isolates were identified as Pseudomonas koreensis, Pseudomonas sp., Burkholderia sp. and Bacillus sp. Under laboratory conditions, the insecticidal activity of P. koreensis strain 66Ms.04 showed the level mortality (88%) of adult females' at 108 CFU/mL, 7 days after application. At a concentration of 108 CFU/mL, P. koreensis strain 66Ms.04 and Pseudomonas sp. (strains 37 and 5) caused 100% nymphs mortality rate three days after application. Under greenhouse conditions, the use of P. koreensis strain 66Ms.04 at 108 CFU/mL following the application of black soap (60 g/L) demonstrated the maximum levels of females and nymphs' mortalities with 80 and 91.25%, respectively, after 8 days of treatment. In field conditions, the combined application of the P. koreensis strain 66Ms.04 at 108 CFU/mL with black soap at 60 g/L, for an interval of 7 days, significantly increased the mortality of adult females to 93.33% at 7 days after the second application. These findings showed that the combined treatment of P. koreensis strain 66Ms.04 with black soap can be a potent and eco-friendly pesticide against D. opuntiae.
Collapse
Affiliation(s)
- Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco.
| | - Chaimae Ramdani
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Rachid Boulamtat
- Entomology Laboratory, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, P.O. Box 6299, Rabat, Morocco
| | - Badreddine Sijilmassi
- Rhizobium Laboratory, Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, P.O. Box 6299, Rabat, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| |
Collapse
|
3
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
4
|
Pseudomonas aeruginosa Citrate Synthase GltA Influences Antibiotic Tolerance and the Type III Secretion System through the Stringent Response. Microbiol Spectr 2023; 11:e0323922. [PMID: 36602339 PMCID: PMC9927146 DOI: 10.1128/spectrum.03239-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbohydrate metabolism plays essential roles in energy generation and providing carbon skeletons for amino acid syntheses. In addition, carbohydrate metabolism has been shown to influence bacterial susceptibility to antibiotics and virulence. In this study, we demonstrate that citrate synthase gltA mutation can increase the expression of the type III secretion system (T3SS) genes and antibiotic tolerance in Pseudomonas aeruginosa. The stringent response is activated in the gltA mutant, and deletion of the (p)ppGpp synthetase gene relA restores the antibiotic tolerance and expression of the T3SS genes to wild-type level. We further demonstrate that the intracellular level of cAMP is increased by the stringent response in the gltA mutant, which increases the expression of the T3SS master regulator gene exsA. Overall, our results reveal an essential role of GltA in metabolism, antibiotic tolerance, and virulence, as well as a novel regulatory mechanism of the stringent response-mediated regulation of the T3SS in P. aeruginosa. IMPORTANCE Rising antimicrobial resistance imposes a severe threat to human health. It is urgent to develop novel antimicrobial strategies by understanding bacterial regulation of virulence and antimicrobial resistance determinants. The stringent response plays an essential role in virulence and antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in humans. The bacterium produces an arsenal of virulence factors and is highly resistant to a variety of antibiotics. In this study, we provide evidence that citrate synthase GltA plays a critical role in P. aeruginosa metabolism and influences the antibiotic tolerance and virulence. We further reveal a role of the stringent response in the regulation of the antibiotic tolerance and virulence. The significance of this work is in elucidation of novel regulatory pathways that control both antibiotic tolerance and virulence in P. aeruginosa.
Collapse
|
5
|
Lee JB, Kim SK, Han D, Yoon JW. Mutating both relA and spoT of enteropathogenic Escherichia coli E2348/69 attenuates its virulence and induces interleukin 6 in vivo. Front Microbiol 2023; 14:1121715. [PMID: 36937293 PMCID: PMC10017862 DOI: 10.3389/fmicb.2023.1121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Here, we report for the first time that disrupting both relA and spoT genes in enteropathogenic Escherichia coli E2348/69 can attenuate its virulence and significantly induce interleukin 6 (IL-6) in vivo. Our experimental analyses demonstrated that an E2348/69 ΔrelAΔspoT double mutant strain derepressed the expression of type IV bundle forming pilus (BFP) and repressed the expression of glutamate decarboxylase (GAD) and locus of enterocyte effacement (LEE). Whole genome-scale transcriptomic analysis revealed that 1,564 EPEC genes were differentially expressed in the ΔrelAΔspoT double mutant strain (cut-off > two-fold). Such depletion of relA and spoT attenuated the virulence of E2348/69 in a Caenorhabditis elegans infection model. Surprisingly, IL-6 was highly induced in porcine macrophages infected with the ΔrelAΔspoT double mutant strain compared to those with its wildtype strain. Coinciding with these in vitro results, in vivo murine peritoneal challenge assays showed high increase of IL-6 and improved bacterial clearance in response to infection by the ΔrelAΔspoT double mutant strain. Taken together, our data suggest that relA and spoT play an essential role in regulating biological processes during EPEC pathogenesis and that their depletion can affect host immune responses by inducing IL-6.
Collapse
|
6
|
Vogeleer P, Létisse F. Dynamic Metabolic Response to (p)ppGpp Accumulation in Pseudomonas putida. Front Microbiol 2022; 13:872749. [PMID: 35495732 PMCID: PMC9048047 DOI: 10.3389/fmicb.2022.872749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The stringent response is a ubiquitous bacterial reaction triggered by nutrient deprivation and mediated by the intracellular concentrations of ppGpp and pppGpp. These alarmones, jointly referred to as (p)ppGpp, control gene transcription, mRNA translation and protein activity to adjust the metabolism and growth rate to environmental changes. While the ability of (p)ppGpp to mediate cell growth slowdown and metabolism adaptation has been demonstrated in Escherichia coli, it’s role in Pseudomonas putida remains unclear. The aims of this study were therefore to determine which forms of (p)ppGpp are synthetized in response to severe growth inhibition in P. putida, and to decipher the mechanisms of (p)ppGpp-mediated metabolic regulation in this bacterium. We exposed exponentially growing cells of P. putida to serine hydroxamate (SHX), a serine analog known to trigger the stringent response, and tracked the dynamics of intra- and extracellular metabolites using untargeted quantitative MS and NMR-based metabolomics, respectively. We found that SHX promotes ppGpp and pppGpp accumulation few minutes after exposure and arrests bacterial growth. Meanwhile, central carbon metabolites increase in concentration while purine pathway intermediates drop sharply. Importantly, in a ΔrelA mutant and a ppGpp0 strain in which (p)ppGpp synthesis genes were deleted, SHX exposure inhibited cell growth but led to an accumulation of purine pathway metabolites instead of a decrease, suggesting that as observed in other bacteria, (p)ppGpp downregulates the purine pathway in P. putida. Extracellular accumulations of pyruvate and acetate were observed as a specific metabolic consequence of the stringent response. Overall, our results show that (p)ppGpp rapidly remodels the central carbon metabolism and the de novo purine biosynthesis pathway in P. putida. These data represent a hypothesis-generating resource for future studies on the stringent response.
Collapse
|
7
|
Veetilvalappil VV, Aranjani JM, Mahammad FS, Joseph A. Awakening sleeper cells: a narrative review on bacterial magic spot synthetases as potential drug targets to overcome persistence. Curr Genet 2022; 68:49-60. [PMID: 34787710 PMCID: PMC8801413 DOI: 10.1007/s00294-021-01221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 10/29/2022]
Abstract
Magic spot synthetases are emerging targets to overcome persistence caused by stringent response. The 'stringent response' is a bacterial stress survival mechanism, which results in the accumulation of alarmones (also called Magic spots) leading to the formation of dormant persister cells. These 'sleeper cells' evade antibiotic treatment and could result in relapse of infection. This review broadly investigates the phenomenon of stringent response and persistence, and specifically discusses the distribution, classification, and nomenclature of proteins such as Rel/SpoT homologs (RSH), responsible for alarmone synthesis. The authors further explain the relevance of RSH as potential drug targets to break the dormancy of persister cells commonly seen in biofilms. One of the significant factors that initiate alarmone synthesis is nutrient deficiency. In a starved condition, ribosome-associated RSH detects deacylated tRNA and initiates alarmone synthesis. Accumulation of alarmones has a considerable effect on bacterial physiology, virulence, biofilm formation, and persister cell formation. Preventing alarmone synthesis by inhibiting RSH responsible for alarmone synthesis will prevent or reduce persister cells' formation. Magic spot synthetases are thus potential targets that could be explored to overcome persistence seen in biofilms.
Collapse
Affiliation(s)
- Vimal Venu Veetilvalappil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| | - Fayaz Shaik Mahammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| |
Collapse
|
8
|
Meraj S, Mohr E, Ketabchi N, Bogdanovic A, Lowenberger C, Gries G. Time- and tissue-specific antimicrobial activity of the common bed bug in response to blood feeding and immune activation by bacterial injection. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104322. [PMID: 34644597 DOI: 10.1016/j.jinsphys.2021.104322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Unlike almost all hematophagous insects, common bed bugs, Cimex lectularius, are not known to transmit pathogens to humans. To help unravel the reasons for their lack of vector competence, we studied the time- and tissue-dependent expression of innate immune factors after blood feeding or immune activation through the intrathoracic injection of bacteria. We used minimum inhibitory concentration (MIC1) bioassays and the Kirby-Bauer protocol to evaluate antimicrobial peptide (AMP2) activity in tissue extracts from the midguts or 'rest of body' (RoB3) tissues (containing hemolymph and fat body AMPs) against Gram-positive and Gram-negative bacteria. We compared AMP activity between blood-fed female bed bugs and yellow fever mosquitoes, Aedes aegypti and determined how female and male bed bugs respond to immune challenges, and how long AMP gene expression remains elevated in bed bugs following a blood meal. Blood meal-induced AMP activity is 4-fold stronger in female bed bugs than in female mosquitoes. Male bed bugs have elevated AMP activity within 8 h of a blood meal or an intrathoracic injection with bacteria, with the strongest activity expressed in RoB tissue 24 h after the immune challenge. Female bed bugs have a stronger immune response than males within 24 h of a blood meal. The effects of blood meal-induced elevated AMP activity lasts longer against the Gram-positive bacterium, Bacillus subtilis, than against the Gram-negative bacterium Escherichia coli. Unravelling the specific immune pathways that are activated in the bed bugs' immune responses and identifying the bed bug-unique AMPs might help determine why these insects are not vectors of human parasites.
Collapse
Affiliation(s)
- Sanam Meraj
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada.
| | - Emerson Mohr
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Negin Ketabchi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Anastasia Bogdanovic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
9
|
Marshall EKP, Dionne MS. Drosophila versus Mycobacteria: A model for mycobacterial host-pathogen interactions. Mol Microbiol 2021; 117:600-609. [PMID: 34585797 DOI: 10.1111/mmi.14819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/01/2023]
Abstract
Animal models have played an essential role in understanding the host-pathogen interactions of pathogenic mycobacteria, including the Mycobacterium tuberculosis and emerging nontuberculous mycobacteria (NTM) species such as M. avium and M. abscessus. Drosophila melanogaster has become a well-established model for the study of innate immunity and is increasingly being used as a tool to study host-pathogen interactions, in part due to its genetic tractability. The use of D. melanogaster has led to greater understanding of the role of the innate immune system in response to mycobacterial infection, including in vitro RNAi screens and in vivo studies. These studies have identified processes and host factors involved in mycobacterial infection, such as those required for cellular entry, those required to control or resist non-pathogenic mycobacteria, or factors that become dysregulated as a result of mycobacterial infection. Developments in genetic tools for manipulating mycobacterial genomes will allow for more detailed studies into how specific host and pathogen factors interact with one another by using D. melanogaster; however, the full potential of this model has not yet been reached. Here we provide an overview of how D. melanogaster has been used to study mycobacterial infection and discuss the current gaps in our understanding.
Collapse
Affiliation(s)
- Eleanor K P Marshall
- Department of Life Sciences, Imperial College London, London, UK.,MRC Centre for Molecular Bacteriology and infection, Imperial College London, London, UK
| | - Marc S Dionne
- Department of Life Sciences, Imperial College London, London, UK.,MRC Centre for Molecular Bacteriology and infection, Imperial College London, London, UK
| |
Collapse
|
10
|
Bayon-Vicente G, Marchand E, Ducrotois J, Dufrasne FE, Hallez R, Wattiez R, Leroy B. Analysis of the Involvement of the Isoleucine Biosynthesis Pathway in Photoheterotrophic Metabolism of Rhodospirillum rubrum. Front Microbiol 2021; 12:731976. [PMID: 34621257 PMCID: PMC8490811 DOI: 10.3389/fmicb.2021.731976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 12/05/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are recognized as a highly versatile group of bacteria that assimilate a broad range of carbon sources. Growing heterotrophically, PNSB such as Rhodospirillum rubrum (Rs. rubrum) generate reduced equivalents that are used for biomass production. However, under photoheterotrophic conditions, more reduced electron carriers than required to produce biomass are generated. The excess of reduced equivalents still needs to be oxidized for the metabolism to optimally operate. These metabolic reactions are known as electron sinks. Most PNSB rely on the CO2-fixing Calvin cycle and H2 production to oxidize these reduced equivalents. In addition to these well-described electron sinks, the involvement of some pathways, such as polyhydroxyalkanoate (PHA) biosynthesis, in redox poise is still controversial and requires further studies. Among them, isoleucine biosynthesis has been recently highlighted as one of these potential pathways. Here, we explore the role of isoleucine biosynthesis in Rs. rubrum. Our results demonstrate that the isoleucine content is higher under illuminated conditions and that submitting Rs. rubrum to light stress further increases this phenomenon. Moreover, we explore the production of (p)ppGpp in Rs. rubrum and its potential link with light stress. We further demonstrate that a fully functional isoleucine biosynthesis pathway could be an important feature for the onset of Rs. rubrum growth under photoheterotrophic conditions even in the presence of an exogenous isoleucine source. Altogether, our data suggest that isoleucine biosynthesis could play a key role in redox homeostasis.
Collapse
Affiliation(s)
- Guillaume Bayon-Vicente
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Elie Marchand
- Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
| | - Jeson Ducrotois
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - François E. Dufrasne
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Regis Hallez
- Bacterial Cell Cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur, Namur, Belgium
- Namur Research College (NARC), University of Namur, Namur, Belgium
- WELBIO, University of Namur, Namur, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
11
|
Kim K, Islam M, Jung HW, Lim D, Kim K, Lee SG, Park C, Lee JC, Shin M. ppGpp signaling plays a critical role in virulence of Acinetobacter baumannii. Virulence 2021; 12:2122-2132. [PMID: 34375563 PMCID: PMC8366539 DOI: 10.1080/21505594.2021.1961660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii, a major nosocomial pathogen, survives in diverse hospital environments, and its multidrug resistance is a major concern. The ppGpp-dependent stringent response mediates the reprogramming of genes with diverse functions in several bacteria. We investigated whether ppGpp is involved in A. baumannii’s pathogenesis by examining biofilm formation, surface motility, adhesion, invasion, and mouse infection studies. Transcriptome analysis of early stationary phase cultures revealed 498 differentially-expressed genes (≥ 2-fold change) in a ppGpp-deficient A. baumannii strain; 220 and 278 genes were up and downregulated, respectively. Csu operon expression, important in pilus biosynthesis during early biofilm formation, was significantly reduced in the ppGpp-deficient strain. Our findings suggest that ppGpp signaling influences A. baumannii biofilm formation, surface motility, adherence, and virulence. We showed the association between ppGpp and pathogenicity in A. baumannii for the first time; ppGpp may be a novel antivirulence target in A. baumannii.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, South Korea
| | - Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, South Korea
| | - Hye-Won Jung
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, South Korea
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju South Korea
| | - Kwangsoo Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju South Korea
| | - Sung-Gwon Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju South Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, South Korea
| |
Collapse
|
12
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
14
|
Kundra S, Colomer-Winter C, Lemos JA. Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence. Front Microbiol 2020; 11:601417. [PMID: 33343543 PMCID: PMC7744563 DOI: 10.3389/fmicb.2020.601417] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The signaling nucleotide (p)ppGpp has been the subject of intense research in the past two decades. Initially discovered as the effector molecule of the stringent response, a bacterial stress response that reprograms cell physiology during amino acid starvation, follow-up studies indicated that many effects of (p)ppGpp on cell physiology occur at levels that are lower than those needed to fully activate the stringent response, and that the repertoire of enzymes involved in (p)ppGpp metabolism is more diverse than initially thought. Of particular interest, (p)ppGpp regulation has been consistently linked to bacterial persistence and virulence, such that the scientific pursuit to discover molecules that interfere with (p)ppGpp signaling as a way to develop new antimicrobials has grown substantially in recent years. Here, we highlight contemporary studies that have further supported the intimate relationship of (p)ppGpp with bacterial virulence and studies that provided new insights into the different mechanisms by which (p)ppGpp modulates bacterial virulence.
Collapse
Affiliation(s)
- Shivani Kundra
- Department of Oral Biology, UF College of Dentistry, Gainesville, FL, United States
| | | | - José A Lemos
- Department of Oral Biology, UF College of Dentistry, Gainesville, FL, United States
| |
Collapse
|
15
|
The Stringent Stress Response Controls Proteases and Global Regulators under Optimal Growth Conditions in Pseudomonas aeruginosa. mSystems 2020; 5:5/4/e00495-20. [PMID: 32753509 PMCID: PMC7406228 DOI: 10.1128/msystems.00495-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule. The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to >1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2. The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA. Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as >30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria. IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.
Collapse
|
16
|
Younes S, Al-Sulaiti A, Nasser EAA, Najjar H, Kamareddine L. Drosophila as a Model Organism in Host-Pathogen Interaction Studies. Front Cell Infect Microbiol 2020; 10:214. [PMID: 32656090 PMCID: PMC7324642 DOI: 10.3389/fcimb.2020.00214] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Owing to the genetic similarities and conserved pathways between a fruit fly and mammals, the use of the Drosophila model as a platform to unveil novel mechanisms of infection and disease progression has been justified and widely instigated. Gaining proper insight into host-pathogen interactions and identifying chief factors involved in host defense and pathogen virulence in Drosophila serves as a foundation to establish novel strategies for infectious disease prevention and control in higher organisms, including humans.
Collapse
Affiliation(s)
- Salma Younes
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Al-Sulaiti
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Hoda Najjar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Pezzoni M, Pizarro RA, Costa CS. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:735-750. [PMID: 32496187 DOI: 10.1099/mic.0.000932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa, a versatile bacterium present in terrestrial and aquatic environments and a relevant opportunistic human pathogen, is largely known for the production of robust biofilms. The unique properties of these structures complicate biofilm eradication, because they make the biofilms very resistant to diverse antibacterial agents. Biofilm development and establishment is a complex process regulated by multiple regulatory genetic systems, among them is quorum sensing (QS), a mechanism employed by bacteria to regulate gene transcription in response to population density. In addition, environmental factors such as UVA radiation (400-315 nm) have been linked to biofilm formation. In this work, we further investigate the mechanism underlying the induction of biofilm formation by UVA, analysing the role of QS in this phenomenon. We demonstrate that UVA induces key genes of the Las and Rhl QS systems at the transcriptional level. We also report that pelA and pslA genes, which are essential for biofilm formation and whose transcription depends in part on QS, are significantly induced under UVA exposure. Finally, the results demonstrate that in a relA strain (impaired for ppGpp production), the UVA treatment does not induce biofilm formation or QS genes, suggesting that the increase of biofilm formation due to exposure to UVA in P. aeruginosa could rely on a ppGpp-dependent QS induction.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
18
|
Characterization of RelA in Acinetobacter baumannii. J Bacteriol 2020; 202:JB.00045-20. [PMID: 32229531 DOI: 10.1128/jb.00045-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model.IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.
Collapse
|
19
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
20
|
Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences ? Virulence 2019; 9:1625-1639. [PMID: 30257608 PMCID: PMC7000196 DOI: 10.1080/21505594.2018.1526531] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The insect immune response demonstrates many similarities to the innate immune response of mammals and a wide range of insects is now employed to assess the virulence of pathogens and produce results comparable to those obtained using mammals. Many of the humoral responses in insects and mammals are similar (e.g. insect transglutaminases and human clotting factor XIIIa) however a number show distinct differences. For example in mammals, melanization plays a role in protection from solar radiation and in skin and hair pigmentation. In contrast, insect melanization acts as a defence mechanism in which the proPO system is activated upon pathogen invasion. Human and insect antimicrobial peptides share distinct structural and functional similarities, insects produce the majority of their AMPs from the fat body while mammals rely on production locally at the site of infection by epithelial/mucosal cells. Understanding the structure and function of the insect immune system and the similarities with the innate immune response of mammals will increase the attractiveness of using insects as in vivo models for studying host – pathogen interactions.
Collapse
Affiliation(s)
- Gerard Sheehan
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Amy Garvey
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Michael Croke
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Kevin Kavanagh
- a Department of Biology , Maynooth University , Maynooth , Ireland
| |
Collapse
|
21
|
Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2018; 115:9797-9802. [PMID: 30201715 PMCID: PMC6166797 DOI: 10.1073/pnas.1804525115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.
Collapse
|
22
|
Transcriptome Analysis of Novosphingobium pentaromativorans US6-1 Reveals the Rsh Regulon and Potential Molecular Mechanisms of N-acyl-l-homoserine Lactone Accumulation. Int J Mol Sci 2018; 19:ijms19092631. [PMID: 30189641 PMCID: PMC6163740 DOI: 10.3390/ijms19092631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, a bifunctional Rsh responsible for (p)ppGpp metabolism is the key player in stringent response. To date, no transcriptome-wide study has been conducted to investigate the Rsh regulon, and the molecular mechanism of how Rsh affects the accumulation of N-acyl-l-homoserine lactone (AHL) remains unknown in sphingomonads. In this study, we identified an rshUS6–1 gene by sequence analysis in Novosphingobium pentaromativorans US6-1, a member of the sphingomonads. RNA-seq was used to determine transcription profiles of the wild type and the ppGpp-deficient rshUS6–1 deletion mutant (∆rsh). There were 1540 genes in the RshUS6–1 regulon, including those involved in common traits of sphingomonads such as exopolysaccharide biosynthesis. Furthermore, both RNA-seq and quantitative real-time polymerase chain reaction (qRT-PCR) showed essential genes for AHL production (novI and novR) were positively regulated by RshUS6–1 during the exponential growth phase. A degradation experiment indicated the reason for the AHL absence in ∆rsh was unrelated to the AHL degradation. According to RNA-seq, we proposed σE, DksA, Lon protease and RNA degradation enzymes might be involved in the RshUS6–1-dependent expression of novI and novR. Here, we report the first transcriptome-wide analysis of the Rsh regulon in sphingomonads and investigate the potential mechanisms regulating AHL accumulation, which is an important step towards understanding the regulatory system of stringent response in sphingomonads.
Collapse
|
23
|
Polyphosphate Kinase Antagonizes Virulence Gene Expression in Francisella tularensis. J Bacteriol 2018; 200:JB.00460-17. [PMID: 29158241 DOI: 10.1128/jb.00460-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
The alarmone ppGpp is a critical regulator of virulence gene expression in Francisella tularensis In this intracellular pathogen, ppGpp is thought to work in concert with the putative DNA-binding protein PigR and the SspA protein family members MglA and SspA to control a common set of genes. MglA and SspA form a complex that interacts with RNA polymerase (RNAP), and PigR functions by interacting with the RNAP-associated MglA-SspA complex. Prior work suggested that ppGpp indirectly exerts its regulatory effects in F. tularensis by promoting the accumulation of polyphosphate in the cell, which in turn was required for formation of the MglA-SspA complex. Here we show that in Escherichia coli, neither polyphosphate nor ppGpp is required for formation of the MglA-SspA complex but that ppGpp promotes the interaction between PigR and the MglA-SspA complex. Moreover, we show that polyphosphate kinase, the enzyme responsible for the synthesis of polyphosphate, antagonizes virulence gene expression in F. tularensis, a finding that is inconsistent with the notion that polyphosphate accumulation promotes virulence gene expression in this organism. Our findings identify polyphosphate kinase as a novel negative regulator of virulence gene expression in F. tularensis and support a model in which ppGpp exerts its positive regulatory effects by promoting the interaction between PigR and the MglA-SspA complex.IMPORTANCE In Francisella tularensis, MglA and SspA form a complex that associates with RNA polymerase to positively control the expression of key virulence genes. The MglA-SspA complex works together with the putative DNA-binding protein PigR and the alarmone ppGpp. PigR functions by interacting directly with the MglA-SspA complex, but how ppGpp exerts its effects was unclear. Prior work indicated that ppGpp acts by promoting the accumulation of polyphosphate, which is required for MglA and SspA to interact. Here we show that formation of the MglA-SspA complex does not require polyphosphate. Furthermore, we find that polyphosphate antagonizes the expression of virulence genes in F. tularensis Thus, ppGpp does not promote virulence gene expression in this organism through an effect on polyphosphate.
Collapse
|
24
|
Mozejko-Ciesielska J, Dabrowska D, Szalewska-Palasz A, Ciesielski S. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis. AMB Express 2017; 7:92. [PMID: 28497290 PMCID: PMC5427061 DOI: 10.1186/s13568-017-0396-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas putida KT2440 is a model bacteria used commonly for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production using various substrates. However, despite many studies conducted on P. putida KT2440 strain, the molecular mechanisms of leading to mcl-PHAs synthesis in reaction to environmental stimuli are still not clear. The rearrangement of the metabolism in response to environmental stress could be controlled by stringent response that modulates the transcription of many genes in order to promote survival under nutritional deprivation conditions. Therefore, in this work we investigated the relation between mcl-PHAs synthesis and stringent response. For this study, a relA/spoT mutant of P. putida KT2440, unable to induce the stringent response, was used. Additionally, the transcriptome of this mutant was analyzed using RNA-seq in order to examine rearrangements of the metabolism during cultivation. The results show that the relA/spoT mutant of P. putida KT2440 is able to accumulate mcl-PHAs in both optimal and nitrogen limiting conditions. Nitrogen starvation did not change the efficiency of mcl-PHAs synthesis in this mutant. The transition from exponential growth to stationary phase caused significant upregulation of genes involved in transport system and nitrogen metabolism. Transcriptional regulators, including rpoS, rpoN and rpoD, did not show changes in transcript abundance when entering the stationary phase, suggesting their limited role in mcl-PHAs accumulation during stationary phase.
Collapse
|
25
|
Mlynarcik P, Kolar M. Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:58-67. [DOI: 10.5507/bp.2016.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022] Open
|
26
|
Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017; 7:39. [PMID: 28261568 PMCID: PMC5310132 DOI: 10.3389/fcimb.2017.00039] [Citation(s) in RCA: 897] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.
Collapse
Affiliation(s)
| | | | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
| |
Collapse
|
27
|
Xu X, Yu H, Zhang D, Xiong J, Qiu J, Xin R, He X, Sheng H, Cai W, Jiang L, Zhang K, Hu X. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. Microbiol Res 2016; 192:84-95. [PMID: 27664726 DOI: 10.1016/j.micres.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/28/2022]
Abstract
During infection, bacteria might generate adaptive responses to facilitate their survival and colonization in the host environment. The alarmone guanosine 5'-triphosphate-3'-diphosphate (ppGpp), the levels of which are regulated by the RelA and SpoT enzymes, plays a critical role in mediating bacterial adaptive responses and virulence. However, the mechanism by which ppGpp regulates virulence-associated traits in Pseudomonas aeruginosa is poorly understood. To investigate the regulatory role of ppGpp, the ppGpp-deficient strain ΔRS (relA and spoT gene double mutant) and the complemented strain ΔRS(++) (complemented with relA and spoT genes) were constructed. Herein, we reported that the ΔRS strain showed decreased cytotoxicity towards A549 human alveolar adenocarcinoma cell lines and led to reduced mortality, lung edema and inflammatory cell infiltration in a mouse model of acute pneumonia compared to wild-type PAO1 and the complemented strain ΔRS(++). Subsequent analyses demonstrated that the ΔRS strain displayed reduced T3SS expression, decreased levels of elastase activity, pyocyanin, pyoverdin and alginate, and inhibited swarming and biofilm formation compared to PAO1 and the complemented strain ΔRS(++). In addition, the results demonstrate that ppGpp-mediated regulation of T3SS, virulence factor production, and swarming occurs in a quinolone quorum-sensing system-dependent manner. Taken together, these results suggest that ppGpp is required for virulence regulation in P. aeruginosa, providing new clues for the development of interference strategies against bacterial infection.
Collapse
Affiliation(s)
- Xiaohui Xu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Di Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenqiang Cai
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu Jiang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaomei Hu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| |
Collapse
|
28
|
Rice CJ, Ramachandran VK, Shearer N, Thompson A. Transcriptional and Post-Transcriptional Modulation of SPI1 and SPI2 Expression by ppGpp, RpoS and DksA in Salmonella enterica sv Typhimurium. PLoS One 2015; 10:e0127523. [PMID: 26039089 PMCID: PMC4454661 DOI: 10.1371/journal.pone.0127523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/02/2022] Open
Abstract
The expression of genes within Salmonella Pathogenicity Islands 1 and 2 (SPI1, SPI2) is required to facilitate invasion and intracellular replication respectively of S. Typhimurium in host cell lines. Control of their expression is complex and occurs via a variety of factors operating at transcriptional and post-transcriptional levels in response to the environmental stimuli found within the host. Several of the factors that modulate SPI1 and SPI2 expression are involved in the redistribution or modification of RNA polymerase (RNAP) specificity. These factors include the bacterial alarmone, ppGpp, the alternative sigma factor, RpoS, and the RNAP accessory protein, DksA. In this report we show not only how these three factors modulate SPI1 and SPI2 expression but also how they contribute to the 'phased' expression of SPI1 and SPI2 during progress through late-log and stationary phase in aerobic rich broth culture conditions. In addition, we demonstrate that the expression of at least one SPI1-encoded protein, SipC is subject to DksA-dependent post-transcriptional control.
Collapse
Affiliation(s)
| | | | - Neil Shearer
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Arthur Thompson
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| |
Collapse
|
29
|
Charoenpanich P, Soto MJ, Becker A, McIntosh M. Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:373-382. [PMID: 25534533 DOI: 10.1111/1758-2229.12262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.
Collapse
Affiliation(s)
- Pornsri Charoenpanich
- LOEWE Center for Synthetic Microbiology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
30
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ Microbiol 2015; 17:4253-70. [PMID: 25626964 DOI: 10.1111/1462-2920.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/29/2014] [Accepted: 12/06/2014] [Indexed: 11/29/2022]
Abstract
The stringent response, mediated by second messenger (p)ppGpp, results in swift and massive transcriptional reprogramming under nutrient limited conditions. In this study, the role of (p)ppGpp on virulence of Pseudomonas syringae pv. syringae B728a (PssB728a) was investigated. The virulence of the relA/spoT (ppGpp(0) ) double mutant was completely impaired on bean, and bacterial growth was significantly reduced, suggesting that (p)ppGpp is required for full virulence of P. syringae. Expression of T3SS and other virulence genes was reduced in ppGpp(0) mutants. In addition, ppGpp deficiency resulted in loss of swarming motility, reduction of pyoverdine production, increased sensitivity to oxidative stress and antibiotic tolerance, as well as reduced ability to utilize γ-amino butyric acid. Increased levels of ppGpp resulted in reduced cell size of PssB728a when grown in a minimal medium and on plant surfaces, while most ppGpp(0) mutant cells were not viable on plant surfaces 24 h after spray inoculation, suggesting that ppGpp-mediated stringent response temporarily limits cell growth, and might control cell survival on plants by limiting their growth. These results demonstrated that ppGpp-mediated stringent response plays a central role in P. syringae virulence and survival and indicated that ppGpp serves as a global signal for regulating various virulence traits in PssB728a.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhong Li
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
31
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
32
|
Fauvarque MO. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms usingDrosophila melanogaster. Cell Microbiol 2014; 16:824-33. [DOI: 10.1111/cmi.12292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Marie-Odile Fauvarque
- Univ. Grenoble Alpes; iRTSV-BGE; F-38000 Grenoble France
- CEA; iRTSV-BGE; F-38000 Grenoble France
- INSERM; BGE; F-38000 Grenoble France
| |
Collapse
|
33
|
Ramachandran VK, Shearer N, Thompson A. The primary transcriptome of Salmonella enterica Serovar Typhimurium and its dependence on ppGpp during late stationary phase. PLoS One 2014; 9:e92690. [PMID: 24664308 PMCID: PMC3963941 DOI: 10.1371/journal.pone.0092690] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/24/2014] [Indexed: 12/01/2022] Open
Abstract
We have used differential RNA-seq (dRNA-seq) to characterise the transcriptomic architecture of S. Typhimurium SL1344, and its dependence on the bacterial alarmone, guanosine tetraphosphate (ppGpp) during late stationary phase, (LSP). Under LSP conditions we were able to identify the transcriptional start sites (TSSs) for 53% of the S. Typhimurium open reading frames (ORFs) and discovered 282 candidate non-coding RNAs (ncRNAs). The mapping of LSP TSSs enabled a detailed comparison with a previous dRNA-seq study of the early stationary phase (ESP) transcriptional architecture of S. Typhimurium SL1344 and its dependence on ppGpp. For the purposes of this study, LSP was defined as an aerobic LB culture grown to a later optical density reading (OD600 = 3.6) compared to ESP (OD600 = 2.3). The precise nucleotide positions of the majority of S. Typhimurium TSSs at LSP agreed closely with those identified at ESP. However, the identification of TSSs at different positions, or where additional or fewer TSSs were found at LSP compared to ESP enabled the genome-wide categorisation of growth phase dependent changes in promoter structure, the first time such an analysis has been done on this scale. Comparison of the ppGpp-dependency LSP and ESP TSSs for mRNAs and ncRNAs revealed a similar breadth of ppGpp-activation and repression. However, we note several ncRNAs previously shown to be involved in virulence were highly ppGpp-dependent at LSP. Finally, although SPI1 was expressed at ESP, we found SPI1 was not as highly expressed at LSP, instead we observed elevated expression of SPI2 encoded genes. We therefore also report an analysis of SPI2 transcriptional architecture at LSP resulting in localisation of SsrB binding sites and identification of a previously unreported SPI2 TSS. We also show that ppGpp is required for nearly all of SPI2 expression at LSP as well as for expression of SPI1 at ESP.
Collapse
Affiliation(s)
| | - Neil Shearer
- Institute of Food Research, Norwich, United Kingdom
| | - Arthur Thompson
- Institute of Food Research, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
relA enhances the adherence of enteropathogenic Escherichia coli. PLoS One 2014; 9:e91703. [PMID: 24643076 PMCID: PMC3958371 DOI: 10.1371/journal.pone.0091703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a known causative agent of diarrhea in children. In the process of colonization of the small intestine, EPEC synthesizes two types of adhesins, the bundle-forming pilus (BFP) and intimin. The BFP pilus is an adhesin associated with the initial stages of adherence of EPEC to epithelial cells, while the outer membrane protein intimin carries out the intimate adherence that takes place at the third stage of infection. BFP is encoded by the bfp operon located in plasmid EAF, present only in typical EPEC isolates, while eae, the gene that encodes intimin is situated in the LEE, a chromosomal pathogenicity island. Transcription of bfp and eae is regulated by the products of the perABC operon, also present in plasmid EAF. Here we show that deletion of relA, that encodes a guanosine penta and tetraphosphate synthetase impairs EPEC adherence to epithelial cells in vitro. In the absence of relA, the transcription of the regulatory operon perABC is reduced, resulting in lower levels of BFP and intimin. Bacterial adherence, BFP and intimin synthesis and perABC expression are restored upon complementation with the wild-type relA allele.
Collapse
|
35
|
The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J Bacteriol 2014; 196:1641-50. [PMID: 24509318 DOI: 10.1128/jb.01086-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated.
Collapse
|
36
|
Lazenby JJ, Griffin PE, Kyd J, Whitchurch CB, Cooley MA. A quadruple knockout of lasIR and rhlIR of Pseudomonas aeruginosa PAO1 that retains wild-type twitching motility has equivalent infectivity and persistence to PAO1 in a mouse model of lung infection. PLoS One 2013; 8:e60973. [PMID: 23593362 PMCID: PMC3622596 DOI: 10.1371/journal.pone.0060973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 12/19/2022] Open
Abstract
It has been widely reported that quorum-sensing incapable strains of Pseudomonas aeruginosa are less virulent than wild type strains. However, quorum sensing mutants of P. aeruginosa have been shown to develop other spontaneous mutations under prolonged culture conditions, and one of the phenotypes of P. aeruginosa that is frequently affected by this phenomenon is type IV pili-dependent motility, referred to as twitching motility. As twitching motility has been reported to be important for adhesion and colonisation, we aimed to generate a quorum-sensing knockout for which the heritage was recorded and the virulence factor production in areas unrelated to quorum sensing was known to be intact. We created a lasIRrhlIR quadruple knockout in PAO1 using a published technique that allows for the deletion of antibiotic resistance cartridges following mutagenesis, to create an unmarked QS knockout of PAO1, thereby avoiding the need for use of antibiotics in culturing, which can have subtle effects on bacterial phenotype. We phenotyped this mutant demonstrating that it produced reduced levels of protease and elastase, barely detectable levels of pyoverdin and undetectable levels of the quorum sensing signal molecules N-3-oxododecanoly-L-homoserine lactone and N-butyryl homoserine lactone, but retained full twitching motility. We then used a mouse model of acute lung infection with P. aeruginosa to demonstrate that the lasIRrhlIR knockout strain showed equal persistence to wild type parental PAO1, induced equal or greater neutrophil infiltration to the lungs, and induced similar levels of expression of inflammatory cytokines in the lungs and similar antibody responses, both in terms of magnitude and isotype. Our results suggest, in contrast to previous reports, that lack of quorum sensing alone does not significantly affect the immunogenicity, infectiveness and persistence of P. aeruginosa in a mouse model of acute lung infection.
Collapse
Affiliation(s)
- James J. Lazenby
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
37
|
The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 2013; 195:2011-20. [PMID: 23457248 DOI: 10.1128/jb.02061-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing.
Collapse
|
38
|
Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: Role of the relA gene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:95-104. [DOI: 10.1016/j.jphotobiol.2012.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
|
39
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huynh TT, McDougald D, Klebensberger J, Al Qarni B, Barraud N, Rice SA, Kjelleberg S, Schleheck D. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One 2012; 7:e42874. [PMID: 22905180 PMCID: PMC3419228 DOI: 10.1371/journal.pone.0042874] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/12/2012] [Indexed: 01/29/2023] Open
Abstract
Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ). In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate) and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA). In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s) and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival.
Collapse
Affiliation(s)
- Tran T. Huynh
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| | - Janosch Klebensberger
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Budoor Al Qarni
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Nicolas Barraud
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
| | - Scott A. Rice
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, Australia
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - David Schleheck
- Department of Biological Sciences and Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
41
|
Ochi K, Nishizawa T, Inaoka T, Yamada A, Hashimoto K, Hosaka T, Okamoto S, Ozeki Y. Heterologous expression of a plant RelA-SpoT homologue results in increased stress tolerance in Saccharomyces cerevisiae by accumulation of the bacterial alarmone ppGpp. MICROBIOLOGY-SGM 2012; 158:2213-2224. [PMID: 22679107 DOI: 10.1099/mic.0.057638-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial alarmone ppGpp is present only in bacteria and the chloroplasts of plants, but not in mammalian cells or eukaryotic micro-organisms such as yeasts and fungi. The importance of the ppGpp signalling system in eukaryotes has therefore been largely overlooked. Here, we demonstrated that heterologous expression of a relA-spoT homologue (Sj-RSH) isolated from the halophilic plant Suaeda japonica in the yeast Saccharomyces cerevisiae results in accumulation of ppGpp, accompanied by enhancement of tolerance against various stress stimuli, such as osmotic stress, ethanol, hydrogen peroxide, high temperature and freezing. Unlike bacterial ppGpp accumulation, ppGpp was accumulated in the early growth phase but not in the late growth phase. Moreover, nutritional downshift resulted in a decrease in ppGpp level, suggesting that the observed Sj-RSH activity to synthesize ppGpp is not starvation-dependent, contrary to our expectations based on bacteria. Accumulated ppGpp was found to be present solely in the cytosolic fraction and not in the mitochondrial fraction, perhaps reflecting the ribosome-independent ppGpp synthesis in S. cerevisiae cells. Unlike bacterial inosine monophosphate (IMP) dehydrogenases, the IMP dehydrogenase of S. cerevisiae was insensitive to ppGpp. Microarray analysis showed that ppGpp accumulation gave rise to marked changes in gene expression, with both upregulation and downregulation, including changes in mitochondrial gene expression. The most prominent upregulation (38-fold) was detected in the hypothetical gene YBR072C-A of unknown function, followed by many other known stress-responsive genes. S. cerevisiae may provide new opportunities to uncover and analyse the ppGpp signalling system in eukaryotic cells.
Collapse
Affiliation(s)
- Kozo Ochi
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan.,Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan
| | | | - Takashi Inaoka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Akiyo Yamada
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Kohsuke Hashimoto
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan
| | - Takeshi Hosaka
- International Young Researchers Empowerment Center, Shinshu University, 8304, Minamiminowa, Nagano 399-4598, Japan
| | - Susumu Okamoto
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Yoshihiro Ozeki
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
42
|
Lynch KH, Stothard P, Dennis JJ. Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages. BMC Genomics 2012; 13:223. [PMID: 22676492 PMCID: PMC3483164 DOI: 10.1186/1471-2164-13-223] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 05/15/2012] [Indexed: 11/17/2022] Open
Abstract
Background Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC) is an important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens. The objective of this study was to characterize KL1 (vB_BceS_KL1) and AH2 (vB_BceS_AH2), two novel Burkholderia cenocepacia-specific siphoviruses isolated from environmental samples. Results KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains, they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1 genome is 42,832 base pairs (bp) in length and is most closely related to Pseudomonas phage 73 (PA73). In contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul. Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis, DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque phenotype of KL1 and AH2. Conclusions The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further evidence of both vast diversity and convergent evolution in the BCC-specific phage population.
Collapse
Affiliation(s)
- Karlene H Lynch
- 6-008 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
43
|
Lutter EI, Purighalla S, Duong J, Storey DG. Lethality and cooperation of Pseudomonas aeruginosa quorum-sensing mutants in Drosophila melanogaster infection models. MICROBIOLOGY-SGM 2012; 158:2125-2132. [PMID: 22628480 DOI: 10.1099/mic.0.054999-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The virulence profiles of Pseudomonas aeruginosa quorum-sensing (QS) mutants were assessed in Drosophila melanogaster feeding and nicking infection models. Functional RhlIR and LasIR QS systems were required for killing in the fly feeding infection model but were not essential in the fly nicking infection model. Mixed infections between PAO1 and strains harbouring mutations in lasR, rhlI and lasI rhlI resulted in increased lethality in the fly feeding model compared with either isolate alone. These results suggested that the parental strain could cooperate with QS mutants in the Drosophila feeding infection model. Finally, the mixed infection between PAO1 and an rhlR mutant resulted in spiteful behaviour and reduced pathogenicity of the mixed culture.
Collapse
Affiliation(s)
- Erika I Lutter
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| | - Swathi Purighalla
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| | - Jessica Duong
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| | - Douglas G Storey
- Microbiology and Infectious Diseases, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 4N1, Canada
| |
Collapse
|
44
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
45
|
Ramachandran VK, Shearer N, Jacob JJ, Sharma CM, Thompson A. The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression. BMC Genomics 2012; 13:25. [PMID: 22251276 PMCID: PMC3293720 DOI: 10.1186/1471-2164-13-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/17/2012] [Indexed: 11/26/2022] Open
Abstract
Background Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium) requires expression of the extracellular virulence gene expression programme (STEX), activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp). Recently, next-generation transcriptomics (RNA-seq) has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq) to define the high-resolution transcriptomic architecture of wild-type S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results Here we report the precise mapping of transcriptional start sites (TSSs) for 78% of the S. Typhimurium open reading frames (ORFs). The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs) and 302 candidate antisense RNAs (asRNAs). We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34% and 20% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research.
Collapse
Affiliation(s)
- Vinoy K Ramachandran
- Institute of Food Research, Norwich, UK, University of Würzburg, Josef-Schneider-Str, 2/Bau D15, 97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Stringent response mutants of Pseudomonas chlororaphis PA23 exhibit enhanced antifungal activity against Sclerotinia sclerotiorum in vitro. Microbiology (Reading) 2012; 158:207-216. [DOI: 10.1099/mic.0.053082-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Abstract
Many bacteria use 'quorum sensing' (QS) as a mechanism to regulate gene induction in a population-dependent manner. In its simplest sense this involves the accumulation of a signaling metabolite during growth; the binding of this metabolite to a regulator or multiple regulators activates induction or repression of gene expression. However QS regulation is seldom this simple, because other inputs are usually involved. In this review we have focussed on how those other inputs influence QS regulation and as implied by the title, this often occurs by environmental or physiological effects regulating the expression or activity of the QS regulators. The rationale of this review is to briefly introduce the main QS signals used in Gram-negative bacteria and then introduce one of the earliest understood mechanisms of regulation of the regulator, namely the plant-mediated control of expression of the TraR QS regulator in Agrobacterium tumefaciens. We then describe how in several species, multiple QS regulatory systems can act as integrated hierarchical regulatory networks and usually this involves the regulation of QS regulators. Such networks can be influenced by many different physiological and environmental inputs and we describe diverse examples of these. In the final section, we describe different examples of how eukaryotes can influence QS regulation in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marijke Frederix
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
48
|
Mulcahy H, Sibley CD, Surette MG, Lewenza S. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 2011; 7:e1002299. [PMID: 21998591 PMCID: PMC3188550 DOI: 10.1371/journal.ppat.1002299] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.
Collapse
Affiliation(s)
- Heidi Mulcahy
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Christopher D. Sibley
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shawn Lewenza
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
49
|
Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 2011; 7:e1002272. [PMID: 21966276 PMCID: PMC3178584 DOI: 10.1371/journal.pgen.1002272] [Citation(s) in RCA: 531] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
Drosophila melanogaster is emerging as an important model of non-pathogenic host-microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal-microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host-microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host-microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab.
Collapse
Affiliation(s)
- James Angus Chandler
- Center for Population Biology, Department of Evolution and Ecology, University of California Davis, Davis, California, USA.
| | | | | | | | | |
Collapse
|
50
|
Krol E, Becker A. ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Mol Microbiol 2011; 81:1233-54. [PMID: 21696469 DOI: 10.1111/j.1365-2958.2011.07752.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti Rm2011 responds to sudden shifts to nitrogen or carbon starvation conditions by an accumulation of the stringent response alarmone ppGpp and remodelling of the transcriptome. The gene product of relA, Rel(Sm) , responsible for synthesis of ppGpp, shows functional similarities to E. coli SpoT. Using promoter-egfp gene fusions, we showed that in Rm2011 relA is expressed at a low rate, as a readthrough from the rpoZ promoter and from its own weak promoter. The low level of relA expression is physiologically relevant, since overexpression of Rel(Sm) inhibits ppGpp accumulation. The N-terminal portion of Rel(Sm) is required for ppGpp degradation in nutrient-sufficient cells and might be involved in regulation of the ppGpp synthase and hydrolase activities of the protein. Expression profiling of S. meliloti subjected to sudden nitrogen or carbon downshifts revealed that repression of 'house-keeping' genes is largely dependent on relA whereas activation of gene targets of the stress sigma factor RpoE2 occurred independently of relA. The regulatory genes nifA, ntrB, aniA and sinR, as well as genes related to modulation of protein biosynthesis and nucleotide catabolism, were induced in a relA-dependent manner. dksA was required for the majority of the relA-dependent regulations.
Collapse
Affiliation(s)
- Elizaveta Krol
- Faculty of Biology and Center for Systems Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | |
Collapse
|