1
|
Wang Z, Jiang Z, Cao Q, Jia C, Zhou H, Huang C, Huang L, Huang Y, Li Y, Yue M. A genomic and phenotypic investigation of pigeon-adaptive Salmonella. PLoS Pathog 2025; 21:e1012992. [PMID: 40096063 PMCID: PMC11957392 DOI: 10.1371/journal.ppat.1012992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Salmonella, a significant threat to public safety, inflicts substantial economic losses on the poultry industry. The unique "parental feeding" breeding model of pigeon farms, against the "all-in & all-out" biosecurity strategy, makes them susceptible to Salmonella infections and subsequent outbreaks of pigeon paratyphoid. This study initially studied three pigeon paratyphoid outbreak incidents in Henan, China, in which 53 strains of pigeon-origin Salmonella Typhimurium (STM) were identified. Whole-genome sequencing (WGS) and antimicrobial-resistant profile analysis revealed that the three outbreaks were caused by distinct STM clones (ST128-DT2, ST19-DT99). Global phylogenetic analysis suggested that the United States is a possible origin, indicating a risk of intercontinental transmission via pigeon eggs. Further bacterial virulence and invasion assays, including in vitro and in vivo assays, revealed that pigeon-host-adaptive STM, compared to broad-host-range STM, carried fewer resistance genes, exhibited higher invasion indices and pseudogene levels, displayed a non-rdar (red dry and rough) phenotype, and had strong biofilm formation capability. Additionally, they showed reduced virulence and invasiveness in mice but a pigeon-adaptive feature in cogent models. The collective results support the host adaptation for pigeons among DT2 and DT99 phage-type isolates.
Collapse
Affiliation(s)
- Zining Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Qianzhe Cao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenghu Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Charity OJ, Acton L, Bawn M, Tassinari E, Thilliez G, Chattaway MA, Dallman TJ, Petrovska L, Kingsley RA. Increased phage resistance through lysogenic conversion accompanying emergence of monophasic Salmonella Typhimurium ST34 pandemic strain. Microb Genom 2022; 8:mgen000897. [PMID: 36382789 PMCID: PMC9836087 DOI: 10.1099/mgen.0.000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) comprises a group of closely related human and animal pathogens that account for a large proportion of all Salmonella infections globally. The epidemiological record of S. Typhimurium in Europe is characterized by successive waves of dominant clones, each prevailing for approximately 10-15 years before replacement. Succession of epidemic clones may represent a moving target for interventions aimed at controlling the spread and impact of this pathogen on human and animal health. Here, we investigate the relationship of phage sensitivity and population structure of S. Typhimurium using data from the Anderson phage typing scheme. We observed greater resistance to phage predation of epidemic clones circulating in livestock over the past decades compared to variants with a restricted host range implicating increased resistance to phage in the emergence of epidemic clones of particular importance to human health. Emergence of monophasic S. Typhimurium ST34, the most recent dominant multidrug-resistant clone, was accompanied by increased resistance to phage predation during clonal expansion, in part by the acquisition of the mTmII prophage that may have contributed to the fitness of the strains that replaced ancestors lacking this prophage.
Collapse
Affiliation(s)
- Oliver J. Charity
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK,University of East Anglia, Norwich NR4 7TJ, UK
| | - Luke Acton
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK,University of East Anglia, Norwich NR4 7TJ, UK
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK,Earlham Institute, Norwich, NR4 7UZ, UK
| | - Eleonora Tassinari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK,University of East Anglia, Norwich NR4 7TJ, UK
| | - Gaёtan Thilliez
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Marie A. Chattaway
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency (UKHSA), London, NW9 5EQ, UK
| | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency (UKHSA), London, NW9 5EQ, UK
| | - Liljana Petrovska
- Animal & Plant Health Agency (APHA), Weybridge, London, KT15 3NB, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK,University of East Anglia, Norwich NR4 7TJ, UK,*Correspondence: Robert A. Kingsley,
| |
Collapse
|
3
|
Kipper D, Hellfeldt RM, De Carli S, Lehmann FKM, Fonseca ASK, Ikuta N, Lunge VR. Salmonella serotype assignment by sequencing analysis of intergenic regions of ribosomal RNA operons. Poult Sci 2020; 98:5989-5998. [PMID: 31134273 DOI: 10.3382/ps/pez285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/03/2019] [Indexed: 02/02/2023] Open
Abstract
Salmonella laboratorial detection is usually carried out by bacteriological culture and serological methods. Salmonella isolates are then classified into more than 2,650 serotypes with different somatic (O) and flagellar (H) antigenic combinations. More recently, DNA analysis methods were developed and applied for the identification of Salmonella serotypes, including intergenic spacer regions (ISRs) that separates DNA-encoding ribosomal subunits (rRNA gene) in Salmonella genomes. The present study aimed to evaluate the nucleotide diversity of the ISRs in 2 rRNA operons (rrnB and rrnH) for the assignment of Salmonella serotypes. A total of 63 Salmonella isolates (bacterial cultures) from 21 serotypes were obtained in the period of 2014 to 2017. DNA was extracted, and PCRs were used to detect the genus Salmonella and 4 important serotypes: Enteritidis, Gallinarum, Heidelberg, and Typhimurium. ISRs of the operons rrnB and rrnH were amplified by PCR and then sequenced. All sequence results were submitted to BLASTn search and were aligned in comparison to 72 Salmonella reference nucleotide sequences. The results demonstrated that 60 (95.2%) samples returned a sequence of the same serotype (determined by the traditional serological procedure) after searching in BLASTn and/or in the alignment with the reference sequences for both operons (rrnB and rrnH). These PCR-sequencing procedures had a general agreement index of 0.792 based on the Kappa analysis, 98.7% sensitivity value, 100% specificity, and 98.4% accuracy. Three different phylogenetic trees were generated from the alignments with the sequences of rrnH, rrnB, and rrnH plus rrnB and isolates clustered in specific branches according to the serotypes.
Collapse
Affiliation(s)
- Diéssy Kipper
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil
| | - Rafaella Martins Hellfeldt
- Curso de Medicina Veterinária, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil
| | - Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Laboratório de Virologia Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | | | | | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Curso de Medicina Veterinária, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, 94940-030, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Curso de Medicina Veterinária, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, 92425-900, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, 94940-030, Brazil
| |
Collapse
|
4
|
Rukambile E, Sintchenko V, Muscatello G, Kock R, Alders R. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review. Zoonoses Public Health 2019; 66:562-578. [PMID: 31179637 DOI: 10.1111/zph.12611] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Livestock meat and offal contribute significantly to human nutrition as sources of high-quality protein and micronutrients. Livestock products are increasingly in demand, particularly in low- and middle-income settings where economies are growing and meat is increasingly seen as an affordable and desirable food item. Demand is also driving intensification of livestock keeping and processing. An unintended consequence of intensification is increased exposure to zoonotic agents, and a contemporary emerging problem is infection with Campylobacter and Salmonella spp. from livestock (avian and mammalian), which can lead to disease, malabsorption and undernutrition through acute and chronic diarrhoea. This can occur at the farm, in households or through the food chain. Direct infection occurs when handling livestock and through bacteria shed into the environment, on food preparation surfaces or around the house and surroundings. This manuscript critically reviews Campylobacter and Salmonella infections in animals, examines the factors affecting colonization and faecal shedding of bacteria of these two genera as well as risk factors for human acquisition of the infection from infected animals or environment and analyses priority areas for preventive actions with a focus on resource-poor settings.
Collapse
Affiliation(s)
- Elpidius Rukambile
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Vitali Sintchenko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Gary Muscatello
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Kock
- The Royal Veterinary College, University of London, London, UK
| | - Robyn Alders
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Kyeema Foundation, Brisbane, Queensland, Australia.,Centre on Global Health Security, Chatham House, London, UK
| |
Collapse
|
5
|
Hiyoshi H, Tiffany CR, Bronner DN, Bäumler AJ. Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar. FEMS Microbiol Rev 2018; 42:527-541. [DOI: 10.1093/femsre/fuy024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise N Bronner
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Abstract
Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.
Collapse
Affiliation(s)
- Andreas Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California 95616
| | | |
Collapse
|
7
|
Delgado G, Souza V, Morales R, Cerritos R, González-González A, Méndez JL, Vázquez V, Cravioto A. Genetic characterization of atypical Citrobacter freundii. PLoS One 2013; 8:e74120. [PMID: 24069274 PMCID: PMC3771896 DOI: 10.1371/journal.pone.0074120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
The ability of a bacterial population to survive in different niches, as well as in stressful and rapidly changing environmental conditions, depends greatly on its genetic content. To survive such fluctuating conditions, bacteria have evolved different mechanisms to modulate phenotypic variations and related strategies to produce high levels of genetic diversity. Laboratories working in microbiological diagnosis have shown that Citrobacter freundii is very versatile in its colony morphology, as well as in its biochemical, antigenic and pathogenic behaviours. This phenotypic versatility has made C. freundii difficult to identify and it is frequently confused with both Salmonella enterica and Escherichia coli. In order to determine the genomic events and to explain the mechanisms involved in this plasticity, six C. freundii isolates were selected from a phenotypic variation study. An I-CeuI genomic cleavage map was created and eight housekeeping genes, including 16S rRNA, were sequenced. In general, the results showed a range of both phenotypes and genotypes among the isolates with some revealing a greater similarity to C. freundii and some to S. enterica, while others were identified as phenotypic and genotypic intermediary states between the two species. The occurrence of these events in natural populations may have important implications for genomic diversification in bacterial evolution, especially when considering bacterial species boundaries. In addition, such events may have a profound impact on medical science in terms of treatment, course and outcomes of infectious diseases, evading the immune response, and understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriela Delgado
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Rosario Morales
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - René Cerritos
- Departamento de Cirugía Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Andrea González-González
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - José Luis Méndez
- Departmento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | | | | |
Collapse
|
8
|
Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, Kariuki S, Msefula CL, Gordon MA, de Pinna E, Wain J, Heyderman RS, Obaro S, Alonso PL, Mandomando I, MacLennan CA, Tapia MD, Levine MM, Tennant SM, Parkhill J, Dougan G. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 2012; 44:1215-21. [PMID: 23023330 PMCID: PMC3491877 DOI: 10.1038/ng.2423] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Abstract
A highly invasive form of non-typhoidal Salmonella (iNTS) disease has recently been documented in many countries in sub-Saharan Africa. The most common Salmonella enterica serovar causing this disease is Typhimurium (Salmonella Typhimurium). We applied whole-genome sequence-based phylogenetic methods to define the population structure of sub-Saharan African invasive Salmonella Typhimurium isolates and compared these to global Salmonella Typhimurium populations. Notably, the vast majority of sub-Saharan invasive Salmonella Typhimurium isolates fell within two closely related, highly clustered phylogenetic lineages that we estimate emerged independently ∼52 and ∼35 years ago in close temporal association with the current HIV pandemic. Clonal replacement of isolates from lineage I by those from lineage II was potentially influenced by the use of chloramphenicol for the treatment of iNTS disease. Our analysis suggests that iNTS disease is in part an epidemic in sub-Saharan Africa caused by highly related Salmonella Typhimurium lineages that may have occupied new niches associated with a compromised human population and antibiotic treatment.
Collapse
Affiliation(s)
- Chinyere K Okoro
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scientific Opinion on an estimation of the public health impact of setting a new target for the reduction ofSalmonellain turkeys. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2616] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Matthews TD, Rabsch W, Maloy S. Chromosomal rearrangements in Salmonella enterica serovar Typhi strains isolated from asymptomatic human carriers. mBio 2011; 2:e00060-11. [PMID: 21652779 PMCID: PMC3107234 DOI: 10.1128/mbio.00060-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/20/2022] Open
Abstract
Host-specific serovars of Salmonella enterica often have large-scale chromosomal rearrangements that occur by recombination between rrn operons. Two hypotheses have been proposed to explain these rearrangements: (i) replichore imbalance from horizontal gene transfer drives the rearrangements to restore balance, or (ii) the rearrangements are a consequence of the host-specific lifestyle. Although recent evidence has refuted the replichore balance hypothesis, there has been no direct evidence for the lifestyle hypothesis. To test this hypothesis, we determined the rrn arrangement type for 20 Salmonella enterica serovar Typhi strains obtained from human carriers at periodic intervals over multiple years. These strains were also phage typed and analyzed for rearrangements that occurred over long-term storage versus routine culturing. Strains isolated from the same carrier at different time points often exhibited different arrangement types. Furthermore, colonies isolated directly from the Dorset egg slants used to store the strains also had different arrangement types. In contrast, colonies that were repeatedly cultured always had the same arrangement type. Estimated replichore balance of isolated strains did not improve over time, and some of the rearrangements resulted in decreased replicore balance. Our results support the hypothesis that the restricted lifestyle of host-specific Salmonella is responsible for the frequent chromosomal rearrangements in these serovars.
Collapse
Affiliation(s)
- T. David Matthews
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, USA, and
| | - Wolfgang Rabsch
- Division of Bacterial Infections and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany
| | - Stanley Maloy
- Center for Microbial Sciences, Department of Biology, San Diego State University, San Diego, California, USA, and
| |
Collapse
|
11
|
Abstract
Phage typing provides a rapid, accurate, and cheap method of investigating Salmonella strains for epidemiological use. Salmonella strains within a particular serovar may be differentiated into a number of phage types by their pattern of susceptibility to lysis by a set of phages with different specificity. Characterization based on the pattern of phage lysis of wild strains isolated from different patients, carriers, or other sources is valuable in epidemiological study. The phages must have well-defined propagation strains that allow reproducible discrimination between different Salmonella Typhimurium strains. Different schemes have been developed for this serovar in different countries. The Felix/Callow (England) and Lilleengen typing systems (Sweden) used for laboratory-based epidemiological analysis were helpful for control of salmonellosis. More recently, the extended phage-typing system of Anderson (England) that distinguishes more than 300 definitive phage types (DTs) has been used worldwide in Europe, the United States, and Australia. The use of this method for decades show us that some phage types (DT204 in the 1970s and DT104 in the 1990s) have a broad host range and are distributed worldwide, other phage types such as DT2 or DT99 are frequently associated with disease in pigeons, indicative of a narrow host range.
Collapse
Affiliation(s)
- Wolfgang Rabsch
- Robert-Koch Institut, Wernigerode Branch, National Reference Centre for Salmonellae and Other Enterics, Germany
| |
Collapse
|
12
|
Morales CA, Gast R, Guard-Bouldin J. Linkage of avian and reproductive tract tropism with sequence divergence adjacent to the 5S ribosomal subunit rrfH of Salmonella enterica. FEMS Microbiol Lett 2006; 264:48-58. [PMID: 17005008 DOI: 10.1111/j.1574-6968.2006.00432.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The 183 bp between the end of the 23S rrlH rRNA gene and the start of the 5S rrfH rRNA gene (ISR-1) and the 197 bp between the end of the rrfH rRNA gene and the start of the transfer RNA aspU (ISR-2) of Salmonella enterica ssp. enterica serotypes Enteritidis, Typhimurium, Pullorum, Heidelberg, Gallinarum, Typhi and Choleraesuis were compared. ISR-1s of D1 serotypes (Pullorum, Gallinarum and Enteritidis), B serotypes (Typhimurium and Heidelberg) and the C2 serotype Newport and the enteric fever pathogens serotype A Paratyphi and serotype D1 Typhi formed three clades, respectively. ISR-2 further differentiated the avian-adapted serotype Gallinarum from avian-adapted Pullorum and Salmonella bongori from S. enterica. The results suggest that serotypes Heidelberg and Choleraesuis share some evolutionary trends with egg-contaminating serotypes. In addition, ISR-1 and ISR-2 sequences that confirm serotype appear to be linked to clinically relevant host associations of the Salmonellae.
Collapse
Affiliation(s)
- Cesar A Morales
- Egg Safety and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, USA
| | | | | |
Collapse
|
13
|
Wu KY, Liu GR, Liu WQ, Wang AQ, Zhan S, Sanderson KE, Johnston RN, Liu SL. The genome of Salmonella enterica serovar gallinarum: distinct insertions/deletions and rare rearrangements. J Bacteriol 2005; 187:4720-7. [PMID: 15995186 PMCID: PMC1169526 DOI: 10.1128/jb.187.14.4720-4727.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Gallinarum is a fowl-adapted pathogen, causing typhoid fever in chickens. It has the same antigenic formula (1,9,12:--:--) as S. enterica serovar Pullorum, which is also adapted to fowl but causes pullorum disease (diarrhea). The close relatedness but distinct pathogeneses make this pair of fowl pathogens good models for studies of bacterial genomic evolution and the way these organisms acquired pathogenicity. To locate and characterize the genomic differences between serovar Gallinarum and other salmonellae, we constructed a physical map of serovar Gallinarum strain SARB21 by using I-CeuI, XbaI, and AvrII with pulsed-field gel electrophoresis techniques. In the 4,740-kb genome, we located two insertions and six deletions relative to the genome of S. enterica serovar Typhimurium LT2, which we used as a reference Salmonella genome. Four of the genomic regions with reduced lengths corresponded to the four prophages in the genome of serovar Typhimurium LT2, and the others contained several smaller deletions relative to serovar Typhimurium LT2, including regions containing srfJ, std, and stj and gene clusters encoding a type I restriction system in serovar Typhimurium LT2. The map also revealed some rare rearrangements, including two inversions and several translocations. Further characterization of these insertions, deletions, and rearrangements will provide new insights into the molecular basis for the specific host-pathogen interactions and mechanisms of genomic evolution to create a new pathogen.
Collapse
Affiliation(s)
- Kai-Yu Wu
- Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|