1
|
Cui C, Guo T, Zhang S, Yang M, Cheng J, Wang J, Kang J, Ma W, Nian Y, Sun Z, Weng H. Bacteria-derived outer membrane vesicles engineered with over-expressed pre-miRNA as delivery nanocarriers for cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102585. [PMID: 35901958 DOI: 10.1016/j.nano.2022.102585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Outer membrane vesicles (OMVs) of Escherichia coli as nanoscale spherical vesicles have been recently used in cancer therapy as drug carriers. However, most of them need complicated methods to load cargos. Herein, we proposed an inexpensive and potentially mass-produced method for the preparation of OMV engineered with over-expressed pre-miRNA. In this work, we found that OMV can be released and inherit over-expressed tRNALys-pre-miRNA from mother E. coli that directly used for the tumor therapy. The eukaryotic cells infection experiments revealed that the over-expressed pre-miRNA inside OMV could be released and processed into mature miRNAs with the aid of the camouflage of "tRNA scaffold". Moreover, the group in vivo treated with targeted OMVtRNA-pre-miR-126 obviously inhibited the expression of target oncogenic CXCR4, and significantly restrain the proliferation of breast cancer tissues. Together, these findings indicated that the OMV-based platform is a versatile and powerful strategy for personalized tumor therapy directly and specificity.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tingting Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuai Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mingyan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jiaqi Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jiajia Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jie Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wenjie Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanru Nian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Identification and Characterization of Two Klebsiella pneumoniae lpxL Lipid A Late Acyltransferases and Their Role in Virulence. Infect Immun 2017; 85:IAI.00068-17. [PMID: 28652313 DOI: 10.1128/iai.00068-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.
Collapse
|
3
|
Frirdich E, Whitfield C. Review: Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the Enterobacteriaceae, the outer membrane is primarily comprised of lipopolysaccharides. The lipopolysaccharide molecule is important in mediating interactions between the bacterium and its environment and those regions of the molecule extending further away from the cell surface show a higher amount of structural diversity. The hydrophobic lipid A is highly conserved, due to its important role in the structural integrity of the outer membrane. Attached to the lipid A region is the core oligosaccharide. The inner core oligosaccharide (lipid A proximal) backbone is also well conserved. However, non-stoichiometric substitutions of the basic inner core structure lead to structural variation and microheterogeneity. These include the addition of negatively charged groups (phosphate or galacturonic acid), ethanolamine derivatives, and glycose residues (Kdo, rhamnose, galactose, glucosamine, N-acetylglucosamine, heptose, Ko). The genetics and biosynthesis of these substitutions is beginning to be elucidated. Modification of heptose residues with negatively charged molecules (such as phosphate in Escherichia coli and Salmonella and galacturonic acid in Klebsiella pneumoniae ) has been shown to be involved in maintaining membrane stability. However, the biological role(s) of the remaining substitutions is unknown.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| |
Collapse
|
4
|
Species-specific activation of TLR4 by hypoacylated endotoxins governed by residues 82 and 122 of MD-2. PLoS One 2014; 9:e107520. [PMID: 25203747 PMCID: PMC4159346 DOI: 10.1371/journal.pone.0107520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022] Open
Abstract
The Toll-like receptor 4/MD-2 receptor complex recognizes endotoxin, a Gram-negative bacterial cell envelope component. Recognition of the most potent hexaacylated form of endotoxin is mediated by the sixth acyl chain that protrudes from the MD-2 hydrophobic pocket and bridges TLR4/MD-2 to the neighboring TLR4 ectodomain, driving receptor dimerization via hydrophobic interactions. In hypoacylated endotoxins all acyl chains could be accommodated within the binding pocket of the human hMD-2. Nevertheless, tetra- and pentaacylated endotoxins activate the TLR4/MD-2 receptor of several species. We observed that amino acid residues 82 and 122, located at the entrance to the endotoxin binding site of MD-2, have major influence on the species-specific endotoxin recognition. We show that substitution of hMD-2 residue V82 with an amino acid residue with a bulkier hydrophobic side chain enables activation of TLR4/MD-2 by pentaacylated and tetraacylated endotoxins. Interaction of the lipid A phosphate group with the amino acid residue 122 of MD-2 facilitates the appropriate positioning of the hypoacylated endotoxin. Moreover, mouse TLR4 contributes to the agonistic effect of pentaacylated msbB endotoxin. We propose a molecular model that explains how the molecular differences between the murine or equine MD-2, which both have sufficiently large hydrophobic pockets to accommodate all five or four acyl chains, influence the positioning of endotoxin so that one of the acyl chains remains outside the pocket and enables hydrophobic interactions with TLR4, leading to receptor activation.
Collapse
|
5
|
Choi KS, Kim SH, Kim ED, Lee SH, Han SJ, Yoon S, Chang KT, Seo KY. Protection from hemolytic uremic syndrome by eyedrop vaccination with modified enterohemorrhagic E. coli outer membrane vesicles. PLoS One 2014; 9:e100229. [PMID: 25032703 PMCID: PMC4102476 DOI: 10.1371/journal.pone.0100229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 05/24/2014] [Indexed: 01/08/2023] Open
Abstract
We investigated whether eyedrop vaccination using modified outer membrane vesicles (mOMVs) is effective for protecting against hemolytic uremic syndrome (HUS) caused by enterohemorrhagic E. coli (EHEC) O157:H7 infection. Modified OMVs and waaJ-mOMVs were prepared from cultures of MsbB- and Shiga toxin A subunit (STxA)-deficient EHEC O157:H7 bacteria with or without an additional waaJ mutation. BALB/c mice were immunized by eyedrop mOMVs, waaJ-mOMVs, and mOMVs plus polymyxin B (PMB). Mice were boosted at 2 weeks, and challenged peritoneally with wild-type OMVs (wtOMVs) at 4 weeks. As parameters for evaluation of the OMV-mediated immune protection, serum and mucosal immunoglobulins, body weight change and blood urea nitrogen (BUN)/Creatinin (Cr) were tested, as well as histopathology of renal tissue. In order to confirm the safety of mOMVs for eyedrop use, body weight and ocular histopathological changes were monitored in mice. Modified OMVs having penta-acylated lipid A moiety did not contain STxA subunit proteins but retained non-toxic Shiga toxin B (STxB) subunit. Removal of the polymeric O-antigen of O157 LPS was confirmed in waaJ-mOMVs. The mice group vaccinated with mOMVs elicited greater humoral and mucosal immune responses than did the waaJ-mOMVs and PBS-treated groups. Eyedrop vaccination of mOMVs plus PMB reduced the level of humoral and mucosal immune responses, suggesting that intact O157 LPS antigen can be a critical component for enhancing the immunogenicity of the mOMVs. After challenge, mice vaccinated with mOMVs were protected from a lethal dose of wtOMVs administered intraperitoneally, conversely mice in the PBS control group were not. Collectively, for the first time, EHEC O157-derived mOMV eyedrop vaccine was experimentally evaluated as an efficient and safe means of vaccine development against EHEC O157:H7 infection-associated HUS.
Collapse
Affiliation(s)
- Kyoung Sub Choi
- The Graduate School of Yonsei University, Seoul, South Korea
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang city, South Korea
| | - Sang-Hyun Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Eun-Do Kim
- The Graduate School of Yonsei University, Seoul, South Korea
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sang-Ho Lee
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Soo Jung Han
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sangchul Yoon
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyu-Tae Chang
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Chungbuk, South Korea
- * E-mail: (KYS); (KTC)
| | - Kyoung Yul Seo
- Department of Ophthalmology, Eye and Ear Hospital, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail: (KYS); (KTC)
| |
Collapse
|
6
|
Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013; 3:3. [PMID: 23408095 PMCID: PMC3569842 DOI: 10.3389/fcimb.2013.00003] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of almost all Gram-negative bacteria and consists of lipid A, core sugars, and O-antigen. LPS is recognized by Toll-like receptor 4 (TLR4) and MD-2 on host innate immune cells and can signal to activate the transcription factor NFκB, leading to the production of pro-inflammatory cytokines that initiate and shape the adaptive immune response. Most of what is known about how LPS is recognized by the TLR4-MD-2 receptor complex on animal cells has been studied using Escherichia coli lipid A, which is a strong agonist of TLR4 signaling. Recent work from several groups, including our own, has shown that several important pathogenic bacteria can modify their LPS or lipid A molecules in ways that significantly alter TLR4 signaling to NFκB. Thus, it has been hypothesized that expression of lipid A variants is one mechanism by which pathogens modulate or evade the host immune response. Additionally, several key differences in the amino acid sequences of human and mouse TLR4-MD-2 receptors have been shown to alter the ability to recognize these variations in lipid A, suggesting a host-specific effect on the immune response to these pathogens. In this review, we provide an overview of lipid A variants from several human pathogens, how the basic structure of lipid A is recognized by mouse and human TLR4-MD-2 receptor complexes, as well as how alteration of this pattern affects its recognition by TLR4 and impacts the downstream immune response.
Collapse
Affiliation(s)
- Nina Maeshima
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
7
|
Yan X, Fratamico PM, Needleman DS, Bayles DO. DNA sequence and analysis of a 90.1-kb plasmid in Shiga toxin-producing Escherichia coli (STEC) O145:NM 83-75. Plasmid 2012; 68:25-32. [DOI: 10.1016/j.plasmid.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
|
8
|
Phylogenetic grouping and virulence potential of extended-spectrum-β-lactamase-producing Escherichia coli strains in cattle. Appl Environ Microbiol 2012; 78:4677-82. [PMID: 22522692 DOI: 10.1128/aem.00351-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In line with recent reports of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli isolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producing E. coli isolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate was stx(1) and eae positive and belonged to a major enterohemorrhagic E. coli (EHEC) serotype (O111:H8). Two other isolates were eae positive but stx negative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P = 0.04) and D (P = 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of the bla(CTX-M) genes within the E. coli population from cattle still spared the subpopulation of EHEC/Shiga-toxigenic E. coli (STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.
Collapse
|
9
|
CTX-M-15 extended-spectrum β-lactamase in a shiga toxin-producing Escherichia coli isolate of serotype O111:H8. Appl Environ Microbiol 2011; 78:1308-9. [PMID: 22156432 DOI: 10.1128/aem.06997-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We report the discovery of a CTX-M-15-producing Escherichia coli (STEC) of serogroup O111:H8, a major serotype responsible for human enterohemorrhagic Escherichia coli (EHEC) infections. In line with the recent CTX-M-15/O104:H4 E. coli outbreak, these data may reflect an accelerating spread of resistance to expanded-spectrum cephalosporins within the E. coli population, including STEC isolates.
Collapse
|
10
|
Kim SH, Lee SR, Kim KS, Ko A, Kim E, Kim YH, Chang KT. Shiga toxin A subunit mutant of Escherichia coli O157:H7 releases outer membrane vesicles containing the B-pentameric complex. ACTA ACUST UNITED AC 2010; 58:412-20. [PMID: 20199568 DOI: 10.1111/j.1574-695x.2010.00654.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shiga toxins (STx) are secreted extracellularly through the outer membrane vesicles (OMVs) of Escherichia coli O157:H7. In an attempt to produce STxA-deficient OMVs from E. coli O157:H7, site-specific deletions of the stx1A and stx2A subunit genes were carried out. The STxA-deficient phenotype of the stx1A/stx2A mutant was confirmed by Vero cell cytotoxicity and VTEC-RPLA assay. Western blot analyses showed that the B (STxB) subunits were present without coupling to STxA in the OMVs of the STxA-deficient mutant. Furthermore, STxB was located in its homo-pentameric complexes, as revealed by immunoprecipitation and immunoblotting with anti-STxB antibodies. These results suggest that STxB alone can be oligomerized into the B pentamer in the periplasm, and subsequently entrapped into the OMVs. Determination of the median lethal dose concentration for the OMV preparations suggests that the STxA-deficient OMVs containing STxB complex could be safely used as vaccine delivery vehicles.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Characterization of BNT2, an intrinsically curved DNA of Escherichia coli O157:H7. Biochem Biophys Res Commun 2010; 391:1792-7. [PMID: 20051226 DOI: 10.1016/j.bbrc.2009.12.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/28/2009] [Indexed: 01/27/2023]
Abstract
The gene regulation by intrinsically curved DNA is one way for bacterial sensing of and response to environmental changes. Previously, we showed that the genetic element BNT2 upstream of the ecf (eae-positive conserved fragment) operon in the Escherichia coli O157:H7 virulence plasmid (pO157) has characteristics typical of intrinsically curved DNA, including the presence of multi-homopolymeric adenine:thymine tracts (AT tracts) and electrophoretic anomaly at 4 degrees C. Here we report that a local intrinsic curvature induced by the two phased AT tracts within the unusual promoter sequence of BNT2 played a major role for its temperature-dependent promoter activity. The base substitution of the AT tract in the spacer DNA between the -35 and the unusual -10 regions of the BNT2 promoter with non-AT tract sequence reduced intrinsic curvature slightly at 4 degrees C, but greatly affected its transcriptional activity. This implies that such a local intrinsic curvature within the unusual promoter of BNT2 is important for thermoregulation of the ecf operon.
Collapse
|
12
|
Lim JY, Yoon JW, Hovde CJ. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 2010; 20:5-14. [PMID: 20134227 PMCID: PMC3645889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Enterohemorrhagic Escherichia coli O157:H7 is a major food-borne pathogen causing severe disease in humans worldwide. Healthy cattle are a reservoir of E. coli O157:H7 and bovine food products and fresh produce contaminated with bovine waste are the most common sources for disease outbreaks in the United States. E. coli O157:H7 also survives well in the environment. The ability to cause human disease, colonize the bovine gastrointestinal tract, and survive in the environment, requires that E. coli O157:H7 adapt to a wide variety of conditions. Three major virulence factors of E. coli O157:H7 have been identified including Shiga toxins, a pathogenicity island called the locus of enterocyte effacement, and an F-like plasmid, pO157. Among these virulence factors, the role of the pO157 is least understood. This review provides a board overview of E. coli O157:H7 with an emphasis on the pO157.
Collapse
Affiliation(s)
- Ji Youn Lim
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844, U.S.A
| | - Jang W. Yoon
- Advanced Human Resource and Research Group for Medical Science (BK21), Konkuk University School of Medicine, Seoul 143-701, Korea
| | - Carolyn J. Hovde
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844, U.S.A
| |
Collapse
|
13
|
Barnoy S, Jeong KI, Helm RF, Suvarnapunya AE, Ranallo RT, Tzipori S, Venkatesan MM. Characterization of WRSs2 and WRSs3, new second-generation virG(icsA)-based Shigella sonnei vaccine candidates with the potential for reduced reactogenicity. Vaccine 2009; 28:1642-54. [PMID: 19932216 DOI: 10.1016/j.vaccine.2009.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/02/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
Abstract
Live, attenuated Shigella vaccine candidates, such as Shigella sonnei strain WRSS1, Shigella flexneri 2a strain SC602, and Shigella dysenteriae 1 strain WRSd1, are attenuated principally by the loss of the VirG(IcsA) protein. These candidates have proven to be safe and immunogenic in volunteer trials and in one study, efficacious against shigellosis. One drawback of these candidate vaccines has been the reactogenic symptoms of fever and diarrhea experienced by the volunteers, that increased in a dose-dependent manner. New, second-generation virG(icsA)-based S. sonnei vaccine candidates, WRSs2 and WRSs3, are expected to be less reactogenic while retaining the ability to generate protective levels of immunogenicity seen with WRSS1. Besides the loss of VirG(IcsA), WRSs2 and WRSs3 also lack plasmid-encoded enterotoxin ShET2-1 and its paralog ShET2-2. WRSs3 further lacks MsbB2 that reduces the endotoxicity of the lipid A portion of the bacterial LPS. Studies in cell cultures and in gnotobiotic piglets demonstrate that WRSs2 and WRSs3 have the potential to cause less diarrhea due to loss of ShET2-1 and ShET2-2 as well as alleviate febrile symptoms by loss of MsbB2. In guinea pigs, WRSs2 and WRSs3 were as safe, immunogenic and efficacious as WRSS1.
Collapse
Affiliation(s)
- S Barnoy
- Division of Bacterial & Rickettsial Diseases, Walter Reed Army Institute of Research 503, Robert Grant Avenue, Silver Spring, MD 208914, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Venturini C, Beatson SA, Djordjevic SP, Walker MJ. Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic
Escherichia coli
virulence plasmid. FASEB J 2009; 24:1160-6. [PMID: 19917674 DOI: 10.1096/fj.09-144972] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carola Venturini
- School of Biological SciencesUniversity of WollongongWollongong New South Wales Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbane Queensland Australia
| | - Steven P. Djordjevic
- NSW Department of Primary IndustriesMenangle New South Wales Australia
- Institute for the Biotechnology of Infectious DiseasesUniversity of Technology SydneySydney New South Wales Australia
| | - Mark J. Walker
- School of Biological SciencesUniversity of WollongongWollongong New South Wales Australia
- School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbane Queensland Australia
| |
Collapse
|
15
|
Virulence, inflammatory potential, and adaptive immunity induced by Shigella flexneri msbB mutants. Infect Immun 2009; 78:400-12. [PMID: 19884336 DOI: 10.1128/iai.00533-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of genetically detoxified lipopolysaccharide (LPS) to stimulate adaptive immune responses is an ongoing area of investigation with significant consequences for the development of safe and effective bacterial vaccines and adjuvants. One approach to genetic detoxification is the deletion of genes whose products modify LPS. The msbB1 and msbB2 genes, which encode late acyltransferases, were deleted in the Shigella flexneri 2a human challenge strain 2457T to evaluate the virulence, inflammatory potential, and acquired immunity induced by strains producing underacylated lipid A. Consistent with a reduced endotoxic potential, S. flexneri 2a msbB mutants were attenuated in an acute mouse pulmonary challenge model. Attenuation correlated with decreases in the production of proinflammatory cytokines and in chemokine release without significant changes in lung histopathology. The levels of specific proinflammatory cytokines (interleukin-1beta [IL-1beta], macrophage inflammatory protein 1alpha [MIP-1alpha], and tumor necrosis factor alpha [TNF-alpha]) were also significantly reduced after infection of mouse macrophages with either single or double msbB mutants. Surprisingly, the msbB double mutant displayed defects in the ability to invade, replicate, and spread within epithelial cells. Complementation restored these phenotypes, but the exact nature of the defects was not determined. Acquired immunity and protective efficacy were also assayed in the mouse lung model, using a vaccination-challenge study. Both humoral and cellular responses were generally robust in msbB-immunized mice and afforded significant protection from lethal challenge. These data suggest that the loss of either msbB gene reduces the endotoxicity of Shigella LPS but does not coincide with a reduction in protective immune responses.
Collapse
|
16
|
Kim SH, Kim KS, Lee SR, Kim E, Kim MS, Lee EY, Gho YS, Kim JW, Bishop RE, Chang KT. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2150-9. [PMID: 19695218 DOI: 10.1016/j.bbamem.2009.08.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/19/2022]
Abstract
In an effort to devise a safer and more effective vaccine delivery system, outer membrane vesicles (OMVs) were engineered to have properties of intrinsically low endotoxicity sufficient for the delivery of foreign antigens. Our strategy involved mutational inactivation of the MsbB (LpxM) lipid A acyltransferase to generate OMVs of reduced endotoxicity from Escherichia coli (E. coli) O157:H7. The chromosomal tagging of a foreign FLAG epitope within an OmpA-fused protein was exploited to localize the FLAG epitope in the OMVs produced by the E. coli mutant having the defined msbB and the ompA::FLAG mutations. It was confirmed that the desired fusion protein (OmpA::FLAG) was expressed and destined to the outer membrane (OM) of the E. coli mutant from which the OMVs carrying OmpA::FLAG are released during growth. A luminal localization of the FLAG epitope within the OMVs was inferred from its differential immunoprecipitation and resistance to proteolytic degradation. Thus, by using genetic engineering-based approaches, the native OMVs were modified to have both intrinsically low endotoxicity and a foreign epitope tag to establish a platform technology for development of multifunctional vaccine delivery vehicles.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 is a pathotype of diarrheagenic E. coli that produces one or more Shiga toxins, forms a characteristic histopathology described as attaching and effacing lesions, and possesses the large virulence plasmid pO157. The bacterium is recognized worldwide, especially in developed countries, as an emerging food-borne bacterial pathogen, which causes disease in humans and in some animals. Healthy cattle are the principal and natural reservoir of E. coli O157:H7, and most disease outbreaks are, therefore, due to consumption of fecally contaminated bovine foods or dairy products. In this review, we provide a general overview of E. coli O157:H7 infection, especially focusing on the bacterial characteristics rather than on the host responses during infection.
Collapse
Affiliation(s)
- Jang W Yoon
- Division of Molecular and Life Science, Hanyang University, Ansan 426-791, Korea
| | | |
Collapse
|
18
|
Differential regulation by magnesium of the two MsbB paralogs of Shigella flexneri. J Bacteriol 2008; 190:3526-37. [PMID: 18359815 DOI: 10.1128/jb.00151-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Shigella flexneri, a gram-negative enteric pathogen, is unusual in that it contains two nonredundant paralogous genes that encode the myristoyl transferase MsbB (LpxM) that catalyzes the final step in the synthesis of the lipid A moiety of lipopolysaccharide. MsbB1 is encoded on the chromosome, and MsbB2 is encoded on the large virulence plasmid present in all pathogenic shigellae. We demonstrate that myristoyl transferase activity due to MsbB2 is detected in limited magnesium medium, but not in replete magnesium medium, whereas that due to MsbB1 is detected under both conditions. MsbB2 increases overall hexa-acylation of lipid A under limited magnesium conditions. Regulation of MsbB2 by magnesium occurs at the level of transcription and is dependent on the conserved magnesium-inducible PhoPQ two-component regulatory pathway. Direct hexanucleotide repeats within the promoter upstream of msbB2 were identified as a putative PhoP binding site, and mutations within the repeats led to diminished PhoP-dependent expression of a transcriptional fusion of lacZ to this promoter. Thus, the virulence plasmid-encoded paralog of msbB is induced under limited magnesium in a PhoPQ-dependent manner. PhoPQ regulates the response of many Enterobacteriaceae to environmental signals, which include modifications of lipid A that confer increased resistance of the organism to stressful environments and antimicrobial peptides. The findings reported here are the first example of gene duplication in which one paralog has selectively acquired the mechanism for differential regulation by PhoPQ. Our findings provide molecular insight into the mechanisms by which each of the two MsbB proteins of S. flexneri likely contributes to pathogenesis.
Collapse
|
19
|
Smith AE, Kim SH, Liu F, Jia W, Vinogradov E, Gyles CL, Bishop RE. PagP activation in the outer membrane triggers R3 core oligosaccharide truncation in the cytoplasm of Escherichia coli O157:H7. J Biol Chem 2008; 283:4332-43. [PMID: 18070877 PMCID: PMC5007128 DOI: 10.1074/jbc.m708163200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP is normally a latent enzyme, but it can be directly activated in outer membranes by lipid redistribution associated with a breach in the permeability barrier. We now demonstrate that a lipid A myristate deficiency in an E. coli O157:H7 msbB mutant constitutively activates PagP in outer membranes. The lipid A myristate deficiency is associated with hydrophobic antibiotic sensitivity and, unexpectedly, with serum sensitivity, which resulted from O-antigen polysaccharide absence due to a cytoplasmically determined truncation at the first outer core glucose unit of the R3 core oligosaccharide. Mutational inactivation of pagP in the myristate-deficient lipid A background aggravated the hydrophobic antibiotic sensitivity as a result of losing a partially compensatory increase in lipid A palmitoylation while simultaneously restoring serum resistance and O-antigen attachment to intact lipopolysaccharide. Complementation with either wild-type pagP or catalytically inactive pagPSer77Ala alleles restored the R3 core truncation. However, the intact lipopolysaccharide was preserved after complementation with an internal deletion pagPDelta5-14 allele, which mostly eliminates a periplasmic amphipathic alpha-helical domain but fully supports cell surface lipid A palmitoylation. Our findings indicate that activation of PagP not only triggers lipid A palmitoylation in the outer membrane but also separately truncates the R3 core oligosaccharide in the cytoplasm. We discuss the implication that PagP might function as an apical sensory transducer, which can be activated by a breach in the outer membrane permeability barrier.
Collapse
Affiliation(s)
- Abigail E Smith
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Coats SR, Do CT, Karimi-Naser LM, Braham PH, Darveau RP. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell Microbiol 2007; 9:1191-202. [PMID: 17217428 DOI: 10.1111/j.1462-5822.2006.00859.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharides containing underacylated lipid A structures exhibit reduced abilities to activate the human (h) Toll-like receptor 4 (TLR4) signalling pathway and function as potent antagonists against lipopolysaccharides bearing canonical lipid A structures. Expression of underacylated lipopolysaccharides has emerged as a novel mechanism utilized by microbial pathogens to modulate host innate immune responses. Notably, antagonistic lipopolysaccharides are prime therapeutic candidates for combating Gram negative bacterial sepsis. Penta-acylated msbB and tetra-acylated Porphyromonas gingivalis lipopolysaccharides functionally antagonize hexa-acylated Escherichia coli lipopolysaccharide-dependent activation of hTLR4 through the coreceptor, hMD-2. Here, the molecular mechanism by which these antagonistic lipopolysaccharides act at hMD-2 is examined. We present evidence that both msbB and P. gingivalis lipopolysaccharides are capable of direct binding to hMD-2. These antagonistic lipopolysaccharides can utilize at least two distinct mechanisms to block E. coli lipopolysaccharide-dependent activation of hTLR4. The main mechanism consists of direct competition between the antagonistic lipopolysaccharides and E. coli lipopolysaccharide for the same binding site on hMD-2, while the secondary mechanism involves the ability of antagonistic lipopolysaccharide-hMD-2 complexes to inhibit E. coli lipopolysaccharide-hMD-2 complexes function at hTLR4. It is also shown that both hTLR4 and hMD-2 contribute to the species-specific recognition of msbB and P. gingivalis lipopolysaccharides as antagonists at the hTLR4 complex.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
22
|
Chen C, Coats SR, Bumgarner RE, Darveau RP. Hierarchical gene expression profiles of HUVEC stimulated by different lipid A structures obtained from Porphyromonas gingivalis and Escherichia coli. Cell Microbiol 2006; 9:1028-38. [PMID: 17166236 DOI: 10.1111/j.1462-5822.2006.00849.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of lipid A structural variants to elicit unique endothelial cell gene expression was examined by measuring global gene expression profiles in human umbilical cord vein endothelial cells (HUVEC) using Affymetrix full genome chips. Two lipid A structural variants obtained from Porphyromonas gingivalis designated PgLPS(1435/1449) and PgLPS(1690) as well as LPS obtained from Escherichia coli wild type and an E. coli msbB mutant (missing myristic acid in the lipid A) were examined. Each of these lipid A structures has been shown to interact with TLR4; however, PgLPS(1435/1449) and E. coli msbB LPS have been shown to be TLR4 antagonists while PgLPS(1690) and wild-type E. coli LPS are TLR4 agonists. It was found that PgLPS(1435/1449) and PgLPS(1690) as well as E. coli msbB LPS activated a subset of those genes significantly transcribed in response to E. coli wild-type LPS. Furthermore, the subset of genes expressed in response to the different lipid A structural forms were those most significantly activated by wild-type E. coli LPS demonstrating a hierarchy in TLR4-dependent endothelial cell gene activation. A unique gene expression profile for the weak TLR4 agonist PgLPS(1690) was observed and represents a TLR4 hierarchy in endothelial cell gene activation.
Collapse
Affiliation(s)
- Casey Chen
- Department of Periodontics and Oral Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
23
|
Kim SH, Jia W, Parreira VR, Bishop RE, Gyles CL. Phosphoethanolamine substitution in the lipid A of Escherichia coli O157 : H7 and its association with PmrC. Microbiology (Reading) 2006; 152:657-666. [PMID: 16514146 DOI: 10.1099/mic.0.28692-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study shows that lipid A ofEscherichia coliO157 : H7 differs from that ofE. coliK-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. ThepmrCgene responsible for the addition of PEtN to the lipid A ofE. coliO157 : H7 was inactivated and the changes in lipid A profiles were assessed. ThepmrCnull mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagicE. coliand absent from the lipid A ofE. coliK-12. However, the clonedpmrCO157gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species inE. coliK-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide antibiotics, suggesting that the lipid A modification with PEtN would be beneficial for survival ofE. coliO157 : H7 in certain environmental niches. However, PEtN substitution in the lipid A profiles was not detected when putative inner-membrane proteins (YhbX/YbiP/YijP/Ecf3) that show significant similarity with PmrC in amino acid sequence were expressed from high-copy-number plasmids inE. coliK-12. This suggests that these potential homologues are not responsible for the addition of PEtN to lipid A in thepmrCmutant ofE. coliO157 : H7. When cells were treated with EDTA, the amount of palmitoylated lipid A from the cells carrying a high-copy-number plasmid clone ofpmrCO157that resulted in significant increase of PEtN substitution was unchanged compared with cells without PEtN substitution, suggesting that the PEtN moiety substituted in lipid A does not compensate for the loss of divalent cations required for bridging neighbouring lipid A molecules.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Departments of Laboratory Medicine and Pathobiology and Biochemistry, University of Toronto, 6213 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Wenyi Jia
- Departments of Laboratory Medicine and Pathobiology and Biochemistry, University of Toronto, 6213 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Valeria R Parreira
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Russell E Bishop
- Departments of Laboratory Medicine and Pathobiology and Biochemistry, University of Toronto, 6213 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Carlton L Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
24
|
Froehlich B, Parkhill J, Sanders M, Quail MA, Scott JR. The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J Bacteriol 2005; 187:6509-16. [PMID: 16159784 PMCID: PMC1236633 DOI: 10.1128/jb.187.18.6509-6516.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CS1 is the prototype of a class of pili of enterotoxigenic Escherichia coli (ETEC) associated with diarrheal disease in humans. The genes encoding this pilus are carried on a large plasmid, pCoo. We report the sequence of the complete 98,396-bp plasmid. Like many other virulence plasmids, pCoo is a mosaic consisting of regions derived from multiple sources. Complete and fragmented insertion sequences (IS) make up 24% of the total DNA and are scattered throughout the plasmid. The pCoo DNA between these IS elements has a wide range of G+C content (35 to 57%), suggesting that these regions have different ancestries. We find that the pCoo plasmid is a cointegrate of two functional replicons, related to R64 and R100, which are joined at a 1,953-bp direct repeat of IS100. Recombination between these repeats in the cointegrate generates the two smaller replicons which coexist with the cointegrate in the culture. Both of the smaller replicons have plasmid stability genes as well as genes that may be important in pathogenesis. Examination by PCR of 17 other unrelated CS1 ETEC strains with a variety of serotypes demonstrated that all contained at least parts of both replicons of pCoo and that strains of the O6 genotype appear to contain a cointegrate very similar to pCoo. The results suggest that this family of CS1-encoding plasmids is evolving rapidly.
Collapse
Affiliation(s)
- Barbara Froehlich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
25
|
John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, Sarracino D, Progulske-Fox A, Hillman JD, Handfield M, Tarr PI, Calderwood SB. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect Immun 2005; 73:2665-79. [PMID: 15845468 PMCID: PMC1087376 DOI: 10.1128/iai.73.5.2665-2679.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using in vivo-induced antigen technology (IVIAT), a modified immunoscreening technique that circumvents the need for animal models, we directly identified immunogenic Escherichia coli O157:H7 (O157) proteins expressed either specifically during human infection but not during growth under standard laboratory conditions or at significantly higher levels in vivo than in vitro. IVIAT identified 223 O157 proteins expressed during human infection, several of which were unique to this study. These in vivo-induced (ivi) proteins, encoded by ivi genes, mapped to the backbone, O islands (OIs), and pO157. Lack of in vitro expression of O157-specific ivi proteins was confirmed by proteomic analysis of a mid-exponential-phase culture of E. coli O157 grown in LB broth. Because ivi proteins are expressed in response to specific cues during infection and might help pathogens adapt to and counter hostile in vivo environments, those identified in this study are potential targets for drug and vaccine development. Also, such proteins may be exploited as markers of O157 infection in stool specimens.
Collapse
Affiliation(s)
- Manohar John
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yoon JW, Lim JY, Park YH, Hovde CJ. Involvement of the Escherichia coli O157:H7(pO157) ecf operon and lipid A myristoyl transferase activity in bacterial survival in the bovine gastrointestinal tract and bacterial persistence in farm water troughs. Infect Immun 2005; 73:2367-78. [PMID: 15784583 PMCID: PMC1087426 DOI: 10.1128/iai.73.4.2367-2378.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans. Recently, we reported that the pO157 ecf (E. coli attaching and effacing gene-positive conserved fragments) operon is thermoregulated by an intrinsically curved DNA and contains the genes for bacterial surface-associated proteins, including a second copy of lipid A myristoyl transferase, whose chromosomal copy is the lpxM gene product. E. coli O157:H7 survives and persists well in diverse environments from the human and bovine gastrointestinal tracts (GIT) to nutrient-dilute farm water troughs. Transcriptional regulation of the ecf operon by intrinsic DNA curvature and the genetic redundancy of lpxM that is associated with lipid A modification led us to hypothesize that the pO157 ecf operon and lpxM are associated with bacterial survival and persistence in various in vivo and ex vivo environments by optimizing bacterial membrane structure and/or integrity. To test this hypothesis, three isogenic ecf operon and/or lpxM deletion mutants of E. coli O157:H7 ATCC 43894 were constructed and analyzed in vitro and in vivo. The results showed that a double mutant carrying deletions in the ecf and lpxM genes had an altered lipid A structure and membrane fatty acid composition, did not survive passage through the bovine GIT, did not persist well in farm water troughs, had increased susceptibility to a broad spectrum of antibiotics and detergents, and had impaired motility. Electron microscopic analyses showed gross changes in bacterial membrane structure.
Collapse
Affiliation(s)
- Jang W Yoon
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
27
|
Kaniuk NA, Vinogradov E, Li J, Monteiro MA, Whitfield C. Chromosomal and plasmid-encoded enzymes are required for assembly of the R3-type core oligosaccharide in the lipopolysaccharide of Escherichia coli O157:H7. J Biol Chem 2004; 279:31237-50. [PMID: 15155763 DOI: 10.1074/jbc.m401879200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type R3 core oligosaccharide predominates in the lipopolysaccharides from enterohemorrhagic Escherichia coli isolates including O157:H7. The R3 core biosynthesis (waa) genetic locus contains two genes, waaD and waaJ, that are predicted to encode glycosyltransferases involved in completion of the outer core. Through determination of the structures of the lipopolysaccharide core in precise mutants and biochemical analyses of enzyme activities, WaaJ was shown to be a UDP-glucose:(galactosyl) lipopolysaccharide alpha-1,2-glucosyltransferase, and WaaD was shown to be a UDP-glucose:(glucosyl)lipopolysaccharide alpha-1,2-glucosyltransferase. The residue added by WaaJ was identified as the ligation site for O polysaccharide, and this was confirmed by determination of the structure of the linkage region in serotype O157 lipopolysaccharide. The initial O157 repeat unit begins with an N-acetylgalactosamine residue in a beta-anomeric configuration, whereas the biological repeat unit for O157 contains alpha-linked N-acetylgalactosamine residues. With the characterization of WaaJ and WaaD, the activities of all of the enzymes encoded by the R3 waa locus are either known or predicted from homology data with a high level of confidence. However, when core oligosaccharide structure is considered, the origin of an additional alpha-1,3-linked N-acetylglucosamine residue in the outer core is unknown. The gene responsible for a nonstoichiometric alpha-1,7-linked N-acetylglucosamine substituent in the heptose (inner core) region was identified on the large virulence plasmids of E. coli O157 and Shigella flexneri serotype 2a. This is the first plasmid-encoded core oligosaccharide biosynthesis enzyme reported in E. coli.
Collapse
Affiliation(s)
- Natalia A Kaniuk
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|