1
|
Sohn R, Jenei-Lanzl Z. Role of the Sympathetic Nervous System in Mild Chronic Inflammatory Diseases: Focus on Osteoarthritis. Neuroimmunomodulation 2023; 30:143-166. [PMID: 37429263 PMCID: PMC10428144 DOI: 10.1159/000531798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The sympathetic nervous system (SNS) is a major regulatory mediator connecting the brain and the immune system that influences accordingly inflammatory processes within the entire body. In the periphery, the SNS exerts its effects mainly via its neurotransmitters norepinephrine (NE) and epinephrine (E), which are released by peripheral nerve endings in lymphatic organs and other tissues. Depending on their concentration, NE and E bind to specific α- and β-adrenergic receptor subtypes and can cause both pro- and anti-inflammatory cellular responses. The co-transmitter neuropeptide Y, adenosine triphosphate, or its metabolite adenosine are also mediators of the SNS. Local pro-inflammatory processes due to injury or pathogens lead to an activation of the SNS, which in turn induces several immunoregulatory mechanisms with either pro- or anti-inflammatory effects depending on neurotransmitter concentration or pathological context. In chronic inflammatory diseases, the activity of the SNS is persistently elevated and can trigger detrimental pathological processes. Recently, the sympathetic contribution to mild chronic inflammatory diseases like osteoarthritis (OA) has attracted growing interest. OA is a whole-joint disease and is characterized by mild chronic inflammation in the joint. In this narrative article, we summarize the underlying mechanisms behind the sympathetic influence on inflammation during OA pathogenesis. In addition, OA comorbidities also accompanied by mild chronic inflammation, such as hypertension, obesity, diabetes, and depression, will be reviewed. Finally, the potential of SNS-based therapeutic options for the treatment of OA will be discussed.
Collapse
Affiliation(s)
- Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci 2022; 43:43-55. [PMID: 34776241 DOI: 10.1016/j.tips.2021.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Resolution of inflammation requires proresolving molecular pathways triggered as part of the host response during the inflammatory phase. Adenosine and its receptors, which are collectively called the adenosine system, shape inflammatory cell activity during the active phase of inflammation, leading these immune cells toward a functional repolarization, thus contributing to the onset of resolution. Strategies based on the resolution of inflammation have shaped a new area of pharmacology referred to as 'resolution pharmacology' and in this regard, the adenosine system represents an interesting target to design novel pharmacological tools to 'resolve' the inflammatory process. In this review, we outline the role of the adenosine system in driving the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Pasquini S, Contri C, Borea PA, Vincenzi F, Varani K. Adenosine and Inflammation: Here, There and Everywhere. Int J Mol Sci 2021; 22:7685. [PMID: 34299305 PMCID: PMC8304851 DOI: 10.3390/ijms22147685] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a ubiquitous endogenous modulator with the main function of maintaining cellular and tissue homeostasis in pathological and stress conditions. It exerts its effect through the interaction with four G protein-coupled receptor (GPCR) subtypes referred as A1, A2A, A2B, and A3 adenosine receptors (ARs), each of which has a unique pharmacological profile and tissue distribution. Adenosine is a potent modulator of inflammation, and for this reason the adenosinergic system represents an excellent pharmacological target for the myriad of diseases in which inflammation represents a cause, a pathogenetic mechanism, a consequence, a manifestation, or a protective factor. The omnipresence of ARs in every cell of the immune system as well as in almost all cells in the body represents both an opportunity and an obstacle to the clinical use of AR ligands. This review offers an overview of the cardinal role of adenosine in the modulation of inflammation, showing how the stimulation or blocking of its receptors or agents capable of regulating its extracellular concentration can represent promising therapeutic strategies for the treatment of chronic inflammatory pathologies, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.)
| |
Collapse
|
4
|
Antonioli L, Fornai M, Blandizzi C, Pacher P, Haskó G. Adenosine signaling and the immune system: When a lot could be too much. Immunol Lett 2019; 205:9-15. [PMID: 29702147 DOI: 10.1016/j.imlet.2018.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Adenosine is increasingly recognized as a key mediator of the immune response. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell-surface receptors, classified into four subtypes: A1, A2A, A2B and A3. These receptors, expressed virtually on all immune cells, modulate all aspects of immune/inflammatory responses. These immunoregulatory effects, which are mostly anti-inflammatory, contribute to the general tissue protective effects of adenosine and its receptors. In some instances, however, the effect of adenosine on the immune system is deleterious, as prolonged adenosine signaling can hinder anti-tumor and antibacterial immunity, thereby promoting cancer development and progression and sepsis, respectively.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy; Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
5
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 526] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
6
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
7
|
Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S. A 3 Adenosine Receptors as Modulators of Inflammation: From Medicinal Chemistry to Therapy. Med Res Rev 2018; 38:1031-1072. [PMID: 28682469 PMCID: PMC5756520 DOI: 10.1002/med.21456] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 01/09/2023]
Abstract
The A3 adenosine receptor (A3 AR) subtype is a novel, promising therapeutic target for inflammatory diseases, such as rheumatoid arthritis (RA) and psoriasis, as well as liver cancer. A3 AR is coupled to inhibition of adenylyl cyclase and regulation of mitogen-activated protein kinase (MAPK) pathways, leading to modulation of transcription. Furthermore, A3 AR affects functions of almost all immune cells and the proliferation of cancer cells. Numerous A3 AR agonists, partial agonists, antagonists, and allosteric modulators have been reported, and their structure-activity relationships (SARs) have been studied culminating in the development of potent and selective molecules with drug-like characteristics. The efficacy of nucleoside agonists may be suppressed to produce antagonists, by structural modification of the ribose moiety. Diverse classes of heterocycles have been discovered as selective A3 AR blockers, although with large species differences. Thus, as a result of intense basic research efforts, the outlook for development of A3 AR modulators for human therapeutics is encouraging. Two prototypical selective agonists, N6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; CF101) and 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA; CF102), have progressed to advanced clinical trials. They were found safe and well tolerated in all preclinical and human clinical studies and showed promising results, particularly in psoriasis and RA, where the A3 AR is both a promising therapeutic target and a biologically predictive marker, suggesting a personalized medicine approach. Targeting the A3 AR may pave the way for safe and efficacious treatments for patient populations affected by inflammatory diseases, cancer, and other conditions.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Adenosine pretreatment attenuates angiotensin II-mediated p38 MAPK activation in a protein kinase A dependent manner. ASIAN BIOMED 2018. [DOI: 10.2478/abm-2010-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Adenosine is known as a protective and anti-inflammatory nucleoside. Angiotensin II is the main hormone of the renin-angiotensin system. It is associated with endothelial permeability, recruitment, and activation of the immune cells through induction of inflammatory mediators. Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammatory processes mediated by macrophages. Objectives: Investigate whether adenosine pretreatment modulates angiotensin II-induced MMP-9 expression and activation of signaling molecules. Methods: Human monocytic U-937 cells were treated with either adenosine or angiotensin II alone or angiotensin II following a pretreatment with adenosine. Supernatants were analyzed for MMP-9 activity by zymography method. MMP-9 gene expression was analyzed using real-time PCR. Activation of inflammatory mediators IκB-α, NF-κB, JNK, p38 MAPK, and STAT3 were analyzed by a multi-target ELISA kit. Association of Protein kinase A (PKA) in adenosine effects was studied by pre-incubation with H89, a selective PKA inhibitor. Results: Treatment of the cells with angiotensin II significantly increased MMP-9 production (p <0.05). Adenosine pretreatment did not attenuate this angiotensin II effect. Angiotensin II treatment induced NF-κB, JNK and p38 activation. Pretreatment with adenosine prior to angiotensin II stimulation showed a 40% inhibitory effect on p38 induction (p <0.05). This effect was reversed by PKA inhibition. Conclusion: The present data confirmed that monocytic MMP-9 was a target gene for angiotensin II. Adenosine pretreatment did not inhibit MMP-9 increase in response to angiotensin II. However, it showed a potential inhibitory effect on angiotensin II inflammatory signaling.
Collapse
|
9
|
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67:74-102. [PMID: 25387804 DOI: 10.1124/pr.113.008540] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Pier Giovanni Baraldi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Mojgan Aghazadeh Tabrizi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| |
Collapse
|
10
|
Antonioli L, Csóka B, Fornai M, Colucci R, Kókai E, Blandizzi C, Haskó G. Adenosine and inflammation: what's new on the horizon? Drug Discov Today 2014; 19:1051-68. [DOI: 10.1016/j.drudis.2014.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
|
11
|
Hofer M, Pospíšil M, Dušek L, Hoferová Z, Komůrková D. Lack of adenosine A3 receptors causes defects in mouse peripheral blood parameters. Purinergic Signal 2014; 10:509-14. [PMID: 24763970 DOI: 10.1007/s11302-014-9412-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022] Open
Abstract
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic,
| | | | | | | | | |
Collapse
|
12
|
Vergani A, Tezza S, Fotino C, Visner G, Pileggi A, Chandraker A, Fiorina P. The purinergic system in allotransplantation. Am J Transplant 2014; 14:507-14. [PMID: 24433446 DOI: 10.1111/ajt.12567] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 01/25/2023]
Abstract
The purine nucleotide adenosine triphosphate (ATP) is a universal source of energy for any intracellular reaction. Under specific physiological or pathological conditions, ATP can be released into extracellular spaces, where it binds and activates the purinergic receptors system (i.e. P2X, P2Y and P1 receptors). Extracellular ATP (eATP) binds to P2X or P2Y receptors in immune cells, where it mediates proliferation, chemotaxis, cytokine release, antigen presentation and cytotoxicity. eATP is then hydrolyzed by ectonucleotidases into adenosine diphosphate (ADP), which activates P2Y receptors. Ectonucleotidases also hydrolyze ADP to adenosine monophosphate and adenosine, which binds P1 receptors. In contrast to P2X and P2Y receptors, P1 receptors exert mainly an inhibitory effect on the immune response. In transplantation, a prominent role has been demonstrated for the eATP/P2X7R axis; the targeting of this pathway in fact is associated with long-term graft function and reduced graft versus host disease severity in murine models. Novel P2X receptor inhibitors are available for clinical use and are under assessment as immunomodulatory agents. In this review, we will focus on the relevance of the purinergic system and on the potential benefits of targeting this system in allograft rejection and tolerance.
Collapse
Affiliation(s)
- A Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Ondrackova P, Kovaru H, Kovaru F, Leva L, Faldyna M. Adenosine modulates LPS-induced cytokine production in porcine monocytes. Cytokine 2013; 61:953-61. [DOI: 10.1016/j.cyto.2012.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/13/2012] [Accepted: 12/15/2012] [Indexed: 11/28/2022]
|
14
|
Sakowicz-Burkiewicz M, Kitowska A, Grden M, Maciejewska I, Szutowicz A, Pawelczyk T. Differential effect of adenosine receptors on growth of human colon cancer HCT 116 and HT-29 cell lines. Arch Biochem Biophys 2013; 533:47-54. [PMID: 23454010 DOI: 10.1016/j.abb.2013.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 11/27/2022]
Abstract
The study aimed to evaluate the impact of adenosine receptors (ARs) on human colon tumor cells (HCT 116, HT-29) growth and sensitivity to 5-Fluorouracil (5-FU) an anticancer chemotherapeutic drug. The exposure of cancer cells to a selective A(3)-AR agonist (IB-MECA) resulted in an increase in HT-29 cells number, whereas the number of HCT 116 cells decreased significantly. In the presence of IB-MECA (1 μM) the percentage of apoptotic HT-29 cells significantly decreased, whereas the number of apoptotic and necrotic HCT 116 cells increased by 3- and 2,5-fold, respectively. The application of a selective A(2A)-AR agonist resulted in the increased survival of HCT 116 cells, but not HT-29 cells. The blockade of A(2A)-AR with ZM 241385 (0.1 μM) significantly increased the cytotoxicity of 5-FU (1 μM) in HCT 116 cells but not in HT-29 cells. The suppression of A(3)-AR with MRS 1523 (1 μM) increased the sensitivity of HT-29 cells to 5-FU while response of HCT 116 cells to 5-FU decreased. The growth promoting effect of IB-MECA in HT-29 cells was associated with the decreased intracellular cAMP level, whereas IB-MECA growth inhibitory effect in HCT 116 cells was abolished by okadaic acid (2 nM) indicating the involvement of protein phosphatase PP2A.
Collapse
|
15
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
INTRODUCTION Adenosine is an endogenous nucleoside that accumulates in the extracellular space in response to metabolic stress and cell damage. Extracellular adenosine is a signaling molecule that signals by activating four GPCRs: the A(1), A(2A), A(2B) and A(3) receptors. Since the discovery of A(3) adenosine receptors, accumulating evidence has identified these receptors as potential targets for therapeutic intervention. AREAS COVERED A(3) adenosine receptors are expressed on the surface of most immune cell types, including neutrophils, macrophages, dendritic cells, lymphocytes and mast cells. A(3) adenosine receptor activation on immune cells governs a broad array of immune cell functions, which include cytokine production, degranulation, chemotaxis, cytotoxicity, apoptosis and proliferation. In accordance with their multitudinous immunoregulatory actions, targeting A(3) adenosine receptors has been shown to impact the course of a wide spectrum of immune-related diseases, such as asthma, rheumatoid arthritis, cancer, ischemia and inflammatory disorders. EXPERT OPINION Given the existence of both preclinical and early clinical data supporting the utility of A(3) adenosine receptor ligands in treating immune-related diseases, further development of A(3) adenosine receptor ligands is anticipated.
Collapse
Affiliation(s)
- Balázs Koscsó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Balázs Csóka
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Bethesda, MD 20892-9413, USA
| | - György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei krt. Debrecen 4032, Hungary
| |
Collapse
|
17
|
Antonioli L, Fornai M, Colucci R, Tuccori M, Blandizzi C. Pharmacological modulation of adenosine receptor pathways and inflammatory disorders: the way towards novel therapeutics? Expert Opin Investig Drugs 2011; 20:717-21. [PMID: 21506907 DOI: 10.1517/13543784.2011.579104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Hofer M, Pospisil M, Weiterova L, Hoferova Z. The role of adenosine receptor agonists in regulation of hematopoiesis. Molecules 2011; 16:675-85. [PMID: 21242946 PMCID: PMC6259153 DOI: 10.3390/molecules16010675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/04/2011] [Accepted: 01/17/2011] [Indexed: 11/16/2022] Open
Abstract
The review summarizes data evaluating the role of adenosine receptor signaling in murine hematopoietic functions. The studies carried out utilized either non-selective activation of adenosine receptors induced by elevation of extracellular adenosine or by administration of synthetic adenosine analogs having various proportions of selectivity for a particular receptor. Numerous studies have described stimulatory effects of non-selective activation of adenosine receptors, manifested as enhancement of proliferation of cells at various levels of the hematopoietic hierarchy. Subsequent experimental approaches, considering the hematopoiesis-modulating action of adenosine receptor agonists with a high level of selectivity to individual adenosine receptor subtypes, have revealed differential effects of various adenosine analogs. Whereas selective activation of A₁ receptors has resulted in suppression of proliferation of hematopoietic progenitor and precursor cells, that of A₃ receptors has led to stimulated cell proliferation in these cell compartments. Thus, A₁ and A₃ receptors have been found to play a homeostatic role in suppressed and regenerating hematopoiesis. Selective activation of adenosine A₃ receptors has been found to act curatively under conditions of drug- and radiation-induced myelosuppression. The findings in these and further research areas will be summarized and mechanisms of hematopoiesis-modulating action of adenosine receptor agonists will be discussed.
Collapse
Affiliation(s)
- Michal Hofer
- Working Group of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Abstract
The study of the A(3) adenosine receptor (A(3)AR) represents a rapidly growing and intense area of research in the adenosine field. The present chapter will provide an overview of the expression patterns, molecular pharmacology and functional role of this A(3)AR subtype under pathophysiological conditions. Through studies utilizing selective A(3)AR agonists and antagonists, or A(3)AR knockout mice, it is now clear that this receptor plays a critical role in the modulation of ischemic diseases as well as in inflammatory and autoimmune pathologies. Therefore, the potential therapeutic use of agonists and antagonists will also be described. The discussion will principally address the use of such compounds in the treatment of brain and heart ischemia, asthma, sepsis and glaucoma. The final part concentrates on the molecular basis of A(3)ARs in autoimmune diseases such as rheumatoid arthritis, and includes a description of clinical trials with the selective agonist CF101. Based on this chapter, it is evident that continued research to discover agonists and antagonists for the A(3)AR subtype is warranted.
Collapse
|
20
|
Soop A, Sundén-Cullberg J, Albert J, Hållström L, Treutiger CJ, Sollevi A. Adenosine infusion attenuates soluble RAGE in endotoxin-induced inflammation in human volunteers. Acta Physiol (Oxf) 2009; 197:47-53. [PMID: 19302259 DOI: 10.1111/j.1748-1716.2009.01985.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM To evaluate possible anti-inflammatory effects of pre-treatment with adenosine in a human experimental inflammatory model. METHODS The study design was double-blind, crossover, placebo-controlled and randomized. In the Intensive Care Unit of a university hospital, 16 healthy male volunteers were treated for 5.5 h with infusions of adenosine 40 microg kg(-1) min(-1) or placebo. Thirty minutes after the start of adenosine or placebo, 2 ng kg(-1)E-Coli endotoxin was administered. Heart rate, body temperature, blood pressure, plasma cytokines (TNF-alpha, IL-6 and IL-10), soluble RAGE and resistin, exhaled nitric oxide and nitrite/nitrate in urine were determined. RESULTS Endotoxin elicited the expected clinical signs of an inflammatory reaction (tachycardia, fever) and led to prominent release of the cytokines studied (P < 0.001). Resistin in plasma increased after endotoxin (P < 0.001). After placebo treatment, soluble RAGE (sRAGE) in plasma increased 5 h after the endotoxin challenge (P < 0.001) but not after adenosine. After placebo, orally exhaled NO increased with a peak at 4 h (P < 0.001), although there was no statistically significant difference between the two treatments. Nitrite/nitrate in urine (n = 11) did not differ between adenosine and placebo treatments. CONCLUSION In conclusion, adenosine infusion starting before endotoxin challenge in humans attenuated sRAGE significantly but otherwise had no clear anti-inflammatory effect. Adenosine as a potential anti-inflammatory treatment in humans needs further study, including use of higher doses. The mechanism underlying the effect of adenosines on sRAGE remains unknown.
Collapse
Affiliation(s)
- A Soop
- Department for Clinical Science Intervention and Technology, Division of Anaesthesiology and Intensive Care, Karolinska University Hospital, Huddinge, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Purinergic signaling and immune modulation at the schistosome surface? Trends Parasitol 2009; 25:256-60. [PMID: 19423396 DOI: 10.1016/j.pt.2009.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/25/2009] [Accepted: 03/04/2009] [Indexed: 12/20/2022]
Abstract
After tissue stress or injury, intracellular ATP can be released into the extracellular environment. This signals cell damage because extracellular ATP acts as a danger-associated molecular pattern (DAMP) that is potently proinflammatory. Vertebrates temper this effect by catabolizing ATP to adenosine - a strongly anti-inflammatory molecule - using a set of characterized ecto-enzymes (notably alkaline phosphatase, phosphodiesterase and ATP diphosphohydrolase). Strikingly, schistosomes in the bloodstream have this same set of ATP-catabolizing enzymes on their tegumental surfaces. It is our opinion that these function to remove the DAMP (ATP) released by host cells in response to schistosome intravascular migration. We propose this as one mechanism by which schistosomes prevent their hosts from focusing immunological mediators in their vicinity.
Collapse
|
22
|
Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB. Caffeine modulates TNF-alpha production by cord blood monocytes: the role of adenosine receptors. Pediatr Res 2009; 65:203-8. [PMID: 19047957 DOI: 10.1203/pdr.0b013e31818d66b1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Caffeine, a nonspecific adenosine receptor (AR) antagonist is widely used to treat apnea of prematurity. Because adenosine modulates multiple biologic processes including inflammation, we hypothesized that AR blockade by caffeine would increase cytokine release from neonatal monocytes. Using cord blood monocytes (CBM), we investigated 1) the changes in AR mRNA profile by real time quantitative reverse-transcription polymerase-chain-reaction (qRT-PCR) and protein expression (western blot) after in vitro culture, caffeine or lipopolysaccharide (LPS) exposure, and 2) the modulation of cytokine release and cyclic adenosine monophosphate (cAMP) production by enzyme-linked immunosorbent assay (ELISA) induced by caffeine and specific AR antagonists: DPCPX(A1R), ZM241385(A2aR), MRS1754(A2bR), and MRS1220(A3R). After 48 h in culture, A2aR and A2bR gene expression increased 1.9 (p = 0.04) and 2.5-fold (p = 0.003), respectively. A1R protein expression directly correlated with increasing LPS concentrations (p = 0.01), with minimal expression preexposure. Only caffeine (50 microM) and DPCPX (10 nM) decreased tumor necrosis factor-alpha (TNF-alpha) release from LPS activated-CBM by 20 and 25% (p = 0.01) and TNF-alpha gene expression by 30 and 50%, respectively, in conjunction with a > or =2-fold increase in cAMP (p < 0.05). AR blockade did not modulate other measured cytokines. The induction of A1R after LPS exposure suggests an important role of this receptor in the control of inflammation in neonates. Our findings also suggest that caffeine, via A1R blockade, increases cAMP production and inhibits pretranscriptional TNF-alpha production by CBM.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
24
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 2008; 120:233-53. [PMID: 18848843 DOI: 10.1016/j.pharmthera.2008.08.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 12/20/2022]
Abstract
The wide distribution of ATP and adenosine receptors as well as enzymes for purine metabolism in different gut regions suggests a complex role for these mediators in the regulation of gastrointestinal functions. Studies in rodents have shown a significant involvement of adenosine in the control of intestinal secretion, motility and sensation, via activation of A1, A2A, A2B or A3 purinergic receptors, as well as the participation of ATP in the regulation of enteric functions, through the recruitment of P2X and P2Y receptors. Increasing interest is being focused on the involvement of ATP and adenosine in the pathophysiology of intestinal disorders, with particular regard for inflammatory bowel diseases (IBDs), intestinal ischemia, post-operative ileus and related dysfunctions, such as gut dysmotility, diarrhoea and abdominal discomfort/pain. Current knowledge suggests that adenosine contributes to the modulation of enteric immune and inflammatory responses, leading to anti-inflammatory actions. There is evidence supporting a role of adenosine in the alterations of enteric motor and secretory activity associated with bowel inflammation. In particular, several studies have highlighted the importance of adenosine in diarrhoea, since this nucleoside participates actively in the cross-talk between immune and epithelial cells in the presence of diarrhoeogenic stimuli. In addition, adenosine exerts complex regulatory actions on pain transmission at peripheral and spinal sites. The present review illustrates current information on the role played by adenosine in the regulation of enteric functions, under normal or pathological conditions, and discusses pharmacological interventions on adenosine pathways as novel therapeutic options for the management of gut disorders and related abdominal symptoms.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Pharmacological modulation of adenosine system: novel options for treatment of inflammatory bowel diseases. Inflamm Bowel Dis 2008; 14:566-74. [PMID: 18022872 DOI: 10.1002/ibd.20316] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic disorders resulting from abnormal and persistent immune responses which lead to severe tissue injury and disturbances in digestive motor/secretory functions. At present, pharmacotherapy represents the cornerstone for the management of IBDs, and recent advances in understanding the immunopathogenesis of intestinal inflammation suggest the adenosine system as an attractive target for development of novel drugs against gut inflammatory disorders. Consistent evidence indicates that adenosine plays a relevant role in the regulation of immune system via interaction with specific cell-membrane G-protein-coupled receptors (A(1), A(2a), A(2b), and A(3)). Moreover, this nucleoside is implicated in the control of enteric neurotransmission and gut motor functions. In the presence of inflammation, the adenosine system acts as a sensible sensor apparatus, which, through dynamic modifications in the expression of ecto-enzymes and purinergic receptors, adapts its metabolism to tissue health status and contributes to the mechanisms deputed to the protection of tissues against inflammatory injuries. In keeping with these concepts, it is becoming increasingly appreciated that drugs targeted on adenosine receptors or enzymes responsible for adenosine catabolism can exert beneficial effects on experimental models of intestinal inflammation. This review aims to discuss the role of adenosine in the regulation of enteric immune responses and gut neuromuscular functions in the presence of inflammation, as well as to highlight the mechanisms through which the pharmacological modulation of adenosine pathways may have potential applications for the therapeutic management of IBDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Clark AN, Youkey R, Liu X, Jia L, Blatt R, Day YJ, Sullivan GW, Linden J, Tucker AL. A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 2007; 101:1130-8. [PMID: 17901362 DOI: 10.1161/circresaha.107.150110] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is a proangiogenic purine nucleoside released from ischemic and hypoxic tissues. Of the 4 adenosine receptor (AR) subtypes (A1, A2A, A2B, and A3), the A2 and A3 have been previously linked to the modulation of angiogenesis. We used the chicken chorioallantoic membrane (CAM) model to determine whether A1 AR activation affects angiogenesis. We cloned and pharmacologically characterized chicken AR subtypes to evaluate the selectivity of various agonists and antagonists. Application of the A1 AR-selective agonist N6-cyclopentyladenosine (CPA; 100 nmol/L) to the CAM resulted in a 40% increase in blood vessel number (P<0.01), which was blocked by the A1 AR-selective antagonist C8-(N-methylisopropyl)-amino-N6-(5'-endohydroxy)-endonorbornan-2-yl-9-methyladenine (WRC-0571; 1 micromol/L). Selective A2A AR agonists did not stimulate angiogenesis in the CAM. In an ex vivo rat aortic ring model of angiogenesis that includes cocultured endothelial cells, fibroblasts, and smooth muscle cells, 50 nmol/L CPA did not directly stimulate capillary formation; however, medium from human mononuclear cells pretreated with CPA, but not vehicle, increased capillary formation by 48% (P<0.05). This effect was blocked by WRC-0571 (1.5 micromol/L) or anti-VEGF antibody (1 microg/mL). CPA (5 nmol/L) stimulated a 1.7-fold increase in VEGF release from the mononuclear cells. This is the first study to show that A1 AR activation induces angiogenesis. Stimulation of A2 ARs on endothelial cells results in proliferation and tube formation, and A2 and A3 ARs on inflammatory cells modulate release of angiogenic factors. We conclude that adenosine promotes a coordinated angiogenic response through its interactions with multiple receptors on multiple cell types.
Collapse
Affiliation(s)
- Adam N Clark
- Department of Internal Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2007; 117:123-40. [PMID: 18029023 DOI: 10.1016/j.pharmthera.2007.09.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Adenosine is a primordial signaling molecule present in every cell of the human body that mediates its physiological functions by interacting with 4 subtypes of G-protein-coupled receptors, termed A1, A2A, A2B and A3. The A3 subtype is perhaps the most enigmatic among adenosine receptors since, although several studies have been performed in the years to elucidate its physiological function, it still presents in several cases a double nature in different pathophysiological conditions. The 2 personalities of A3 often come into direct conflict, e.g., in ischemia, inflammation and cancer, rendering this receptor as a single entity behaving in 2 different ways. This review focuses on the most relevant aspects of A3 adenosine subtype activation and summarizes the pharmacological evidence as the basis of the dichotomy of this receptor in different therapeutic fields. Although much is still to be learned about the function of the A3 receptor and in spite of its duality, at the present time it can be speculated that A3 receptor selective ligands might show utility in the treatment of ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The biggest and most intriguing challenge for the future is therefore to understand whether and where selective A3 agonists or antagonists are the best choice.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Haskó G, Pacher P, Deitch EA, Vizi ES. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 2007; 113:264-75. [PMID: 17056121 PMCID: PMC2228265 DOI: 10.1016/j.pharmthera.2006.08.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Adenosine is an endogenous purine nucleoside that, following its release into the extracellular space, binds to specific adenosine receptors expressed on the cell surface. Adenosine appears in the extracellular space under metabolically stressful conditions, which are associated with ischemia, inflammation, and cell damage. There are 4 types of adenosine receptors (A(1), A(2A), A(2B) and A(3)) and all adenosine receptors are members of the G protein-coupled family of receptors. Adenosine receptors are expressed on monocytes and macrophages and through these receptors adenosine modulates monocyte and macrophage function. Since monocytes and macrophages are activated by the same danger signals that cause accumulation of extracellular adenosine, adenosine receptors expressed on macrophages represent a sensor system that provide monocytes and macrophages with information about the stressful environment. Adenosine receptors, thus, allow monocytes and macrophages to fine-tune their responses to stressful stimuli. Here, we review the consequences of adenosine receptor activation on monocyte/macrophage function. We will detail the effect of stimulating the various adenosine receptor subtypes on macrophage differentiation/proliferation, phagocytosis, and tissue factor (TF) expression. We will also summarize our knowledge of how adenosine impacts the production of extracellular mediators secreted by monocytes and macrophages in response to toll-like receptor (TLR) ligands and other inflammatory stimuli. Specifically, we will delineate how adenosine affects the production of superoxide, nitric oxide (NO), tumor necrosis factor-alpha, interleukin (IL)-12, IL-10, and vascular endothelial growth factor (VEGF). A deeper insight into the regulation of monocyte and macrophage function by adenosine receptors should assist in developing new therapies for inflammatory diseases.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
30
|
Ernens I, Rouy D, Velot E, Devaux Y, Wagner DR. Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils: implication of A2a receptor and cAMP/PKA/Ca2+ pathway. Circ Res 2006; 99:590-7. [PMID: 16917093 DOI: 10.1161/01.res.0000241428.82502.d4] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs), and in particular MMP-9 secreted by neutrophils, are capable of degrading the matrix components of the heart and are thought to be the driving force behind myocardial matrix remodeling after infarction. Adenosine, a naturally produced nucleoside, has been shown to have cardioprotective effects and to inhibit secretion of various cytokines. The aim of our study was to determine the effect of adenosine on the secretion of MMP-9 by neutrophils. Neutrophils were isolated from healthy volunteers through Ficoll and Dextran sedimentation. Neutrophils were activated by N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence or absence of adenosine or adenosine analogs. Zymography and enzyme linked immunosorbent assay were used to measure MMP-9 secretion. Adenosine (1 micromol/L) decreased the fMLP-induced MMP-9 secretion by 30+/-2% (n=8, P<0.001). The effect was dose-dependent and was not specific to fMLP because adenosine also inhibited MMP-9 secretion by LPS- or H(2)O(2)-stimulated neutrophils. The effect of adenosine was mimicked by the adenosine A2a receptor agonist CGS21680 and was inhibited by both the A2a antagonist SCH5826 and A2a RNA silencing. The A3 agonist IB-MECA moderately decreased fMLP-induced MMP-9 secretion. Agonists and antagonists of the other types of adenosine receptors had no significant effect. Adenosine increased intracellular cAMP concentration and accelerated the return to baseline of the intracytoplasmic calcium peak. The inhibition of MMP-9 secretion by adenosine, as well as the calcium effect, was prevented by the protein kinase A inhibitor H-89. In conclusion, we show here that adenosine inhibits MMP-9 secretion by neutrophils. Our results suggest that this effect implies the A2a receptor and is mediated through the cAMP/PKA/Ca(2+) pathway. Therefore, adenosine may represent a new approach to prevent matrix degradation and remodeling after myocardial injury.
Collapse
Affiliation(s)
- Isabelle Ernens
- Laboratory of Cardiovascular Research, CRP-Santé, Luxembourg
| | | | | | | | | |
Collapse
|
31
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 787] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Okur E, Inanc F, Yildirim I, Kilinc M, Kilic MA. Malondialdehyde level and adenosine deaminase activity in nasal polyps. Otolaryngol Head Neck Surg 2006; 134:37-40. [PMID: 16399178 DOI: 10.1016/j.otohns.2005.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Although there are many reports on adenosine deaminase (ADA) activities in different tissues, no information is available about the enzyme activity in nasal mucosa and polyp tissues. Whereas ADA is related to the production of free radicals by neutrophils, malondialdehyde (MDA) is an indicator of lipid peroxidation that is a general mechanism of tissue damage by free radicals. This study is aimed at determining and comparing the ADA activity and MDA level in nasal polyps and normal mucosa. STUDY DESIGN AND SETTING Twenty-three patients with nasal polyps and a control group consisting of 14 patients with septal deviation and lower turbinate hypertrophy were included in the study. Tissue MDA level was measured by the method of Okawa with modification and tissue ADA activity by the method of Giusti. RESULTS In patients with nasal polyp, mean tissue MDA level and ADA activity were 2.43 +/- 0.38 nmol/mg protein (Pr) and 0.235 +/- 0.055 U/mg Pr, respectively, which were significantly higher than those of control nasal mucosa (1.03 +/- 0.41 nmol/mg protein and 0.056 +/- 0.011 U/mg Pr, respectively) (P < 0.05). In addition, tissue MDA level was positively correlated to ADA activity in nasal polyps (r = 0.701, P < 0.001). CONCLUSIONS The present study showed the presence of detectable ADA activity in nasal mucosa, and also significant increases in both tissue MDA level and ADA activity in NP tissue when compared to normal turbinate tissue. EBM RATING B-2b.
Collapse
Affiliation(s)
- Erdogan Okur
- Department of Otorhinolaryngology, School of Medicine, Kahramanmaras Sutcu Imam University, Hastane Cad. No. 32, 46050-Kahramanmaras, Turkey.
| | | | | | | | | |
Collapse
|
33
|
Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V. Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 2006; 316:71-8. [PMID: 16188954 DOI: 10.1124/jpet.105.091868] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) activates the immune system and promotes inflammation via Toll-like receptor (TLR) 4, which regulates the synthesis and release of tumor necrosis factor (TNF)-alpha and other inflammatory cytokines. Previous studies have shown that the nucleoside adenosine suppresses LPS-stimulated TNF-alpha release in human UB939 macrophages by activating an adenosine A(3) receptor (A(3)AR) subtype on these cells. In this study, we examined the mechanism(s) underlying A(3)AR-dependent inhibition of TNF-alpha release in a mouse (RAW 264.7) cell line. Treatment of RAW 264.7 cells with LPS (3 mug/ml) increased TNF-alpha release, which was reduced in a dose-dependent manner by adenosine analogs N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) and R-phenylisopropyladenosine and reversed by selective A(3)AR blockade. The increase in TNF-alpha release was preceded by an increase in intracellular Ca(2+) levels. Inhibition of intracellular Ca(2+) release by IB-MECA, a selective agonist of the A(3)AR, or with BAPTA-AM, an intracellular Ca(2+) chelator, reduced LPS-stimulated TNF-alpha release. Activation of the A(3)AR or inhibition of intracellular Ca(2+) release also reduced LPS-stimulated nuclear factor-kappaB (NF-kappaB) activation and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Similar inhibition by A(3)AR was observed for LPS-stimulated inducible nitric-oxide synthase. These data support the contention that inhibition of LPS-stimulated release of inflammatory molecules, such as TNF-alpha and NO via the A(3)AR, involves suppression of intracellular Ca(2+)signaling, leading to suppression of NF-kappaB and ERK1/2 pathways.
Collapse
Affiliation(s)
- Lynn Martin
- Dept. of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19230, Springfield, IL 62794-1222, USA
| | | | | | | | | |
Collapse
|
34
|
Fortin A, Harbour D, Fernandes M, Borgeat P, Bourgoin S. Differential expression of adenosine receptors in human neutrophils: up-regulation by specific Th1 cytokines and lipopolysaccharide. J Leukoc Biol 2005; 79:574-85. [PMID: 16387843 DOI: 10.1189/jlb.0505249] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Four types of adenosine receptors have been identified in different tissues and cell types, namely, A1, A2A, A2B, and A3 receptors. We report that A2AR but not A2BR mRNA in freshly isolated polymorphonuclear neutrophils (PMN) is maximally up-regulated after 4 h stimulation with lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-alpha) and to a lesser extent, with interleukin (IL)-1beta. These effects were maintained up to 21 h. Consistent with changes in A2AR mRNA expression, up-regulation of A2AR protein was also detected after 4 h of LPS or TNF-alpha exposure. Up-regulation of A2AR protein expression was transient and returned to near basal levels after 12 h or 16 h stimulation with TNF-alpha or LPS, respectively. Conversely, IL-1beta failed to promote A2AR protein expression. Suppression of thapsigargin-induced leukotriene synthesis by the selective A2AR agonist CGS-21680 was found to be more pronounced when PMN were cultured for 4 h with LPS or TNF-alpha. In contrast, the up-regulation of A2AR has no impact on CGS-21680-induced inhibition of phospholipase D activation and superoxide production in response to formyl-Met-Leu-Phe. These results demonstrate that the A2AR is up-regulated by specific T helper cell type 1 cytokines and LPS. Although this could represent a potential feedback mechanism to control inflammation, the effect of A2AR up-regulation varied depending on the stimulus used to stimulate PMN functional responses after their incubation with proinflammatory mediators.
Collapse
Affiliation(s)
- Andrée Fortin
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon C.H.U.L., 2705 Blvd. Laurier, Sainte-Foy, Québec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
35
|
Gessi S, Varani K, Merighi S, Cattabriga E, Pancaldi C, Szabadkai Y, Rizzuto R, Klotz KN, Leung E, Mac Lennan S, Baraldi PG, Borea PA. Expression, pharmacological profile, and functional coupling of A2B receptors in a recombinant system and in peripheral blood cells using a novel selective antagonist radioligand, [3H]MRE 2029-F20. Mol Pharmacol 2005; 67:2137-47. [PMID: 15788741 DOI: 10.1124/mol.104.009225] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we compared the pharmacological and biochemical characteristics of A(2B) adenosine receptors in recombinant (hA(2B)HEK293 cells) and native cells (neutrophils, lymphocytes) by using a new potent 8-pyrazole xanthine derivative, [(3)H]N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yl-oxy]-acetamide] ([(3)H]MRE 2029-F20), that has high affinity and selectivity for hA(2B) versus hA(1),hA(2A), and hA(3) subtypes. [(3)H]MRE 2029-F20 bound specifically to the hA(2B) receptor stably transfected in human embryonic kidney (HEK) 293 cells with K(D) of 2.8 +/- 0.2 nM and B(max) of 450 +/- 42 fmol/mg of protein. Saturation experiments of [(3)H]MRE 2029-F20 binding in human neutrophils and lymphocytes detected a single high-affinity binding site with K(D) values of 2.4 +/- 0.5 and 2.7 +/- 0.7 nM, respectively, and B(max) values of 79 +/- 10 and 54 +/- 8 fmol/mg of protein, respectively, in agreement with real-time reverse transcription polymerase chain reaction studies showing the presence of A(2B) mRNA. The rank order of potency of typical adenosine ligands with recombinant hA(2B) receptors was consistent with that typically found for interactions with the A(2B) subtype and was also similar in peripheral blood cells. 5'-N-Ethyl-carboxamidoadenosine stimulated cAMP accumulation in both hA(2B)HEK293 and native cells, whereas phospholipase C activation was observed in recombinant receptors and endogenous subtypes expressed in neutrophils but not in lymphocytes. MRE 2029-F20 was revealed to be a potent antagonist in counteracting the agonist effect in both signal transduction pathways. In conclusion, [(3)H]MRE 2029-F20 is a selective and high-affinity radioligand for the hA(2B) adenosine subtype and may be used to quantify A(2B) endogenous receptors. In this work, we demonstrated their presence and functional coupling in neutrophils and lymphocytes that play a role in inflammatory processes in which A(2B) receptors may be involved.
Collapse
Affiliation(s)
- Stefania Gessi
- Faculty of Medicine, Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|