1
|
Xu Y, Wagner GK. A cell-permeable probe for the labelling of a bacterial glycosyltransferase and virulence factor. RSC Chem Biol 2024; 5:55-62. [PMID: 38179196 PMCID: PMC10763556 DOI: 10.1039/d3cb00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
Chemical probes for bacterial glycosyltransferases are of interest for applications such as tracking of expression levels, and strain profiling and identification. Existing probes for glycosyltransferases are typically based on sugar-nucleotides, whose charged nature limits their applicability in intact cells. We report the development of an uncharged covalent probe for the bacterial galactosyltransferase LgtC, and its application for the fluorescent labelling of this enzyme in recombinant form, cell lysates, and intact cells. The probe was designed by equipping a previously reported covalent LgtC inhibitor based on a pyrazol-3-one scaffold with a 7-hydroxycoumarin fluorophore. We show that this pyrazol-3-ones scaffold is surprisingly stable in aqueous media, which may have wider implications for the use of pyrazol-3-ones as chemical probes. We also show that the 7-hydroxycoumarin fluorophore leads to an unexpected improvement in activity, which could be exploited for the development of second generation analogues. These results will provide a basis for the development of LgtC-specific probes for the detection of LgtC-expressing bacterial strains.
Collapse
Affiliation(s)
- Yong Xu
- Department of Chemistry, King's College London UK
| | - Gerd K Wagner
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road Belfast BT9 7BL UK
| |
Collapse
|
2
|
Lin J, Wang Y, Lin C, Li R, Wang G. High Prevalence of Group III-Like Mutations Among BLPACR and First Report of Haemophilus influenzae ST95 Isolated from Blood in China. Infect Drug Resist 2023; 16:999-1008. [PMID: 36824068 PMCID: PMC9942606 DOI: 10.2147/idr.s400207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Purpose We aimed to evaluate antibiotic resistance and molecular epidemiological characteristics of non-invasive Haemophilus influenzae (H. influenzae) from pneumonia patients and analyze the whole genome of one invasive H. influenzae isolated from blood in pediatric patients. Methods Antibiotic susceptibility was tested using the turbidimetric method. β-lactamase-producing and serotyping genes were evaluated via multiplex polymerase chain reaction (PCR), and ftsI was amplified using high-fidelity PCR. Lastly, whole genome sequencing (WGS) was conducted using Illumina HiSeq and PacBio sequencing technology. Results We observed that the ampicillin (AMP) and amoxicillin/clavulanate (AMC) resistance rates of non-invasive H. influenzae were as high as 99.06% (after adjustment) and 49.53%, respectively. The β-lactamase gene of 106 AMP-resistant strains was blaTEM-1 . Group III-like mutation accounted for 71.15% of β-lactamase-positive, AMC-resistant (BLPACR) strain mutants. The novel Asn-526→His mutation was present in one β-lactamase-negative AMP-susceptible (BLNAS) strain. Non-invasive H. influenzae strains all belonged to non-typeable H. influenzae (NTHi). In contrast, the invasive H. influenzae 108 isolated from blood in China belonged to H. influenzae type b (Hib). It belonged to sequence typing ST95 and exhibited sensitivity to all 11 antibiotics. Three prophages were identified, and the capb loci of the H. influenzae strain 108 revealed regions I-III exist in duplicate; however, complete deletion of IS1016 was only present in one of the copies. Conclusion Non-invasive H. influenzae NTHi with β-lactamase-positive was highly prevalent. Notably, group III-like mutations had increased prevalence among BLPACR strains. H. influenzae belonging to Hib and ST95 was first reported to cause sepsis in China.
Collapse
Affiliation(s)
- Jiansheng Lin
- School of Public Health of Fujian Medical University, Fuzhou, People’s Republic of China,Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Yinna Wang
- Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Chunli Lin
- Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Ran Li
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Correspondence: Ran Li, Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, Fujian Province, 350122, People’s Republic of China, Tel +86 595 22791140, Email
| | - Gaoxiong Wang
- School of Public Health of Fujian Medical University, Fuzhou, People’s Republic of China,Research Administration Office, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China,Gaoxiong Wang, Research Administration Office, Quanzhou Women’s and Children’s Hospital, 700 Fengze Street, Fengze District, Quanzhou, Fujian Province, 350122, People’s Republic of China, Tel +86 595 22131685, Email
| |
Collapse
|
3
|
Metier C, Dow J, Wootton H, Lynham S, Wren B, Wagner GK. Profiling of Haemophilus influenzae strain R2866 with carbohydrate-based covalent probes. Org Biomol Chem 2021; 19:476-485. [PMID: 33355321 DOI: 10.1039/d0ob01971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the application of four covalent probes based on anomerically pure d-galactosamine and d-glucosamine scaffolds for the profiling of Haemophilus influenzae strain R2866. The probes have been used successfully for the labelling of target proteins not only in cell lysates, but also in intact cells. Differences in the labelling patterns between lysates and intact cells indicate that the probes can penetrate into the periplasm, but not the cytoplasm of H. influenzae. Analysis of selected target proteins by LC-MS/MS suggests predominant labelling of nucleotide-binding proteins, including several known antibacterial drug targets. Our protocols will aid the identification of molecular determinants of bacterial pathogenicity in Haemophilus influenzae and other bacterial pathogens.
Collapse
Affiliation(s)
- Camille Metier
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Jennifer Dow
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Keppel Street, London, WC1E, 7HT, UK
| | - Hayley Wootton
- King's College London, Department of Chemistry, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, Department of Infection Biology, Keppel Street, London, WC1E, 7HT, UK
| | - Gerd K Wagner
- Queen's University Belfast, School of Pharmacy, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
4
|
Xu Y, Cuccui J, Denman C, Maharjan T, Wren BW, Wagner GK. Structure-activity relationships in a new class of non-substrate-like covalent inhibitors of the bacterial glycosyltransferase LgtC. Bioorg Med Chem 2018; 26:2973-2983. [PMID: 29602676 DOI: 10.1016/j.bmc.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/03/2018] [Accepted: 03/04/2018] [Indexed: 02/07/2023]
Abstract
Lipooligosaccharide (LOS) structures in the outer core of Gram-negative mucosal pathogens such as Neisseria meningitidis and Haemophilus influenzae contain characteristic glycoepitopes that contribute significantly to bacterial virulence. An important example is the digalactoside epitope generated by the retaining α-1,4-galactosyltransferase LgtC. These digalactosides camouflage the pathogen from the host immune system and increase its serum resistance. Small molecular inhibitors of LgtC are therefore sought after as chemical tools to study bacterial virulence, and as potential candidates for anti-virulence drug discovery. We have recently discovered a new class of non-substrate-like inhibitors of LgtC. The new inhibitors act via a covalent mode of action, targeting a non-catalytic cysteine residue in the LgtC active site. Here, we describe, for the first time, structure-activity relationships for this new class of glycosyltransferase inhibitors. We have carried out a detailed analysis of the inhibition kinetics to establish the relative contribution of the non-covalent binding and the covalent inactivation steps for overall inhibitory activity. Selected inhibitors were also evaluated against a serum-resistant strain of Haemophilus influenzae, but did not enhance the killing effect of human serum.
Collapse
Affiliation(s)
- Yong Xu
- King's College London, Department of Chemistry, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Jon Cuccui
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, UK
| | - Carmen Denman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, UK
| | - Tripty Maharjan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, UK
| | - Gerd K Wagner
- King's College London, Department of Chemistry, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London SE1 1DB, UK.
| |
Collapse
|
5
|
Zhou Q, Feng S, Zhang J, Jia A, Yang K, Xing K, Liao M, Fan H. Two Glycosyltransferase Genes of Haemophilus parasuis SC096 Implicated in Lipooligosaccharide Biosynthesis, Serum Resistance, Adherence, and Invasion. Front Cell Infect Microbiol 2016; 6:100. [PMID: 27672622 PMCID: PMC5018477 DOI: 10.3389/fcimb.2016.00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is a common opportunistic pathogen known for its ability to colonize healthy piglets and causes Glässer's disease. The lipooligosaccharide (LOS) of H. parasuis is a potential virulence-associated factor. In this study, two putative glycosyltransferases that might be involved in LOS synthesis in H. parasuis SC096 were identified (lgtB and lex-1). Mutants were constructed to investigate the roles of the lgtB and lex-1 genes. The LOS from the ΔlgtB or Δlex-1 mutant showed truncated structure on silver-stained SDS-PAGE gel compared to the wild-type strain. The ΔlgtB and Δlex-1 mutants were significantly more sensitive to 50% porcine serum, displaying 15.0 and 54.46% survival rates, respectively. Complementation of the lex-1 mutant restored the serum-resistant phenotype. Additionally, the ΔlgtB and Δlex-1 strains showed impaired ability to adhere to and invade porcine kidney epithelial cells (PK-15). The above results suggested that the lgtB and lex-1 genes of the H. parasuis SC096 strain participated in LOS synthesis and were involved in serum resistance, adhesion and invasion.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Saixiang Feng
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Aiqing Jia
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Haid Institute of Animal Husbandry and VeterinaryGuangzhou, China
| | - Kaijie Yang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Kaixiang Xing
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ming Liao
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Huiying Fan
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
6
|
Kalograiaki I, Euba B, Proverbio D, Campanero-Rhodes MA, Aastrup T, Garmendia J, Solís D. Combined Bacteria Microarray and Quartz Crystal Microbalance Approach for Exploring Glycosignatures of Nontypeable Haemophilus influenzae and Recognition by Host Lectins. Anal Chem 2016; 88:5950-7. [PMID: 27176788 DOI: 10.1021/acs.analchem.6b00905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition of bacterial surface epitopes by host receptors plays an important role in the infectious process and is intimately associated with bacterial virulence. Delineation of bacteria-host interactions commonly relies on the detection of binding events between purified bacteria- and host-target molecules. In this work, we describe a combined microarray and quartz crystal microbalance (QCM) approach for the analysis of carbohydrate-mediated interactions directly on the bacterial surface, thus preserving the native environment of the bacterial targets. Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic species not displaying a polysaccharide capsule or O-antigen-containing lipopolysaccharide, a trait commonly found in several important respiratory pathogens. Here, we demonstrate the usefulness of NTHi microarrays for exploring the presence of carbohydrate structures on the bacterial surface. Furthermore, the microarray approach is shown to be efficient for detecting strain-selective binding of three innate immune lectins, namely, surfactant protein D, human galectin-8, and Siglec-14, to different NTHi clinical isolates. In parallel, QCM bacteria-chips were developed for the analysis of lectin-binding kinetics and affinity. This novel QCM approach involves capture of NTHi on lectin-derivatized chips followed by formaldehyde fixation, rendering the bacteria an integrated part of the sensor chip, and subsequent binding assays with label-free lectins. The binding parameters obtained for selected NTHi-lectin pairs provide further insights into the interactions occurring at the bacterial surface.
Collapse
Affiliation(s)
- Ioanna Kalograiaki
- Instituto de Química Física Rocasolano, CSIC , Serrano 119, 28006 Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Begoña Euba
- CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain.,Instituto de Agrobiotecnología , CSIC-UPNa-Gobierno Navarra, Avda Pamplona 123, 31192 Mutilva, Spain
| | | | - María A Campanero-Rhodes
- Instituto de Química Física Rocasolano, CSIC , Serrano 119, 28006 Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| | | | - Junkal Garmendia
- CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain.,Instituto de Agrobiotecnología , CSIC-UPNa-Gobierno Navarra, Avda Pamplona 123, 31192 Mutilva, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, CSIC , Serrano 119, 28006 Madrid, Spain.,CIBER de Enfermedades Respiratorias (CIBERES) , Avda Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
7
|
Outer membrane protein P5 is required for resistance of nontypeable Haemophilus influenzae to both the classical and alternative complement pathways. Infect Immun 2013; 82:640-9. [PMID: 24478079 DOI: 10.1128/iai.01224-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The complement system is an important first line of defense against the human pathogen Haemophilus influenzae. To survive and propagate in vivo, H. influenzae has evolved mechanisms for subverting this host defense, most of which have been shown to involve outer surface structures, including lipooligosaccharide glycans and outer surface proteins. Bacterial defense against complement acts at multiple steps in the pathway by mechanisms that are not fully understood. Here we identify outer membrane protein P5 as an essential factor in serum resistance of both H. influenzae strain Rd and nontypeable H. influenzae (NTHi) clinical isolate NT127. P5 was essential for resistance of Rd and NT127 to complement in pooled human serum. Further investigation determined that P5 expression decreased cell surface binding of IgM, a potent activator of the classical pathway of complement, to both Rd and NT127. Additionally, P5 expression was required for NT127 to bind factor H (fH), an important inhibitor of alternative pathway (AP) activation. Collectively, the results obtained in this work highlight the ability of H. influenzae to utilize a single protein to perform multiple protective functions for evading host immunity.
Collapse
|
8
|
Relative contributions of lipooligosaccharide inner and outer core modifications to nontypeable Haemophilus influenzae pathogenesis. Infect Immun 2013; 81:4100-11. [PMID: 23980106 DOI: 10.1128/iai.00492-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a frequent commensal of the human nasopharynx that causes opportunistic infection in immunocompromised individuals. Existing evidence associates lipooligosaccharide (LOS) with disease, but the specific and relative contributions of NTHi LOS modifications to virulence properties of the bacterium have not been comprehensively addressed. Using NTHi strain 375, an isolate for which the detailed LOS structure has been determined, we compared systematically a set of isogenic mutant strains expressing sequentially truncated LOS. The relative contributions of 2-keto-3-deoxyoctulosonic acid, the triheptose inner core, oligosaccharide extensions on heptoses I and III, phosphorylcholine, digalactose, and sialic acid to NTHi resistance to antimicrobial peptides (AMP), self-aggregation, biofilm formation, cultured human respiratory epithelial infection, and murine pulmonary infection were assessed. We show that opsX, lgtF, lpsA, lic1, and lic2A contribute to bacterial resistance to AMP; lic1 is related to NTHi self-aggregation; lgtF, lic1, and siaB are involved in biofilm growth; opsX and lgtF participate in epithelial infection; and opsX, lgtF, and lpsA contribute to lung infection. Depending on the phenotype, the involvement of these LOS modifications occurs at different extents, independently or having an additive effect in combination. We discuss the relative contribution of LOS epitopes to NTHi virulence and frame a range of pathogenic traits in the context of infection.
Collapse
|
9
|
Clark SE, Eichelberger KR, Weiser JN. Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol Microbiol 2013; 88:603-18. [PMID: 23577840 DOI: 10.1111/mmi.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
The lipopolysaccharide (LPS) of H. influenzae is highly variable. Much of the structural diversity is derived from phase variation, or high frequency on-off switching, of molecules attached during LPS biosynthesis. In this study, we examined the dynamics of LPS phase variation following exposure to human serum as a source of antibody and complement in multiple H. influenzae isolates. We show that lic2A, lgtC and lex2A switch from phase-off to phase-on following serial passage in human serum. These genes, which control attachment of a galα1-4gal di-galactoside structure (lic2A and lgtC phase-on) or an alternative glucose extension (lex2A phase-on) from the same hexose moiety, reduce binding of bactericidal antibody to conserved inner core LPS structures. The effects of the di-galactoside and alternative glucose extension were also examined in the context of the additional LPS phase variable structures phosphorylcholine (ChoP) and sialic acid. We found that di-galactoside, the alternative glucose extension, ChoP, and sialic acid each contribute independently to bacterial survival in the presence of human complement, and have an additive effect in combination. We propose that LPS phase variable extensions serve to shield conserved inner core structures from recognition by host immune components encountered during infection.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Haemophilus parainfluenzae has a limited core lipopolysaccharide repertoire with no phase variation. Glycoconj J 2012; 30:561-76. [PMID: 23093380 DOI: 10.1007/s10719-012-9455-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Cell surface lipopolysaccharide (LPS) is a well characterized virulence determinant for the human pathogen Haemophilus influenzae, so an investigation of LPS in the less pathogenic Haemophilus parainfluenzae could yield important insights. Using a panel of 18 commensal H. parainfluenzae isolates we demonstrate that the set of genes for inner core LPS biosynthesis largely resembles that of H. influenzae, with an additional heptosyltransferase I gene similar to waaC from Pasteurella multocida. Inner core LPS structure is therefore likely to be largely conserved across the two Haemophilus species. Outer core LPS biosynthetic genes are much less prevalent in H. parainfluenzae, although homologues of the H. influenzae LPS genes lpsB, non-phase variable lic2A and lgtC, and losA1, losB1 and lic2C are found in certain isolates. Immunoblotting using antibodies directed against selected LPS epitopes was consistent with these data. We found no evidence for tetranucleotide repeat-mediated phase variation in H. parainfluenzae. Phosphocholine, a phase variable H. influenzae LPS epitope that has been implicated in disease, was absent in H. parainfluenzae LPS as were the respective (lic1) biosynthetic genes. The introduction of the lic1 genes into H. parainfluenzae led to the phase variable incorporation of phosphocholine into its LPS. Differences in LPS structure between Haemophilus species could affect interactions at the bacterial-host interface and therefore the pathogenic potential of these bacteria.
Collapse
|
11
|
Lex2B, a phase-variable glycosyltransferase, adds either a glucose or a galactose to Haemophilus influenzae lipopolysaccharide. Infect Immun 2009; 77:2376-84. [PMID: 19289512 DOI: 10.1128/iai.01446-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae is a commensal that frequently causes otitis media and respiratory tract infections. The lex2 locus encodes a glycosyltransferase that is phase variably expressed and contributes to the significant intrastrain heterogeneity of lipopolysaccharide (LPS) composition in H. influenzae. In serotype b strains, Lex2B adds the second beta-glucose in the oligosaccharide extension from the proximal heptose of the triheptose inner core backbone; this extension includes a digalactoside that plays a role in resistance of the bacteria to the killing effect of serum. As part of our studies of the structure and genetics of LPS in nontypeable H. influenzae, we show here that there are allelic polymorphisms in the lex2B sequence that correlate with addition of either a glucose or a galactose to the same position in the LPS molecule across strains. Through exchange of lex2 alleles between strains we show that alteration of a single amino acid at position 157 in Lex2B appears to be sufficient to direct the alternative glucosyl- or galactosyltransferase activities. Allelic exchange strains express LPS with altered structure and biological properties compared to the wild-type LPS. Thus, Lex2B contributes to both inter- and intrastrain LPS heterogeneity through its polymorphic sequences and phase-variable expression.
Collapse
|
12
|
Schweda EKH, Twelkmeyer B, Li J. Profiling structural elements of short-chain lipopolysaccharide of non-typeable Haemophilus influenzae. Innate Immun 2009; 14:199-211. [PMID: 18669606 DOI: 10.1177/1753425908095958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. A characteristic feature of H. influenzae LPS is the extensive intra- and inter-strain heterogeneity of glycoform structure which is key to the role of the molecule in both commensal and disease-causing behaviour of the bacterium. The chemical composition of non-typeable Haemophilus influenzae (NTHi) LPS is highly diverse. It contains a number of different monosaccharides (Neu5Ac, L-glycero-D-manno heptose, D-glycero-D-manno heptose, Kdo, D-Glc, D-Gal, D-GlcNAc, D-GalNAc) and non-carbohydrate substituents. Prominent non-carbohydrate components are O-acetyl groups, glycine and phosphates. We now know that sialic acid (N-acetylneuraminic acid or Neu5Ac) and certain oligosaccharide extensions are important in the pathogenesis of NTHi; however, the biological implications for many of the various features are still unknown. Electrospray ionization mass spectrometry in combination with separation techniques like CE and HPLC is an indispensable tool in profiling glycoform populations in heterogeneous LPS samples. Mass spectrometry is characterized by its extreme sensitivity. Trace amounts of glycoforms expressing important virulence determinants can be detected and characterized on minute amounts of material. The present review focuses on LPS structures and mass spectrometric methods which enable us to profile these in complex mixtures.
Collapse
Affiliation(s)
- Elke K H Schweda
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, NOVUM, Huddinge, Sweden.
| | | | | |
Collapse
|
13
|
The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect Immun 2008; 76:1498-508. [PMID: 18212083 DOI: 10.1128/iai.01378-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is an obligate human pathogen that persistently colonizes the nasopharynx and causes disease when it invades the bloodstream, lungs, or middle ear. Proteins that mediate critical interactions with the host during invasive disease are likely to be secreted. Many secreted proteins require addition of disulfide bonds by the DsbA disulfide oxidoreductase for activity or stability. In this study, we evaluated the role in H. influenzae pathogenesis of DsbA, as well as HbpA, a substrate of DsbA. Mutants of H. influenzae Rd and type b strain Eagan having nonpolar deletions of dsbA were attenuated for bacteremia in animal models, and complemented strains exhibited virulence equivalent to that of the parental strains. Comparison of predicted secreted proteins in H. influenzae to known DsbA substrates in other species revealed several proteins that could contribute to the role of dsbA in virulence. One candidate, the heme transport protein, HbpA, was examined because of the importance of exogenous heme for aerobic growth of H. influenzae. The presence of a dsbA-dependent disulfide bond in HbpA was verified by an alkylation protection assay, and HbpA was less abundant in a dsbA mutant. The hbpA mutant exhibited reduced bacteremia in the mouse model, and complementation restored its in vivo phenotype to that of the parental strain. These results indicate that dsbA is required in vivo and that HbpA and additional DsbA-dependent factors are likely to participate in H. influenzae pathogenesis.
Collapse
|
14
|
Lundström SL, Twelkmeyer B, Sagemark MK, Li J, Richards JC, Hood DW, Moxon ER, Schweda EKH. Novel globoside-like oligosaccharide expression patterns in nontypeable Haemophilus influenzae lipopolysaccharide. FEBS J 2007; 274:4886-903. [PMID: 17725645 DOI: 10.1111/j.1742-4658.2007.06011.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the novel pattern of lipopolysaccharide (LPS) expressed by two disease-associated nontypeable Haemophilus influenzae strains, 1268 and 1200. The strains express the common structural motifs of H. influenzae; globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) and the corresponding structures with an alpha-d-Glcp as the reducing sugar linked to the middle heptose (HepII) in the same LPS molecule. Previously these motifs had been found linked only to either the proximal heptose (HepI) or HepIII of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-lipid A. This novel finding was obtained by structural studies of LPS using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material, as well as electrospray ionization-multiple-step tandem mass spectrometry on permethylated dephosphorylated oligosaccharide material. A lpsA mutant of strain 1268 expressed LPS of reduced complexity that facilitated unambiguous structural determination. Using capillary electrophoresis-ESI-MS/MS we identified sialylated glycoforms that included sialyllactose as an extension from HepII, this is a further novel finding for H. influenzae LPS. In addition, each LPS was found to carry phosphocholine and O-linked glycine. Nontypeable H. influenzae strain 1200 expressed identical LPS structures to 1268 with the difference that strain 1200 LPS had acetates substituting HepIII, whereas strain 1268 LPS has glycine at the same position.
Collapse
Affiliation(s)
- Susanna L Lundström
- Clinical Research Centre, Karolinska Institutet and University College of South Stockholm, Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dixon K, Bayliss CD, Makepeace K, Moxon ER, Hood DW. Identification of the functional initiation codons of a phase-variable gene of Haemophilus influenzae, lic2A, with the potential for differential expression. J Bacteriol 2006; 189:511-21. [PMID: 17098909 PMCID: PMC1797379 DOI: 10.1128/jb.00815-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simple sequence repeats located within reading frames mediate phase-variable ON/OFF switches in gene expression by generating frameshifts. Multiple translation initiation codons in different reading frames are found upstream of most Haemophilus influenzae tetranucleotide repeat tracts, raising the possibility of multiple active reading frames and more than two levels of gene expression for these loci. Phase variation between three levels of gene expression (strong, weak, and none) was observed when lic2A was fused to a lacZ reporter gene. The lic2A 5' CAAT repeat tract is preceded by four 5' ATG codons (x, y, z1, and z2) in two reading frames. Each of these initiation codons was inactivated by site-directed mutagenesis. Strong expression from frame 1 was associated with x but not y. Weak expression from frame 2 was mainly dependent on the z2 codon, and there was no expression from frame 3. Using monoclonal antibodies specific for a digalactoside epitope of lipopolysaccharide whose synthesis requires Lic2A, two levels (strong and undetectable) of antibody reactivity were detected, suggesting that weak expression of lic2A is not discernible at the phenotypic level. Inactivation of the x initiation codon resulted in loss of strong expression of the digalactoside epitope and elevated killing by human serum. The failure to detect more than two phenotypes for lic2A, despite clear evidence of weak expression from the z1/z2 initiation codons, leaves open the question of whether or not multiple initiation codons are associated with more complex patterns of phenotypic variation rather than classical phase-variable switching between two phenotypes.
Collapse
Affiliation(s)
- Kevin Dixon
- University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | |
Collapse
|
16
|
Erwin AL, Allen S, Ho DK, Bonthuis PJ, Bonthius PJ, Jarisch J, Nelson KL, Tsao DL, Unrath WCT, Watson ME, Gibson BW, Apicella MA, Smith AL. Role of lgtC in resistance of nontypeable Haemophilus influenzae strain R2866 to human serum. Infect Immun 2006; 74:6226-35. [PMID: 16966407 PMCID: PMC1695526 DOI: 10.1128/iai.00722-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are investigating a nontypeable Haemophilus influenzae (NTHI) strain, R2866, isolated from a child with meningitis. R2866 is unusually resistant to killing by normal human serum. The serum 50% inhibitory concentration (IC50) for this strain is 18%, approaching that of encapsulated H. influenzae. R3392 is a derivative of R2866 that was found to have increased sensitivity to human serum (IC50, 1.5%). Analysis of tetrameric repeat regions within lipooligosaccharide (LOS) biosynthetic genes in both strains indicated that the glycosyltransferase gene lgtC was out of frame ("off") in most colonies of R3392 but in frame with its start codon ("on") in most colonies of the parent. We sought antigenic and biochemical evidence for modification of the LOS structure. In a whole-cell enzyme-linked immunosorbent assay, strain R3392 displayed reduced binding of the Galalpha1,4Gal-specific monoclonal antibody 4C4. Mass spectrometry analysis of LOS from strain R2866 indicated that the primary oligosaccharide glycoform contained four heptose and four hexose residues, while that of R3392 contained four heptose and three hexose residues. We conclude that the R2866 lgtC gene encodes a galactosyltransferase involved in synthesis of the 4C4 epitope, as in other strains, and that expression of lgtC is associated with the high-level serum resistance that has been observed for this strain. This is the first description of the genetic basis of high-level serum resistance in NTHI, as well as the first description of LOS composition in an NTHI strain for which the complete genome sequence has been determined.
Collapse
Affiliation(s)
- Alice L Erwin
- Microbial Pathogens Program, Seattle Biomedical Research Institute, 307 Westlake Ave. North, Suite 500, Seattle, WA 98109-5219, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|