1
|
Liu X, Xiao H, Cui P, Chen J, Chao J, Wu X, Lu J, Zhang X, Xu G, Liu Y. Differential polyvalent passive immune protection of egg yolk antibodies (IgY) against live and inactivated Vibrio fluvialis in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109751. [PMID: 38971349 DOI: 10.1016/j.fsi.2024.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Egg yolk antibodies (IgY) can be prepared in large quantities and economically, and have potential value as polyvalent passive vaccines (against multiple bacteria) in aquaculture. This study prepared live and inactivated Vibrio fluvialis IgY and immunized Carassius auratus prior to infection with V. fluvialis and Aeromonas hydrophila. The results showed that the two IgY antibodies hold effective passive protective rates against V. fluvialis and A. hydrophila in C. auratus. Further, the serum of C. auratus recognized the two bacteria in vitro, with a decrease in the bacteria content of the kidney. The phagocytic activity of C. auratus plasma was enhanced, with a decrease in the expression of inflammatory and antioxidant factors. Pathological sections showed that the kidney, spleen, and intestinal tissue structures were intact, and apoptosis and DNA damage decreased in kidney cells. Moreover, the immunoprotection conferred by the live V. fluvialis IgY was higher than that of the inactivated IgY. Addition, live V. fluvialis immunity induced IgY antibodies against outer membrane proteins of V. fluvialis were more than inactivated V. fluvialis immunity. Furthermore, heterologous immune bacteria will not cause infection, so V. fluvialis can be used to immunize chickens to obtain a large amount of IgY antibody. These findings suggest that the passive immunization effect of live bacterial IgY antibody on fish is significantly better than that of inactivated bacterial antibody, and the live V. fluvialis IgY hold potential value as polyvalent passive vaccines in aquaculture.
Collapse
Affiliation(s)
- Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Huihui Xiao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Pan Cui
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China
| | - Jing Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China
| | - Jia Chao
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China
| | - Juan Lu
- Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Gaoxiao Xu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China.
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, China; Fuyang Normal University--Funan Rural Revitalization Collaborative Technology Service Center, Fuyang Normal University, Fuyang, 236041, China.
| |
Collapse
|
2
|
Zhou Y, Yu L, Liu M, Liang W, Li Z, Nan Z, Kan B. Virulence, antibiotic resistance phenotypes and molecular characterisation of Vibrio furnissii isolates from patients with diarrhoea. BMC Infect Dis 2024; 24:412. [PMID: 38641583 PMCID: PMC11027346 DOI: 10.1186/s12879-024-09273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Vibrio furnissii is an emerging human pathogen closely related to V. fluvialis that causes acute gastroenteritis. V. furnissii infection has been reported to be rarer than V. fluvialis, but a multi-drug resistance plasmid has recently been discovered in V. furnissii. METHODS During daily monitoring at a general hospital in Beijing, China, seven V. furnissii strains were collected from patients aged over 14 years who presented with acute diarrhoea between April and October 2018. Genome analysis and comparison were performed for virulence and antimicrobial resistance genes, plasmids and transposon islands, together with phylogenetic analysis. Antimicrobial resistance to 19 antibiotics was investigated using the microbroth dilution method. Virulence phenotypes were investigated based on type VI secretion system (T6SS) expression and using a bacterial killing assay and a haemolysin assay. RESULTS Phylogenetic analysis based on single-nucleotide polymorphisms revealed a closer relationship between V. furnissii and V. fluvialis than between other Vibrio spp. The seven V. furnissii isolates were in different monophyletic clades in the phylogenetic tree, suggesting that the seven cases of gastroenteritis were independent. High resistance to cefazolin, tetracycline and streptomycin was found in the V. furnissii isolates at respective rates of 100.0%, 57.1% and 42.9%, and intermediate resistance to ampicillin/sulbactam and imipenem was observed at respective rates of 85.7% and 85.7%. Of the tested strains, VFBJ02 was resistant to both imipenem and meropenem, while VFBJ01, VFBJ02, VFBJ05 and VFBJ07 were multi-drug resistant. Transposon islands containing antibiotic resistance genes were found on the multi-drug resistance plasmid in VFBJ05. Such transposon islands also occurred in VFBJ07 but were located on the chromosome. The virulence-related genes T6SS, vfh, hupO, vfp and ilpA were widespread in V. furnissii. The results of the virulence phenotype assays demonstrated that our isolated V. furnissii strains encoded an activated T6SS and grew in large colonies with strong beta-haemolysis on blood agar. CONCLUSION This study showed that diarrhoea associated with V. furnissii occurred sporadically and was more common than expected in the summer in Beijing, China. The antibiotic resistance of V. furnissii has unique characteristics compared with that of V. fluvialis. Fluoroquinolones and third-generation cephalosporins, such as ceftazidime and doxycycline, were effective at treating V. furnissii infection. Continua laboratory-based surveillance is needed for the prevention and control of V. furnissii infection, especially the dissemination of the antibiotic resistance genes in this pathogen.
Collapse
Affiliation(s)
- Yanyan Zhou
- Department of Clinical Laboratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100052, China
| | - Li Yu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Ming Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Zheng Nan
- Department of Clinical Laboratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100052, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
3
|
Hossain M, Ibne Momen AM, Rahman A, Biswas J, Yasmin M, Nessa J, Ahsan CR. Draft-genome analysis provides insights into the virulence properties and genome plasticity of Vibrio fluvialis organisms isolated from shrimp farms and Turag river in Bangladesh. Arch Microbiol 2022; 204:527. [PMID: 35895240 DOI: 10.1007/s00203-022-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Vibrio fluvialis is an opportunistic waterborne and seafood-borne enteric pathogen capable of causing severe diarrhea leading to death. This pathogen is endemic to Bangladesh, a country which is a major producer of cultured shrimp and wild-caught prawns. In this study, we carried out whole-genome sequencing of three V. fluvialis organisms isolated from shrimp farm and river sediment showing strong pathogenic characteristics in vivo and in vitro and compared their genomes against other V. fluvialis and related pathogenic species to glean insights into their potential as pathogens. Numerous virulence-associated genes including hemolysins, cytolysins, three separate Type IV pili, Types II and VI secretion systems, biofilm, and the V. cholerae pathogenesis regulating gene, toxR, were identified. Moreover, we found strain S-10 to have the propensity to acquire antibiotic resistance genes through horizontal gene transfer. These findings indicate that shrimp farms and rivers could be potential sources of V. fluvialis organisms which are an infection threat of public health concern.
Collapse
Affiliation(s)
- Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Juthi Biswas
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Jamalun Nessa
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
4
|
Zheng H, Huang Y, Liu P, Yan L, Zhou Y, Yang C, Wu Y, Qin J, Guo Y, Pei X, Guo Y, Cui Y, Liang W. Population genomics of the food-borne pathogen Vibrio fluvialis reveals lineage associated pathogenicity-related genetic elements. Microb Genom 2022; 8. [PMID: 35212619 PMCID: PMC8942032 DOI: 10.1099/mgen.0.000769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio fluvialis is a food-borne pathogen with epidemic potential that causes cholera-like acute gastroenteritis and sometimes extraintestinal infections in humans. However, research on its genetic diversity and pathogenicity-related genetic elements based on whole genome sequences is lacking. In this study, we collected and sequenced 130 strains of V. fluvialis from 14 provinces of China, and also determined the susceptibility of 35 of the strains to 30 different antibiotics. Combined with 52 publicly available V. fluvialis genomes, we inferred the population structure and investigated the characteristics of pathogenicity-related factors. The V. fluvialis strains exhibited high levels of homologous recombination and were assigned to two major populations, VflPop1 and VflPop2, according to the different compositions of their gene pools. VflPop2 was subdivided into groups 2.1 and 2.2. Except for VflPop2.2, which consisted only of Asian strains, the strains in VflPop1 and VflPop2.1 were distributed in the Americas, Asia and Europe. Analysis of the pathogenicity potential of V. fluvialis showed that most of the identified virulence-related genes or gene clusters showed high prevalence in V. fluvialis, except for three mobile genetic elements: pBD146, ICEVflInd1 and MGIVflInd1, which were scattered in only a few strains. A total of 21 antimicrobial resistance genes were identified in the genomes of the 182 strains analysed in this study, and 19 (90%) of them were exclusively present in VflPop2. Notably, the tetracycline resistance-related gene tet(35) was present in 150 (95%) of the strains in VflPop2, and in only one (4%) strain in VflPop1, indicating it was population-specific. In total, 91% of the 35 selected strains showed resistance to cefazolin, indicating V. fluvialis has a high resistance rate to cefazolin. Among the 15 genomes that carried the previously reported drug resistance-related plasmid pBD146, 11 (73%) showed resistance to trimethoprim-sulfamethoxazole, which we inferred was related to the presence of the dfr6 gene in the plasmid. On the basis of the population genomics analysis, the genetic diversity, population structure and distribution of pathogenicity-related factors of V. fluvialis were delineated in this study. The results will provide further clues regarding the evolution and pathogenic mechanisms of V. fluvialis, and improve our knowledge for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ping Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Yan
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yanyan Zhou
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaoyan Pei
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yunchang Guo
- National Center for Food Safety Risk Assessment, Beijing 100022, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
5
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
6
|
De Silva BCJ, Hossain S, Dahanayake PS, Kang T, Heo G. Vibriospp. from Yesso scallop (Patinopecten yessoensis) demonstrating virulence properties and antimicrobial resistance. J Food Saf 2019. [DOI: 10.1111/jfs.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- B. C. J. De Silva
- Veterinary Medical Center and College of Veterinary MedicineChungbuk National University Cheongju South Korea
| | - Sabrina Hossain
- Veterinary Medical Center and College of Veterinary MedicineChungbuk National University Cheongju South Korea
| | - P. S. Dahanayake
- Veterinary Medical Center and College of Veterinary MedicineChungbuk National University Cheongju South Korea
| | - Tae‐Myung Kang
- Veterinary Medical Center and College of Veterinary MedicineChungbuk National University Cheongju South Korea
| | - Gang‐Joon Heo
- Veterinary Medical Center and College of Veterinary MedicineChungbuk National University Cheongju South Korea
| |
Collapse
|
7
|
Lv T, Song T, Liu H, Peng R, Jiang X, Zhang W, Han Q. Isolation and characterization of a virulence related Vibrio alginolyticus strain Wz11 pathogenic to cuttlefish, Sepia pharaonis. Microb Pathog 2018; 126:165-171. [PMID: 30391535 DOI: 10.1016/j.micpath.2018.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Vibrio alginolyticus is a ubiquitous marine opportunistic pathogen that can infect various hosts in marine environment. In the present study, V. alginolyticus strain Wz11 was isolated from diseased cuttlefish, Sepia pharaonis, with 20% of promoted death and high survival capacity in skin mucus and tissue liquid. Its growth, siderophore production, and expressions of haemolysin and swarming related genes were characterized under iron limited conditions. The minimal inhibitory concentration (MIC) of 2,2'-dipyridyl (DP) to V. alginolyticus strain Wz11 was 640 μM. While growth of V. alginolyticus strain Wz11 was inhibited by DP, production of iron-seizing substances, haemolytic activity and swarming motility were increased. Moreover, expressions of haemolysin related genes tlh, tdh and vah and flagellar related genes flgH, fliC, fliD and fliS were also characterized using real-time reverse transcriptase PCR. Expression of tdh was up-regulated to 7.7-fold, while expressions of tlh and vah were down-regulated to 0.016-fold and 0.03-fold, respectively. The expression of fliC, flgH, fliD and fliS was up-regulated to 4.9-, 3.8-, 8.6- and 4.5-fold, respectively. Concluded from our results suggested that V. alginolyticus strain Wz11 was considered as a potential pathogen of S. pharaonis, and iron level played an important role in the production of iron-seizing substances, and activities of haemolysin and bacterial swarming as well as their related gene expressions.
Collapse
Affiliation(s)
- Tengteng Lv
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Tongxiang Song
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Huijie Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ruibing Peng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xiamin Jiang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
8
|
Choo JM, Cheung JK, Wisniewski JA, Steer DL, Bulach DM, Hiscox TJ, Chakravorty A, Smith AI, Gell DA, Rood JI, Awad MM. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS One 2016; 11:e0162981. [PMID: 27637108 PMCID: PMC5026354 DOI: 10.1371/journal.pone.0162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringensheme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jackie K. Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica A. Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Thomas J. Hiscox
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anjana Chakravorty
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - A. Ian Smith
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Julian I. Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Milena M. Awad
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- * E-mail:
| |
Collapse
|
9
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Expression, purification and characterization of soluble recombinant peptidyl-prolyl cis/trans isomerase from Vibrio anguillarum. Protein Expr Purif 2014; 101:54-60. [DOI: 10.1016/j.pep.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 11/22/2022]
|
11
|
|
12
|
Allred BE, Correnti C, Clifton MC, Strong RK, Raymond KN. Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae. ACS Chem Biol 2013; 8:1882-7. [PMID: 23755875 DOI: 10.1021/cb4002552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human protein siderocalin (Scn) inhibits bacterial iron acquisition by binding catechol siderophores. Several pathogenic bacteria respond by making stealth siderophores that are not recognized by Scn. Fluvibactin and vibriobactin, respectively of Vibrio fluvialis and Vibrio cholerae , include an oxazoline adjacent to a catechol. This chelating unit binds iron either in a catecholate or a phenolate-oxazoline coordination mode. The latter has been suggested to make vibriobactin a stealth siderophore without directly identifying the coordination mode in relation to Scn binding. We use Scn binding assays with the two siderophores and two oxazoline-substituted analogs and the crystal structure of Fe-fluvibactin:Scn to show that the oxazoline does not prevent Scn binding; hence, vibriobactin is not a stealth siderophore. We show that the phenolate-oxazoline coordination mode is present at physiological pH and is not bound by Scn. However, Scn binding shifts the coordination to the catecholate mode and thereby inactivates this siderophore.
Collapse
Affiliation(s)
- Benjamin E. Allred
- Department of Chemistry, University of California, Berkeley, California 94720-1460,
United States
| | - Colin Correnti
- Division
of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| | - Matthew C. Clifton
- Division
of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| | - Roland K. Strong
- Division
of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| | - Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, California 94720-1460,
United States
| |
Collapse
|
13
|
Hughes SN, Greig DJ, Miller WA, Byrne BA, Gulland FMD, Harvey JT. Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health. MICROBIAL ECOLOGY 2013; 65:982-994. [PMID: 23392641 DOI: 10.1007/s00248-013-0188-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/14/2013] [Indexed: 06/01/2023]
Abstract
Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.
Collapse
Affiliation(s)
- Stephanie N Hughes
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 93059, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Sharma-Kuinkel BK, Zhang Y, Yan Q, Ahn SH, Fowler VG. Host gene expression profiling and in vivo cytokine studies to characterize the role of linezolid and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) murine sepsis model. PLoS One 2013; 8:e60463. [PMID: 23565251 PMCID: PMC3614971 DOI: 10.1371/journal.pone.0060463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/26/2013] [Indexed: 01/11/2023] Open
Abstract
Linezolid (L), a potent antibiotic for Methicillin Resistant Staphylococcus aureus (MRSA), inhibits bacterial protein synthesis. By contrast, vancomycin (V) is a cell wall active agent. Here, we used a murine sepsis model to test the hypothesis that L treatment is associated with differences in bacterial and host characteristics as compared to V. Mice were injected with S. aureus USA300, and then intravenously treated with 25 mg/kg of either L or V at 2 hours post infection (hpi). In vivo alpha-hemolysin production was reduced in both L and V-treated mice compared to untreated mice but the reduction did not reach the statistical significance [P = 0.12 for L; P = 0.70 for V). PVL was significantly reduced in L-treated mice compared to untreated mice (P = 0.02). However the reduction of in vivo PVL did not reach the statistical significance in V- treated mice compared to untreated mice (P = 0.27). Both antibiotics significantly reduced IL-1β production [P = 0.001 for L; P = 0.006 for V]. IL-6 was significantly reduced with L but not V antibiotic treatment [P<0.001 for L; P = 0.11 for V]. Neither treatment significantly reduced production of TNF-α. Whole-blood gene expression profiling showed no significant effect of L and V on uninfected mice. In S. aureus-infected mice, L altered the expression of a greater number of genes than V (95 vs. 42; P = 0.001). Pathway analysis for the differentially expressed genes identified toll-like receptor signaling pathway to be common to each S. aureus-infected comparison. Expression of immunomodulatory genes like Cxcl9, Cxcl10, Il1r2, Cd14 and Nfkbia was different among the treatment groups. Glycerolipid metabolism pathway was uniquely associated with L treatment in S. aureus infection. This study demonstrates that, as compared to V, treatment with L is associated with reduced levels of toxin production, differences in host inflammatory response, and distinct host gene expression characteristics in MRSA sepsis.
Collapse
Affiliation(s)
- Batu K. Sharma-Kuinkel
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (BKSK); (SHA)
| | - Yurong Zhang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Qin Yan
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sun Hee Ahn
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (BKSK); (SHA)
| | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| |
Collapse
|
15
|
Liang P, Cui X, Du X, Kan B, Liang W. The virulence phenotypes and molecular epidemiological characteristics of Vibrio fluvialis in China. Gut Pathog 2013; 5:6. [PMID: 23522652 PMCID: PMC3636005 DOI: 10.1186/1757-4749-5-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio fluvialis is considered to be an emerging foodborne pathogen and has been becoming a high human public health hazard all over the world, especially in coastal areas of developing countries and regions with poor sanitation. The distribution of virulence factors, microbiological and molecular epidemiological features of V. fluvialis isolates in China remains to be examined. Methods and results PCR targeted at the virulence determinants and phenotype tests including metabolism, virulence and antibiotic susceptibility were performed. Pulsed-field gel electrophoresis (PFGE) analysis was used to access the relatedness of isolates. A strain with deletion of the arginine dihydrolase system was first reported and proved in molecular level by PCR. Virulence genes vfh, hupO and vfpA were detected in all strains, the ability to produce hemolysin, cytotxin, protease and biofilm formation varied with strains. High resistance rate to β-lactams, azithromycin and sulfamethoxazole were observed. Twenty-seven percent of test strains showed resistant to two and three antibiotics. PFGE analysis demonstrated great genetic heterogeneity of test V. fluvialis strains. Conclusion This study evaluated firstly the biological characteristics and molecular epidemiological features of V. fluvialis in China. Some uncommon biochemical characteristics were found. Virulence genes were widely distributed in the isolates from patient and seafood sources, and the occurrence of virulence phenotypes varied with strains. Continued and enhanced laboratory based-surveillance is needed in the future together with systematically collection of the epidemiological information of the cases or the outbreaks.
Collapse
Affiliation(s)
- Pu Liang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Entamoeba histolytica is a human pathogen which can grow using different sources of iron such as free iron, lactoferrin, transferrin, ferritin or haemoglobin. In the present study, we found that E. histolytica was also capable of supporting its growth in the presence of haem as the sole iron supply. In addition, when trophozoites were maintained in cultures supplemented with haemoglobin as the only iron source, the haem was released and thus it was introduced into cells. Interestingly, the Ehhmbp26 and Ehhmbp45 proteins could be related to the mechanism of iron acquisition in this protozoan, since they were secreted to the medium under iron-starvation conditions, and presented higher binding affinity for haem than for haemoglobin. In addition, both proteins were unable to bind free iron or transferrin in the presence of haem. Taken together, our results suggest that Ehhmbp26 and Ehhmbp45 could function as haemophores, secreted by this parasite to facilitate the scavenging of haem from the host environment during the infective process.
Collapse
|
17
|
Igbinosa EO, Okoh AI. Vibrio fluvialis: an unusual enteric pathogen of increasing public health concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3628-43. [PMID: 21139853 PMCID: PMC2996184 DOI: 10.3390/ijerph7103628] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023]
Abstract
In developing countries, the fraction of treated wastewater effluents being discharged into watersheds have increased over the period of time, which have led to the deteriorations of the qualities of major rivers in developing nations. Consequently, high densities of disease causing bacteria in the watersheds are regularly reported including incidences of emerging Vibrio fluvialis. Vibrio fluvialis infection remains among those infectious diseases posing a potentially serious threat to public health. This paper addresses the epidemiology of this pathogen; pathogenesis of its disease; and its clinical manifestations in humans.
Collapse
Affiliation(s)
- Etinosa O. Igbinosa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa; E-Mail:
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa; E-Mail:
| |
Collapse
|
18
|
Soto W, Lostroh CP, Nishiguchi MK. Physiological Responses to Stress in the Vibrionaceae. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-9449-0_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Heme Coordination by Staphylococcus aureus IsdE. J Biol Chem 2007; 282:28815-28822. [PMID: 17666394 DOI: 10.1074/jbc.m704602200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single alpha-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met(78) and His(229). Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His(229) is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christie L Vermeiren
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
| |
Collapse
|
20
|
Kustos I, Kocsis B, Kilár F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007; 4:91-106. [PMID: 17288518 DOI: 10.1586/14789450.4.1.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.
Collapse
Affiliation(s)
- Ildikó Kustos
- University of Pécs, Department of Medical Microbiology & Immunology, Faculty of Medicine, Pécs, Hungary.
| | | | | |
Collapse
|
21
|
Grigg JC, Vermeiren CL, Heinrichs DE, Murphy MEP. Haem recognition by a Staphylococcus aureus NEAT domain. Mol Microbiol 2007; 63:139-49. [PMID: 17229211 DOI: 10.1111/j.1365-2958.2006.05502.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Successful pathogenic organisms have developed mechanisms to thrive under extreme levels of iron restriction. Haem-iron represents the largest iron reservoir in the human body and is a significant source of iron for some bacterial pathogens. NEAT (NEAr Transporter) domains are found exclusively in a family of cell surface proteins in Gram-positive bacteria. Many NEAT domain-containing proteins, including IsdA in Staphylococcus aureus, are implicated in haem binding. Here, we show that overexpression of IsdA in S. aureus enhances growth and an inactivation mutant of IsdA has a growth defect, compared with wild type, when grown in media containing haem as the sole iron source. Furthermore, the haem-binding property of IsdA is contained within the NEAT domain. Crystal structures of the apo-IsdA NEAT domain and in complex with haem were solved and reveal a clathrin adapter-like beta-sandwich fold with a large hydrophobic haem-binding pocket. Haem is bound with the propionate groups directed at the molecular surface and the iron is co-ordinated solely by Tyr(166). The phenol groups of Tyr(166) and Tyr(170) form an H-bond that may function in regulating haem binding and release. An analysis of IsdA structure-sequence alignments indicate that conservation of Tyr(166) is a predictor of haem binding by NEAT domains.
Collapse
Affiliation(s)
- Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
22
|
Basireddy M, Lindsay JT, Agarwal A, Balkovetz DF. Epithelial cell polarity and hypoxia influence heme oxygenase-1 expression by heme in renal epithelial cells. Am J Physiol Renal Physiol 2006; 291:F790-5. [PMID: 16622174 DOI: 10.1152/ajprenal.00402.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of heme oxygenase-1 (HO-1) in renal tubules occurs as an adaptive and beneficial response in acute renal failure (ARF) following ischemia and nephrotoxins. Using an in vitro model of polarized Madin-Darby canine kidney (MDCK) epithelial cells, we examined apical and basolateral cell surface sensitivity to HO-1 induction by heme. Basolateral exposure to 5 microM hemin (heme chloride) resulted in higher HO-1 induction than did apical exposure. The peak induction of HO-1 by basolateral application of hemin occurred between 12 and 18 h of exposure and was dose dependent. Similar cell surface sensitivity to hemin-induced HO-1 expression was observed using a mouse cortical collecting duct cell line (94D cells). Hepatocyte growth factor (HGF) is known to decrease cell polarity of MDCK cells. Following pretreatment with HGF, apically applied hemin gave greater stimulation of HO-1 expression, whereas HGF alone did not induce HO-1. We also examined the effect of hypoxia on hemin-mediated HO-1 induction. MDCK cells were subjected to hypoxia (1% O(2)) for 24 h to simulate the effects of ischemic ARF. Under hypoxic conditions, both apical as well as basolateral surfaces of MDCK were more sensitive to HO-1 induction by hemin. Hypoxia alone did not induce HO-1 but appeared to potentiate both apical and basolateral sensitivity to hemin-mediated induction. These data demonstrate that the induction of HO-1 expression in polarized renal epithelia by heme is achieved primarily via basolateral exposure. However, under conditions of altered renal epithelial cell polarity and hypoxia, increased HO-1 induction occurs following apical exposure to heme.
Collapse
|