1
|
Sun Y, Wang X, Gong Q, Li J, Huang H, Xue F, Dai J, Tang F. Extraintestinal Pathogenic Escherichia coli Utilizes Surface-Located Elongation Factor G to Acquire Iron from Holo-Transferrin. Microbiol Spectr 2022; 10:e0166221. [PMID: 35477220 PMCID: PMC9045202 DOI: 10.1128/spectrum.01662-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can cause systemic infections in both humans and animals. As an essential nutrient, iron is strictly sequestered by the host. Circumventing iron sequestration is a determinant factor for ExPEC infection. However, the ExPEC iron acquisition mechanism, particularly the mechanism of transferrin (TF) acquisition, remains unclear. This study reports that iron-saturated holo-TF can be utilized by ExPEC to promote its growth in culture medium and survival in macrophages. ExPEC specifically bound to holo-TF instead of iron-free apo-TF via the surface located elongation factor G (EFG) in both culture medium and macrophages. As a moonlighting protein, EFG specifically bound holo-TF and also released iron in TF. These two functions were performed by different domains of EFG, in which the N-terminal domains were responsible for holo-TF binding and the C-terminal domains were responsible for iron release. The functions of EFG and its domains have also been further confirmed by surface-display vectors. The surface overexpression of EFG bound significantly more holo-TF in macrophages and significantly improved bacterial intracellular survival ability. Our findings reveal a novel iron acquisition mechanism involving EFG, which suggests novel research avenues into the molecular mechanism of ExPEC resistance to nutritional immunity. IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen causing systemic infections in humans and animals. The competition for iron between ExPEC and the host is a determinant for ExPEC to establish a successful infection. Here, we sought to elucidate the role of transferrin (TF) in the interaction between ExPEC and the host. Our results revealed that holo-TF could be utilized by ExPEC to enhance its growth in culture medium and survival in macrophages. Furthermore, the role of elongation factor G (EFG), a novel holo-TF-binding and TF-iron release protein, was confirmed in this study. Our work provides insights into the iron acquisition mechanism of ExPEC, deepens understanding of the interaction between holo-TF and pathogens, and broadens further researches into the molecular mechanism of ExPEC pathogenicity.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qianwen Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haosheng Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Kolbe KR, Sanches TR, Fanelli C, Garnica MR, Urbano de Castro L, Gooch K, Thomas S, Taylor S, Gorringe A, Noronha IDL, Andrade L. Acute kidney injury in a mouse model of meningococcal disease. Int J Immunopathol Pharmacol 2021; 35:20587384211056507. [PMID: 34930061 PMCID: PMC8725215 DOI: 10.1177/20587384211056507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction Meningococcal disease is associated with high mortality. When acute kidney injury (AKI)
occurs in patients with severe meningococcal disease, it is typically attributable to
sepsis, although meningococcal disease and lipopolysaccharide release are rarely
investigated. Therefore, we evaluated renal tissue in a mouse model of meningococcal
disease. Methods Female BALB/c mice were induced to AKI by meningococcal challenge. Markers of renal
function were evaluated in infected and control mice. Results In the infected mice, serum concentrations of tumor necrosis factor alpha, interferon
gamma, interleukins (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-12), and
granulocyte–macrophage colony-stimulating factor were elevated, as was renal
interstitial infiltration with lymphocytes and neutrophils (p < 0.01
for the latter). Histological analysis showed meningococcal microcolonies in the renal
interstitium, without acute tubular necrosis. Infected mice also showed elevated renal
expression of toll-like receptor 2, toll-like receptor 4, and Tamm–Horsfall protein. The
expression of factors in the intrinsic pathway of apoptosis was equal to or lower than
that observed in the control mice. Urinary sodium and potassium were also lower in
infected mice, probably due to a tubular defect. Conclusion Our findings corroborate those of other studies of AKI in sepsis. To our knowledge,
this is the first time that meningococci have been identified in renal interstitium and
that the resulting apoptosis and inflammation have been evaluated. However, additional
studies are needed in order to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Karin R Kolbe
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita R Sanches
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camilla Fanelli
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Margoth R Garnica
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | - Irene de L Noronha
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
3
|
Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021; 20:1235-1256. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Species of the genus Neisseria are important global pathogens. Neisseria gonorrhoeae (gonococcus) causes the sexually transmitted disease gonorrhea and Neisseria meningitidis (meningococcus) causes meningitis and sepsis. Liposomes are self-assembled spheres of phospholipid bilayers enclosing a central aqueous space, and they have attracted much interest and use as a delivery vehicle for Neisseria vaccine antigens. AREAS COVERED A brief background on Neisseria infections and the success of licensed meningococcal vaccines are provided. The absence of a gonococcal vaccine is highlighted. The use of liposomes for delivering Neisseria antigens and adjuvants, for the purposes of generating specific immune responses, is reviewed. The use of other lipid-based systems for antigen and adjuvant delivery is examined briefly. EXPERT OPINION With renewed interest in developing a gonococcal vaccine, liposomes remain an attractive option for delivering antigens. The discipline of nanotechnology provides additional nanoparticle-based options for gonococcal vaccine development. Future work would be needed to tailor the composition of liposomes and other nanoparticles to the specific vaccine antigen(s), in order to generate optimal anti-gonococcal immune responses. The potential use of liposomes and other nanoparticles to deliver anti-gonococcal compounds to treat infections also should be explored further.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - John E Heckels
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
4
|
Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Crit Rev Biochem Mol Biol 2017; 52:314-326. [PMID: 28276700 DOI: 10.1080/10409238.2017.1293606] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transferrin is one of the sources of iron that is most readily available to colonizing and invading pathogens. In this review, we look at iron uptake by the bacterial transferrin receptor that is found in the families Neisseriaceae, Pasteurellaceae and Moraxellaceae. This bipartite receptor consists of the TonB-dependent transporter, TbpA, and the surface lipoprotein, TbpB. In the past three decades, major advancements have been made in our understanding of the mechanism through which the Tbps take up iron. We summarize these findings and discuss how they relate to the diversity and specificity of the transferrin receptor. We also outline several of the remaining unanswered questions about iron uptake via the bacterial transferrin receptor and suggest directions for future research.
Collapse
Affiliation(s)
| | - Trevor F Moraes
- a Department of Biochemistry , University of Toronto , Toronto , Canada
| |
Collapse
|
5
|
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. Structural basis for iron piracy by pathogenic Neisseria. Nature 2012; 483:53-8. [PMID: 22327295 PMCID: PMC3292680 DOI: 10.1038/nature10823] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|
7
|
Noto JM, Cornelissen CN. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae. Infect Immun 2008; 76:1960-9. [PMID: 18347046 PMCID: PMC2346694 DOI: 10.1128/iai.00020-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/15/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae requires iron for survival in the human host and therefore expresses high-affinity receptors for iron acquisition from host iron-binding proteins. The gonococcal transferrin-iron uptake system is composed of two transferrin binding proteins, TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter critical for iron acquisition, while TbpB is a surface-exposed lipoprotein that increases the efficiency of iron uptake. The precise mechanism by which TbpA mediates iron acquisition has not been elucidated; however, the process is distinct from those of characterized siderophore transporters. Similar to these TonB-dependent transporters, TbpA is proposed to have two distinct domains, a beta-barrel and a plug domain. We hypothesize that the TbpA plug coordinates iron and therefore potentially functions in multiple steps of transferrin-mediated iron acquisition. To test this hypothesis, we targeted a conserved motif within the TbpA plug domain and generated single, double, and triple alanine substitution mutants. Mutagenized TbpAs were expressed on the gonococcal cell surface and maintained wild-type transferrin binding affinity. Single alanine substitution mutants internalized iron at wild-type levels, while the double and triple mutants showed a significant decrease in iron uptake. Moreover, the triple alanine substitution mutant was unable to grow on transferrin as a sole iron source; however, expression of TbpB compensated for this defect. These data indicate that the conserved motif between residues 120 and 122 of the TbpA plug domain is critical for transferrin-iron utilization, suggesting that this region plays a role in iron acquisition that is shared by both TbpA and TbpB.
Collapse
Affiliation(s)
- Jennifer M Noto
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, USA
| | | |
Collapse
|
8
|
Coyle EM, Blazer LL, White AA, Hess JL, Boyle MDP. Practical applications of high-affinity, albumin-binding proteins from a group G streptococcal isolate. Appl Microbiol Biotechnol 2006; 71:39-45. [PMID: 16317541 DOI: 10.1007/s00253-005-0097-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 11/24/2022]
Abstract
Binding proteins that have high affinities for mammalian plasma proteins that are expressed on the surface of bacteria have proven valuable for the purification and detection of several biologically important molecules from human and animal plasma or serum. In this study, we have isolated a high affinity albumin-binding molecule from a group G streptococcal isolate of bovine origin and have demonstrated that the isolated protein can be biotinylated without loss of binding activity and can be used as a tracer for quantification of human serum albumin (HSA). The binding protein can be immobilized and used as a selective capture reagent in a competitive ELISA format using a biotinylated HSA tracer. In this assay format, the sensitivity of detection for 50% inhibition of binding of HSA was less than 1 microg/ml. When attached to the bacterial surface, this binding protein can be used to deplete albumin from human plasma, as analyzed by surface-enhanced laser desorption ionization time of flight mass spectrometry.
Collapse
Affiliation(s)
- Emily M Coyle
- Department of Biology, Juniata College, 1700 Moore St., Huntingdon, PA 16652, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|