1
|
Lindberg SK, Willsey GG, Mantis NJ. A Salmonella enterica serovar Typhimurium genome-wide CRISPRi screen reveals a role for type 1 fimbriae in evasion of antibody-mediated agglutination. Infect Immun 2025; 93:e0057424. [PMID: 40208041 PMCID: PMC12070745 DOI: 10.1128/iai.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The O5-specific monoclonal IgA antibody, Sal4, mediates the conversion of Salmonella enterica serovar Typhimurium (STm) from virulent, free-swimming cells to non-motile, multicellular biofilm-like aggregates within a matter of hours. We hypothesize that the rapid transition from an invasive to a non-invasive state is an adaptation of STm to Sal4 IgA exposure. In this report, we performed a genome-wide CRISPR interference (CRISPRi) screen to identify STm genes that influence multicellular aggregate formation in response to Sal4 IgA treatment. From a customized library of >36,000 spacers, ~1% (373) were enriched at the top of the culture supernatant after two consecutive rounds of Sal4 IgA treatment. The enriched spacers mapped to a diversity of targets, including genes involved in O-antigen modification, cyclic-di-GMP metabolism, outer membrane biosynthesis/signaling, and invasion/virulence, with the most frequently targeted gene being fimW, which encodes a negative regulator of type 1 fimbriae (T1F) expression. Generation of a STm ΔfimW strain confirmed that the loss of FimW activity results in a hyperfimbriated phenotype and evasion of Sal4 IgA-mediated agglutination in solution. Closer examination of the fimW mutant revealed its propensity to form biofilms at the air-liquid interface in response to Sal4 exposure, suggesting that T1F "primes" STm to transition from a planktonic to a sessile state, possibly by facilitating bacterial attachment to abiotic surfaces. These findings shed light on the mechanism by which IgA antibodies influence STm virulence in the intestinal environment.
Collapse
Affiliation(s)
- Samantha K. Lindberg
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, New York, USA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Graham G. Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, New York, USA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
2
|
Grzymajło K, Dutkiewicz A, Czajkowska J, Carolak E, Aleksandrowicz A, Waszczuk W. Salmonella adhesion is decreased by hypoxia due to adhesion and motility structure crosstalk. Vet Res 2023; 54:99. [PMID: 37875985 PMCID: PMC10598919 DOI: 10.1186/s13567-023-01233-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Initial stages of Salmonella Typhimurium infection involve a series of coordinated events aimed at reaching, attaching to, and invading host cells. Virulence factors such as flagella, fimbriae, and secretion systems play crucial roles in these events and are regulated in response to the host environment. The first point of contact between the pathogen and host is the intestinal epithelial layer, which normally serves as a barrier against invading pathogens, but can also be an entry site for pathogens. The integrity of this barrier can be modulated by the hypoxic environment of the intestines, created by the presence of trillions of microbes. Variable oxygen concentrations can strongly affect many functions of the gut, including secretion of cytokines and growth factors from the host site and affect the ability of Salmonella to persist, invade, and replicate. In this study, we investigated the first stages of Salmonella Typhimurium infection under hypoxic conditions in vitro and found that low oxygen levels significantly decreased bacterial adhesion. Using adhesion and motility assays, biofilm formation tests, as well as gene expression and cytokine secretion analysis, we identified a hypoxia-specific cross-talk between the expression of type 1 fimbriae and flagella, suggesting that altered flagellin expression levels affect the motility of bacteria and further impact their adhesion level, biofilm formation ability, and innate immune response. Overall, understanding how Salmonella interacts with its variable host environment provides insights into the virulence mechanisms of the bacterium and information regarding strategies for preventing or treating infections. Further research is required to fully understand the complex interplay between Salmonella and its host environment.
Collapse
Affiliation(s)
- Krzysztof Grzymajło
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Agata Dutkiewicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Czajkowska
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Carolak
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adrianna Aleksandrowicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Wiktoria Waszczuk
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Zhao X, Wei S, Tian Q, Peng W, Tao Y, Bo R, Liu M, Li J. Eugenol exposure in vitro inhibits the expressions of T3SS and TIF virulence genes in Salmonella Typhimurium and reduces its pathogenicity to chickens. Microb Pathog 2021; 162:105314. [PMID: 34838999 DOI: 10.1016/j.micpath.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen, which has the ability to infect a wide range of hosts. The increasing emergence of drug-resistant strains urgently requires new alternative therapies. Eugenol has been shown to be very effective against drug-resistant strains of Gram-negative and Gram-positive bacteria. The purpose of this study is to explore the effects of eugenol on the virulence factors and pathogenicity of S. Typhimurium. METHODS The antibacterial activity of eugenol was investigated via the changes of cell morphology, fimbriae related-genes and virulence factors of S. Typhimurium, then the pathogenicity of S. Typhimurium pretreated by eugenol to chickens was evaluated. RESULTS Susceptibility testing showed that eugenol possessed significant antimicrobial activity. Scanning electron microscope analysis showed eugenol treatment deformed the morphology with damaged fimbriae structure of S. Typhimurium. Real time PCR assay confirmed eugenol significantly down-regulated the expressions of virulence factors (hilA, hilD, sipA, sipC, spiC, misL) of Type III secretion system (T3SS) and adherence genes (fimA, fimH, fimD, fimY, fimZ, stm0551) of Type I fimbriae (TIF). Animal experiment proved that the pathogenicity of S. Typhimurium exposed by eugenol was reduced, which was evidenced by the higher survival rate, weight gains and organs indexes, the lower bacterial loads in organs. Meanwhile, the duodenal histopathological changes were mitigated, with a significantly decline in the expressions of TNF-α, IL-6 and IL-18. CONCLUSION In summary, eugenol pretreatment may alleviate the pathogenicity of the S. Typhimurium to chickens via wrecking the fimbriae and inhibiting the mRNA expressions of virulence factors and adhesion molecules. These data dedicated the potential mechanisms of eugenol against S. Typhimurium in vitro.
Collapse
Affiliation(s)
- Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - SiMin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - QiMing Tian
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - WeiLong Peng
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Ya Tao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
4
|
Chowdhury R, Pavinski Bitar PD, Adams MC, Chappie JS, Altier C. AraC-type regulators HilC and RtsA are directly controlled by an intestinal fatty acid to regulate Salmonella invasion. Mol Microbiol 2021; 116:1464-1475. [PMID: 34687258 DOI: 10.1111/mmi.14835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/30/2023]
Abstract
Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Pérez-Morales D, Nava-Galeana J, Rosales-Reyes R, Teehan P, Yakhnin H, Melchy-Pérez EI, Rosenstein Y, De la Cruz MA, Babitzke P, Bustamante VH. An incoherent feedforward loop formed by SirA/BarA, HilE and HilD is involved in controlling the growth cost of virulence factor expression by Salmonella Typhimurium. PLoS Pathog 2021; 17:e1009630. [PMID: 34048498 PMCID: PMC8192010 DOI: 10.1371/journal.ppat.1009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/10/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
An intricate regulatory network controls the expression of Salmonella virulence genes. The transcriptional regulator HilD plays a central role in this network by controlling the expression of tens of genes mainly required for intestinal colonization. Accordingly, the expression/activity of HilD is highly regulated by multiple factors, such as the SirA/BarA two-component system and the Hcp-like protein HilE. SirA/BarA positively regulates translation of hilD mRNA through a regulatory cascade involving the small RNAs CsrB and CsrC, and the RNA-binding protein CsrA, whereas HilE inhibits HilD activity by protein-protein interaction. In this study, we show that SirA/BarA also positively regulates translation of hilE mRNA through the same mentioned regulatory cascade. Thus, our results reveal a paradoxical regulation exerted by SirA/BarA-Csr on HilD, which involves simultaneous opposite effects, direct positive control and indirect negative control through HilE. This kind of regulation is called an incoherent type-1 feedforward loop (I1-FFL), which is a motif present in certain regulatory networks and represents a complex biological problem to decipher. Interestingly, our results, together with those from a previous study, indicate that HilE, the repressor component of the I1-FFL reported here (I1-FFLSirA/BarA-HilE-HilD), is required to reduce the growth cost imposed by the expression of the genes regulated by HilD. Moreover, we and others found that HilE is necessary for successful intestinal colonization by Salmonella. Thus, these findings support that I1-FFLSirA/BarA-HilE-HilD cooperates to control the precise amount and activity of HilD, for an appropriate balance between the growth cost and the virulence benefit generated by the expression of the genes induced by this regulator. I1-FFLSirA/BarA-HilE-HilD represents a complex regulatory I1-FFL that involves multiple regulators acting at distinct levels of gene expression, as well as showing different connections to the rest of the regulatory network governing Salmonella virulence. To infect the intestine of a broad range of hosts, including humans, Salmonella is required to express a large number of genes encoding different cellular functions, which imposes a growth penalty. Thus, Salmonella has developed complex regulatory mechanisms that control the expression of virulence genes. Here we identified a novel and sophisticated regulatory mechanism that is involved in the fine-tuned control of the expression level and activity of the transcriptional regulator HilD, for the appropriate balance between the growth cost and the virulence benefit generated by the expression of tens of Salmonella genes. This mechanism forms an incoherent type-1 feedforward loop (I1-FFL), which involves paradoxical regulation; that is, a regulatory factor exerting simultaneous opposite control (positive and negative) on another factor. I1-FFLs are present in regulatory networks of diverse organisms, from bacteria to humans, and represent a complex biological problem to decipher. Interestingly, the I1-FFL reported here is integrated by ancestral regulators and by regulators that Salmonella has acquired during evolution. Thus, our findings reveal a novel I1-FFL of bacteria, which is involved in virulence. Moreover, our results illustrate the integration of ancestral and acquired factors into a regulatory motif, which can lead to the expansion of regulatory networks.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paige Teehan
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erika I. Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
6
|
Hamed S, Shawky RM, Emara M, Slauch JM, Rao CV. HilE is required for synergistic activation of SPI-1 gene expression in Salmonella enterica serovar Typhimurium. BMC Microbiol 2021; 21:49. [PMID: 33593291 PMCID: PMC7887791 DOI: 10.1186/s12866-021-02110-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium is an intestinal pathogen capable of infecting a wide range of animals. It initiates infection by invading intestinal epithelial cells using a type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). The SPI-1 genes are regulated by multiple interacting transcription factors. The master regulator is HilD. HilE represses SPI-1 gene expression by binding HilD and preventing it from activating its target promoters. Previous work found that acetate and nutrients synergistically induce SPI-1 gene expression. In the present study, we investigated the role of HilE, nominally a repressor of SPI-1 gene expression, in mediating this response to acetate and nutrients. RESULTS HilE is necessary for activation of SPI-1 gene expression by acetate and nutrients. In mutants lacking hilE, acetate and nutrients no longer increase SPI-1 gene expression but rather repress it. This puzzling response is not due to the BarA/SirA two component system, which governs the response to acetate. To identify the mechanism, we profiled gene expression using RNAseq in the wild type and a ΔhilE mutant under different growth conditions. Analysis of these data suggested that the Rcs system, which regulates gene expression in response to envelope stress, is involved. Consistent with this hypothesis, acetate and nutrients were able to induce SPI-1 gene expression in mutants lacking hilE and the Rcs system. CONCLUSIONS While the exact mechanism is unknown, these results demonstrate the HilE, nominally a repressor of SPI-1 gene expression, can also function as an activator under the growth conditions investigated. Collectively, these results provide new insights regarding SPI-1 gene regulation and demonstrate that HilE is more complex than initially envisioned.
Collapse
Affiliation(s)
- Selwan Hamed
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA. .,Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795, Egypt.
| | - Riham M Shawky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795, Egypt
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Cooper KG, Chong A, Kari L, Jeffrey B, Starr T, Martens C, McClurg M, Posada VR, Laughlin RC, Whitfield-Cargile C, Garry Adams L, Bryan LK, Little SV, Krath M, Lawhon SD, Steele-Mortimer O. Regulatory protein HilD stimulates Salmonella Typhimurium invasiveness by promoting smooth swimming via the methyl-accepting chemotaxis protein McpC. Nat Commun 2021; 12:348. [PMID: 33441540 PMCID: PMC7806825 DOI: 10.1038/s41467-020-20558-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
In the enteric pathogen Salmonella enterica serovar Typhimurium, invasion and motility are coordinated by the master regulator HilD, which induces expression of the type III secretion system 1 (T3SS1) and motility genes. Methyl-accepting chemotaxis proteins (MCPs) detect specific ligands and control the direction of the flagellar motor, promoting tumbling and changes in direction (if a repellent is detected) or smooth swimming (in the presence of an attractant). Here, we show that HilD induces smooth swimming by upregulating an uncharacterized MCP (McpC), and this is important for invasion of epithelial cells. Remarkably, in vitro assays show that McpC can suppress tumbling and increase smooth swimming in the absence of exogenous ligands. Expression of mcpC is repressed by the universal regulator H-NS, which can be displaced by HilD. Our results highlight the importance of smooth swimming for Salmonella Typhimurium invasiveness and indicate that McpC can act via a ligand-independent mechanism when incorporated into the chemotactic receptor array.
Collapse
Affiliation(s)
- Kendal G Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Brendan Jeffrey
- NIAID Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
- GlaxoSmithKline, Hamilton, MT, 59840, USA
| | - Craig Martens
- NIAID RML Research Technologies Section, Genomics Unit, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Molly McClurg
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Victoria R Posada
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Richard C Laughlin
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, 78363, USA
| | - Canaan Whitfield-Cargile
- Department of Veterinary Large Animal Clinical Sciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - Laura K Bryan
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - Sara V Little
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - Mary Krath
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratory, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| |
Collapse
|
8
|
Staes I, Passaris I, Cambré A, Aertsen A. Population heterogeneity tactics as driving force in Salmonella virulence and survival. Food Res Int 2019; 125:108560. [DOI: 10.1016/j.foodres.2019.108560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|
9
|
Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019; 9:270. [PMID: 31428589 PMCID: PMC6689963 DOI: 10.3389/fcimb.2019.00270] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella species can infect a diverse range of birds, reptiles, and mammals, including humans. The type III protein secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) delivers effector proteins required for intestinal invasion and the production of enteritis. The T3SS is regarded as the most important virulence factor of Salmonella. SPI-1 encodes transcription factors that regulate the expression of some virulence factors of Salmonella, while other transcription factors encoded outside SPI-1 participate in the expression of SPI-1-encoded genes. SPI-1 genes are responsible for the invasion of host cells, regulation of the host immune response, e.g., the host inflammatory response, immune cell recruitment and apoptosis, and biofilm formation. The regulatory network of SPI-1 is very complex and crucial. Here, we review the function, effectors, and regulation of SPI-1 genes and their contribution to the pathogenicity of Salmonella.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rongli Piao
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Kolenda R, Ugorski M, Grzymajlo K. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Front Microbiol 2019; 10:1017. [PMID: 31139165 PMCID: PMC6527747 DOI: 10.3389/fmicb.2019.01017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Initial attachment to host intestinal mucosa after oral infection is one of the most important stages during bacterial pathogenesis. Adhesive structures, widely present on the bacterial surface, are mainly responsible for the first contact with host cells and of host-pathogen interactions. Among dozens of different bacterial adhesins, type 1 fimbriae (T1F) are one of the most common adhesive organelles in the members of the Enterobacteriaceae family, including Salmonella spp., and are important virulence factors. Those long, thin structures, composed mainly of FimA proteins, are responsible for recognizing and binding high-mannose oligosaccharides, which are carried by various glycoproteins and expressed at the host cell surface, via FimH adhesin, which is presented at the top of T1F. In this review, we discuss investigations into the functions of T1F, from the earliest work published in 1958 to operon organization, organelle structure, T1F biogenesis, and the various functions of T1F in Salmonella-host interactions. We give special attention to regulation of T1F expression and their role in binding of Salmonella to cells, cell lines, organ explants, and other surfaces with emphasis on biofilm formation and discuss T1F role as virulence factors based on work using animal models. We also discuss the importance of allelic variation in fimH to Salmonella pathogenesis, as well as role of FimH in Salmonella host specificity.
Collapse
Affiliation(s)
- Rafal Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
11
|
Hung CC, Eade CR, Betteken MI, Pavinski Bitar PD, Handley EM, Nugent SL, Chowdhury R, Altier C. Salmonella invasion is controlled through the secondary structure of the hilD transcript. PLoS Pathog 2019; 15:e1007700. [PMID: 31017982 PMCID: PMC6502421 DOI: 10.1371/journal.ppat.1007700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/06/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
Virulence functions of bacterial pathogens are often energetically costly and thus are subjected to intricate regulatory mechanisms. In Salmonella, invasion of the intestinal epithelium, an essential early step in virulence, requires the production of a multi-protein type III secretion apparatus. The pathogen mitigates the overall cost of invasion by inducing it in only a fraction of its population. This constitutes a successful virulence strategy as invasion by a small number is sufficient to promote the proliferation of the non-invading majority. Such a system suggests the existence of a sensitive triggering mechanism that permits only a minority of Salmonella to reach a threshold of invasion-gene induction. We show here that the secondary structure of the invasion regulator hilD message provides such a trigger. The 5' end of the hilD mRNA is predicted to contain two mutually exclusive stem-loop structures, the first of which (SL1) overlaps the ribosome-binding site and the ORF start codon. Changes that reduce its stability enhance invasion gene expression, while those that increase stability reduce invasion. Conversely, disrupting the second stem-loop (SL2) represses invasion genes. Although SL2 is the energetically more favorable, repression through SL1 is enhanced by binding of the global regulator CsrA. This system thus alters the levels of hilD mRNA and is so sensitive that changing a single base pair within SL1, predicted to augment its stability, eliminates expression of invasion genes and significantly reduces Salmonella virulence in mice. This system thus provides a possible means to rapidly and finely tune an essential virulence function.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Colleen R. Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Michael I. Betteken
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Elaine M. Handley
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Staci L. Nugent
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
13
|
Troxell B. A type 6 secretion system (T6SS) encoded gene within Salmonella enterica serovar Enteritidis contributes to virulence. Virulence 2018; 9:585-587. [PMID: 29380670 PMCID: PMC7000193 DOI: 10.1080/21505594.2017.1421829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria interact with their host through protein secretion systems and surface structures. Pathogenic bacteria encode protein secretion systems that promote the invasion of the host's tissue, the evasion of the host's immune response, the thwarting microbial competitors, and ultimately survival within the host. For motile bacteria, the presence of extracellular flagella provides the host with a structural motif used for activation of the immune system. Within this issue of Virulence, the article "Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated protein expression" describes the contribution of a gene, SEN1005, toward host-pathogen interaction. The authors demonstrate the contribution of SEN1005 to cell culture bioassays and infection in a mouse model of colitis. In each tested scenario, deletion of SEN1005 results in a phenotypic defect that was complemented by providing the SEN1005 gene in trans. SEN1005 contributes to the expression of known virulence factors within SPI-1, flagellar and chemotaxis genes, and heat shock/chaperone genes. Although much work is needed to fully elucidate the function of SEN1005, this work contributes toward our understanding of the genetic factors used by Salmonella to cause foodborne illnesses.
Collapse
Affiliation(s)
- Bryan Troxell
- a Alcami Corporation, Biotechnology department , Durham , North Carolina , USA
| |
Collapse
|
14
|
HilE Regulates HilD by Blocking DNA Binding in Salmonella enterica Serovar Typhimurium. J Bacteriol 2018; 200:JB.00750-17. [PMID: 29378886 DOI: 10.1128/jb.00750-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella type three secretion system (T3SS), encoded in the Salmonella pathogenicity island 1 (SPI1) locus, mediates the invasion of the host intestinal epithelium. SPI1 expression is dependent upon three AraC-like regulators: HilD, HilC, and RtsA. These regulators act in a complex feed-forward loop to activate each other and hilA, which encodes the activator of the T3SS structural genes. HilD has been shown to be the major integration point of most signals known to activate the expression of the SPI1 T3SS, acting as a switch to control induction of the system. HilE is a negative regulator that acts upon HilD. Here we provide genetic and biochemical data showing that HilE specifically binds to HilD but not to HilC or RtsA. This protein-protein interaction blocks the ability of HilD to bind DNA as shown by both an in vivo reporter system and an in vitro gel shift assay. HilE does not affect HilD dimerization, nor does it control the stability of the HilD protein. We also investigated the role of HilE during the infection of mice using competition assays. Although deletion of hilE does not confer a phenotype, the hilE mutation does suppress the invasion defect conferred by loss of FliZ, which acts as a positive signal controlling HilD protein activity. Together, these data suggest that HilE functions to restrict low-level HilD activity, preventing premature activation of SPI1 until positive inputs reach a threshold required to fully induce the system.IMPORTANCESalmonella is a leading cause of gastrointestinal and systemic disease throughout the world. The SPI1 T3SS is required for Salmonella to induce inflammatory diarrhea and to gain access to underlying tissue. A complex regulatory network controls expression of SPI1 in response to numerous physiological inputs. Most of these signals impinge primarily on HilD translation or activity. The system is triggered when HilD activity crosses a threshold that allows efficient activation of its own promoter. This threshold is set by HilE, which binds to HilD to prevent the inevitable minor fluctuations in HilD activity from inappropriately activating the system. The circuit also serves as a paradigm for systems that must integrate numerous environmental parameters to control regulatory output.
Collapse
|
15
|
The QseG Lipoprotein Impacts the Virulence of Enterohemorrhagic Escherichia coli and Citrobacter rodentium and Regulates Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium. Infect Immun 2018; 86:IAI.00936-17. [PMID: 29358334 DOI: 10.1128/iai.00936-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The QseEF histidine kinase/response regulator system modulates expression of enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium virulence genes in response to the host neurotransmitters epinephrine and norepinephrine. qseG, which encodes an outer membrane lipoprotein, is cotranscribed with qseEF in these enteric pathogens, but there is little knowledge of its role in virulence. Here, we found that in EHEC QseG interacts with the type III secretion system (T3SS) gate protein SepL and modulates the kinetics of attaching and effacing (AE) lesion formation on tissue-cultured cells. Moreover, an EHEC ΔqseG mutant had reduced intestinal colonization in an infant rabbit model. Additionally, in Citrobacter rodentium, an AE lesion-forming pathogen like EHEC, QseG is required for full virulence in a mouse model. In S Typhimurium, we found that QseG regulates the phase switch between the two flagellin types, FliC and FljB. In an S Typhimurium ΔqseG mutant, the phase-variable promoter for fljB is preferentially switched into the "on" position, leading to overproduction of this phase two flagellin. In infection of tissue-cultured cells, the S Typhimurium ΔqseG mutant provokes increased inflammatory cytokine production versus the wild type; in vivo, in a murine infection model, the ΔqseG strain caused a more severe inflammatory response and was attenuated versus the wild-type strain. Collectively, our findings demonstrate that QseG is important for full virulence in several enteric pathogens and controls flagellar phase variation in S Typhimurium, and they highlight both the complexity and conservation of the regulatory networks that control the virulence of enteric pathogens.
Collapse
|
16
|
Diacovich L, Lorenzi L, Tomassetti M, Méresse S, Gramajo H. The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole. Virulence 2016; 8:975-992. [PMID: 27936347 DOI: 10.1080/21505594.2016.1270493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that causes various host-specific diseases. During their life cycle, Salmonellae survive frequent exposures to a variety of environmental stresses, e.g. carbon-source starvation. The virulence of this pathogen relies on its ability to establish a replicative niche, named Salmonella-containing vacuole, inside host cells. However, the microenvironment of the SCV and the bacterial metabolic pathways required during infection are largely undefined. In this work we developed different biological probes whose expression is modulated by the environment and the physiological state of the bacterium. We constructed transcriptional reporters by fusing promoter regions to the gfpmut3a gene to monitor the expression profile of genes involved in glucose utilization and lipid catabolism. The induction of these probes by a specific metabolic change was first tested in vitro, and then during different conditions of infection in macrophages. We were able to determine that Entner-Doudoroff is the main metabolic pathway utilized by Salmonella during infection in mouse macrophages. Furthermore, we found sub-populations of bacteria expressing genes involved in pathways for the utilization of different sources of carbon. These populations are modified in presence of different metabolizable substrates, suggesting the coexistence of Salmonella with diverse metabolic states during the infection.
Collapse
Affiliation(s)
- Lautaro Diacovich
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Lucía Lorenzi
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Mauro Tomassetti
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| | - Stéphane Méresse
- b Aix Marseille Université, CNRS, INSERM, CIML , Marseille , France
| | - Hugo Gramajo
- a Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario , Rosario , Argentina
| |
Collapse
|
17
|
Wang KC, Huang CH, Ding SM, Chen CK, Fang HW, Huang MT, Fang SB. Role of yqiC in the Pathogenicity of Salmonella and Innate Immune Responses of Human Intestinal Epithelium. Front Microbiol 2016; 7:1614. [PMID: 27777572 PMCID: PMC5056187 DOI: 10.3389/fmicb.2016.01614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
The yqiC gene of Salmonella enterica serovar Typhimurium (S. Typhimurium) regulates bacterial growth at different temperatures and mice survival after infection. However, the role of yqiC in bacterial colonization and host immunity remains unknown. We infected human LS174T, Caco-2, HeLa, and THP-1 cells with S. Typhimurium wild-type SL1344, its yqiC mutant, and its complemented strain. Bacterial colonization and internalization in the four cell lines significantly reduced on yqiC depletion. Post-infection production of interleukin-8 and human β-defensin-3 in LS174T cells significantly reduced because of yqiC deleted in S. Typhimurium. The phenotype of yqiC mutant exhibited few and short flagella, fimbriae on the cell surface, enhanced biofilm formation, upregulated type-1 fimbriae expression, and reduced bacterial motility. Type-1 fimbriae, flagella, SPI-1, and SPI-2 gene expression was quantified using real-time PCR. The data show that deletion of yqiC upregulated fimA and fimZ expression and downregulated flhD, fliZ, invA, and sseB expression. Furthermore, thin-layer chromatography and high-performance liquid chromatography revealed the absence of menaquinone in the yqiC mutant, thus validating the importance of yqiC in the bacterial electron transport chain. Therefore, YqiC can negatively regulate FimZ for type-1 fimbriae expression and manipulate the functions of its downstream virulence factors including flagella, SPI-1, and SPI-2 effectors.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology Taipei, Taiwan
| | - Shih-Min Ding
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of TechnologyTaipei, Taiwan
| | - Ching-Kuo Chen
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology Taipei, Taiwan
| | - Hsu-Wei Fang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of TechnologyTaipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine - National Health Research InstitutesZhunan, Taiwan
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
18
|
Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2014; 83:978-85. [PMID: 25547794 DOI: 10.1128/iai.02506-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonellae initiate disease through the invasion of host cells within the intestine. This ability to invade requires the coordinated action of numerous genes, many of which are found within Salmonella pathogenicity island 1 (SPI-1). The key to this process is the ability of the bacteria to respond to the environment, thereby upregulating the necessary genes under optimal conditions. Central to the control of SPI-1 is the transcriptional activator hilA. Work has identified at least 10 different activators and 8 different repressors responsible for the control of hilA. We have previously shown that hilE is a Salmonella-specific negative regulator that is able to repress hilA expression and invasion. Additionally, fimZ, a transcriptional activator responsible for the expression of type I fimbriae as well as flagellar genes, has also been implicated in this process. fimZ is homologous to response regulators from other two-component regulatory systems, although a sensor for the system has not been identified. The phoPQ and phoBR regulons are both two-component systems that negatively affect hilA expression, although the mechanism of action has not been determined. Our results show that PhoBR is capable of inducing fimZ expression, whereas PhoPQ does not affect fimZ expression but does upregulate hilE in an FimZ-dependent manner. Therefore, phosphate (sensed by PhoBR) and magnesium (sensed by PhoPQ) levels are important in controlling hilA expression levels when Salmonella is in the intestinal environment.
Collapse
|
19
|
Mouslim C, Hughes KT. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog 2014; 10:e1003987. [PMID: 24603858 PMCID: PMC3946378 DOI: 10.1371/journal.ppat.1003987] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022] Open
Abstract
The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.
Collapse
Affiliation(s)
- Chakib Mouslim
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
20
|
Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS. FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2013; 169:496-503. [PMID: 24462182 DOI: 10.1016/j.micres.2013.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/02/2013] [Accepted: 12/08/2013] [Indexed: 11/17/2022]
Abstract
Salmonella enterica serovar Typhimurium produces type 1 fimbriae with binding specificity to mannose residues. Elements involved in fimbrial structural biosynthesis, transport, and regulation are encoded by the fim gene cluster. FimZ, FimY, FimW, STM0551, and an arginine transfer RNA (fimU) were previously demonstrated to regulate fimbrial expression. The amino acid sequences of the C-terminal portion of FimY revealed similarity with those of LuxR-like proteins. Electrophoretic mobility shift assays indicated that FimY possessed DNA-binding capacity and bound a 605-bp DNA fragment spanning the intergenic region between fimY and fimZ, while a FimY protein harboring a double mutation in the C-terminal helix-turn-helix region containing a glycine (G) to aspartate (D) substitution at residue 189 and isoleucine (I) to lysine (K) substitution at residue 195 lost its ability to bind this DNA fragment. A lux box sequence (5'-TCTGTTATTACATAACAAATACT-3') within the fimZ promoter was required for binding. None of the DNA fragments derived from the promoters for fimA, fimY, or fimW was shifted by FimY. Pull-down assays showed that there were physical protein/protein interactions between FimY and FimZ. We propose that in the regulatory circuit of type 1 fimbriae, FimY functions as a DNA-binding protein to activate fimZ, and a FimY-FimZ protein complex may form to regulate other fim genes. Confirming these proposals requires further study.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Yuan-Hsun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Yi-Ning Huang
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Jiunn-Horng Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan; Division of Animal Medicine, Animal Technology Institute Taiwan, Chunan, Miaoli 35053, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| |
Collapse
|
21
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 498] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
22
|
FimY does not interfere with FimZ-FimW interaction during type 1 fimbria production by Salmonella enterica serovar Typhimurium. Infect Immun 2013; 81:4453-60. [PMID: 24042120 DOI: 10.1128/iai.00795-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The production of type 1 fimbriae in Salmonella enterica serovar Typhimurium is controlled, in part, by three proteins, FimZ, FimY, and FimW. Amino acid sequence analysis indicates that FimZ belongs to the family of bacterial response regulators of two-component systems. In these studies, we have demonstrated that introducing a mutation mimicking phosphorylation of FimZ is necessary for activation of its target gene, fimA. In addition, the interaction of FimZ with FimW, a repressor of fimA expression, occurs only when FimZ is phosphorylated. Consequently, the negative regulatory effect of FimW is most likely due to downmodulation of the active FimZ protein. FimY does not appear to function as a response regulator, and its activity can be lost by mimicking the phosphorylation of FimY. Overproduction of FimY cannot alleviate the nonfimbriate phenotype in a FimZ mutant, whereas high levels of FimZ can overcome the nonfimbriate phenotype of a FimY mutant. It appears that FimY acts upstream of FimZ to activate fimA expression.
Collapse
|
23
|
Prajapat MK, Saini S. Interplay between Fur and HNS in controlling virulence gene expression in Salmonella typhimurium. Comput Biol Med 2012; 42:1133-40. [PMID: 23040276 DOI: 10.1016/j.compbiomed.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/08/2012] [Accepted: 09/11/2012] [Indexed: 01/04/2023]
Abstract
Salmonella enterica is responsible for a large number of diseases in a wide-range of hosts. Two of the global regulators involved in controlling gene expression during the infection cycle of the bacterium are Fur and HNS. In this paper, we demonstrate computationally that Fur and HNS have disproportionately high density of binding sites in the Pathogenicity Islands on the Salmonella chromosome. Moreover, the frequency of binding sites for the two proteins is correlated throughout the genome of the organism. These results indicate a complex interplay between Fur and HNS in regulating cellular global behavior.
Collapse
Affiliation(s)
- Mahendra Kumar Prajapat
- Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India
| | | |
Collapse
|
24
|
Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC, Tchesnokova V, Kramer JJ, Beskhlebnaya V, Samadpour M, Grzymajlo K, Ugorski M, Lankau EW, Mackie RI, Clegg S, Sokurenko EV. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 2012; 8:e1002733. [PMID: 22685400 PMCID: PMC3369946 DOI: 10.1371/journal.ppat.1002733] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/20/2012] [Indexed: 11/18/2022] Open
Abstract
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella.
Collapse
Affiliation(s)
- Dagmara I. Kisiela
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sujay Chattopadhyay
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Stephen J. Libby
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Joyce E. Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Veronika Tchesnokova
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jeremy J. Kramer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Viktoriya Beskhlebnaya
- Institute for Environmental Health, Lake Forest Park, Washington, United States of America
| | - Mansour Samadpour
- Institute for Environmental Health, Lake Forest Park, Washington, United States of America
| | - Krzysztof Grzymajlo
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Emily W. Lankau
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Roderick I. Mackie
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Steven Clegg
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Evgeni V. Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Crosstalk between virulence loci: regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by products of the std fimbrial operon. PLoS One 2012; 7:e30499. [PMID: 22291968 PMCID: PMC3264584 DOI: 10.1371/journal.pone.0030499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/16/2011] [Indexed: 12/22/2022] Open
Abstract
Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam− background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam+ background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam− mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed.
Collapse
|
26
|
Milillo SR, Martin E, Muthaiyan A, Ricke SC. Immediate reduction of Salmonella enterica serotype typhimurium viability via membrane destabilization following exposure to multiple-hurdle treatments with heated, acidified organic acid salt solutions. Appl Environ Microbiol 2011; 77:3765-72. [PMID: 21478311 PMCID: PMC3127599 DOI: 10.1128/aem.02839-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/29/2011] [Indexed: 01/06/2023] Open
Abstract
The antimicrobial activity of organic acids in combination with nonchemical treatments was evaluated for inactivation of Salmonella enterica serotype Typhimurium within 1 min. It was observed that the effectiveness of the multiple-hurdle treatments was temperature (P ≤ 0.05) and pH (P ≤ 0.05) dependent and corresponded to the degree of organic acid lipophilicity (sodium acetate being least effective and sodium propionate being the most effective). This led to the hypothesis that the loss in viability was due at least in part to cell membrane disruption. Evaluation of osmotic response, potassium ion leakage, and transmission electron micrographs confirmed treatment effects on the cell membrane. Interestingly, all treatments, even those with no effect on viability, such as with sodium acetate, resulted in measurable cellular stress. Microarray experiments explored the specific response of S. Typhimurium to sodium acetate and sodium propionate, the most similar of the tested treatments in terms of pK(a) and ionic strength, and found little difference in the changes in gene expression following exposure to either, despite their very different effects on viability. Taken together, the results reported support our hypothesis that treatment with heated, acidified, organic acid salt solutions for 1 min causes loss of S. Typhimurium viability at least in part by membrane damage and that the degree of effectiveness can be correlated with lipophilicity of the organic acid. Overall, the data presented here indicate that a combined thermal, acidified sodium propionate treatment can provide an effective antimicrobial treatment against Salmonella.
Collapse
Affiliation(s)
- S R Milillo
- 2435 N. Hatch Ave., Food Science Department, University of Arkansas, Fayetteville, AR 72704, USA.
| | | | | | | |
Collapse
|
27
|
Neal AL, Kabengi N, Grider A, Bertsch PM. Can the soil bacteriumCupriavidus necatorsense ZnO nanomaterials and aqueous Zn2+differentially? Nanotoxicology 2011; 6:371-80. [DOI: 10.3109/17435390.2011.579633] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Shen S, Fang FC. Integrated stress responses in Salmonella. Int J Food Microbiol 2011; 152:75-81. [PMID: 21570144 DOI: 10.1016/j.ijfoodmicro.2011.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 12/23/2022]
Abstract
The foodborne gram-negative pathogen Salmonella must adapt to varied environmental conditions encountered within foods, the host gastrointestinal tract and the phagosomes of host macrophages. Adaptation is achieved through the coordinate regulation of gene expression in response to environmental signals such as temperature, pH, osmolarity, redox state, antimicrobial peptides, and nutrient deprivation. This review will examine mechanisms by which the integration of regulatory responses to a broad array of environmental signals can be achieved. First, in the most straightforward case, tandem promoters allow gene expression to respond to multiple signals. Second, versatile sensor proteins may respond to more than one environmental signal. Third, transcriptional silencing and counter-silencing as demonstrated by the H-NS paradigm provides a general mechanism for the convergence of multiple regulatory inputs. Fourth, signaling cascades allow gene activation by independent sensory elements. These mechanisms allow Salmonella to utilize common adaptive stress pathways in response to a diverse range of environmental conditions.
Collapse
Affiliation(s)
- Shu Shen
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, 98195-7242 USA
| | | |
Collapse
|
29
|
Amaral L, Fanning S, Pagès JM. Efflux pumps of gram-negative bacteria: genetic responses to stress and the modulation of their activity by pH, inhibitors, and phenothiazines. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 77:61-108. [PMID: 21692367 DOI: 10.1002/9780470920541.ch2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Leonard Amaral
- Unit of Mycobacteriology, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
30
|
Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 2010; 192:5767-77. [PMID: 20833811 DOI: 10.1128/jb.00624-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica, a common food-borne pathogen, differentially regulates the expression of multiple genes during the infection cycle. These genes encode systems related to motility, adhesion, invasion, and intestinal persistence. Key among them is a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). In addition to the SPI1 T3SS, other systems, including flagella and type 1 fimbriae, have been implicated in Salmonella pathogenesis. In this study, we investigated the dynamic expression of the flagellar, SPI1, and type 1 fimbrial genes. We demonstrate that these genes are expressed in a temporal hierarchy, beginning with the flagellar genes, followed by the SPI1 genes, and ending with the type 1 fimbrial genes. This hierarchy could mirror the roles of these three systems during the infection cycle. As multiple studies have shown that extensive regulatory cross talk exists between these three systems, we also tested how removing different regulatory links between them affects gene expression dynamics. These results indicate that cross talk is critical for regulating gene expression during transitional phases in the gene expression hierarchy. In addition, we identified a novel regulatory link between flagellar and type 1 fimbrial gene expression dynamics, where we found that the flagellar regulator, FliZ, represses type 1 fimbrial gene expression through the posttranscriptional regulation of FimZ. The significance of these results is that they provide the first systematic study of the effect of regulatory cross talk on the expression dynamics of flagellar, SPI1, and type 1 fimbrial genes.
Collapse
|
31
|
Saini S, Ellermeier JR, Slauch JM, Rao CV. The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella. PLoS Pathog 2010; 6:e1001025. [PMID: 20686667 PMCID: PMC2912647 DOI: 10.1371/journal.ppat.1001025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 06/30/2010] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.
Collapse
Affiliation(s)
- Supreet Saini
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeremy R. Ellermeier
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
32
|
Ibarra JA, Knodler LA, Sturdevant DE, Virtaneva K, Carmody AB, Fischer ER, Porcella SF, Steele-Mortimer O. Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella-host cell interactions in vitro. MICROBIOLOGY-SGM 2009; 156:1120-1133. [PMID: 20035008 DOI: 10.1099/mic.0.032896-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salmonella invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the Salmonella pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. In vitro invasive Salmonella are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of Salmonella to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of Salmonella to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of Salmonella to interact with eukaryotic host cells.
Collapse
Affiliation(s)
- J Antonio Ibarra
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Daniel E Sturdevant
- Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimmo Virtaneva
- Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Aaron B Carmody
- Flow Cytometry Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Stephen F Porcella
- Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
33
|
Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity island 1 genes. Antimicrob Agents Chemother 2009; 54:367-74. [PMID: 19917752 DOI: 10.1128/aac.00801-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The fitness costs associated with high-level fluoroquinolone resistance were examined for phenotypically and genotypically characterized ciprofloxacin-resistant Salmonella enterica serotype Enteritidis mutants (104-cip and 5408-cip; MIC, >32 microg/ml). The stability of the fluoroquinolone resistance phenotype in both mutants was investigated to assess whether clones with better fitness could emerge in the absence of antibiotic selective pressure. Mutants 104-cip and 5408-cip displayed altered morphology on agar and by electron microscopy, reduced growth rates, motility and invasiveness in Caco-2 cells, and increased sensitivity to environmental stresses. Microarray data revealed decreased expression of virulence and motility genes in both mutants. Two clones, 104-revert and 1A-revertC2, with ciprofloxacin MICs of 3 and 2 microg/ml, respectively, were recovered from separate lineages of 104-cip after 20 and 70 passages, respectively, on antibiotic-free agar. All fitness costs, except motility, were reversed in 104-revert. Potential mechanisms associated with reversal of the resistance phenotype were examined. Compared to 104-cip, both 104-revert and 1A-revertC2 showed decreased expression of acrB and soxS but still overexpressed marA. Both acquired additional mutations in SoxR and ParC, and 1A-revertC2 acquired two mutations in MarA. The altered porin and lipopolysaccharide (LPS) profiles observed in 104-cip were reversed. In contrast, 5408-cip showed no reversal in fitness costs and maintained its high-level ciprofloxacin resistance for 200 passages on antibiotic-free agar. In conclusion, high-level ciprofloxacin resistance in S. Enteritidis is associated with fitness costs. In the absence of antibiotic selection pressure, isolates may acquire mutations enabling reversion to an intermediate-level ciprofloxacin resistance phenotype associated with less significant fitness costs.
Collapse
|
34
|
Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect Immun 2009; 77:1936-44. [PMID: 19255191 DOI: 10.1128/iai.01246-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of enteropathogenic Escherichia coli (EPEC) generally employ the adhesins bundle-forming pili (Bfp) and intimin to colonize the intestine. Atypical EPEC strains possess intimin but are negative for Bfp and, yet, are able to cause disease. To identify alternative adhesins to Bfp in atypical EPEC, we constructed a transposon mutant library of atypical EPEC strain E128012 (serotype O114:H2) using TnphoA. Six mutants that had lost the ability to adhere to HEp-2 cells were identified, and in all six mutants TnphoA had inserted into the pstSCAB-phoU (Pst) operon. To determine if the Pst operon is required for adherence, we used site-directed mutagenesis to construct a pstCA mutant of E128012. The resultant mutant showed a reduced ability to adhere to HEp-2 cells and T84 intestinal epithelial cells, which was restored by trans-complementation with intact pstCA. To determine if pst contributes to bacterial colonization in vivo, a pstCA mutation was made in the EPEC-like murine pathogen, Citrobacter rodentium. C57BL/6 mice infected perorally with the pstCA mutant of C. rodentium excreted significantly lower numbers of C. rodentium than those given the wild-type strain. Moreover, colonic hyperplasia and diarrhea, which are features of infections with C. rodentium, were not observed in mice infected with the pstCA mutant but did occur in mice given the trans-complemented mutant. As mutations in pst genes generally lead to constitutive expression of the Pho regulon, our findings suggested that the Pho regulon may contribute to the reduced virulence of the pstCA mutants. To investigate this, we inactivated phoB in the pstCA mutants of EPEC E128012 and C. rodentium and found that the phoB mutation restored the adherent phenotype of both mutant strains. These results demonstrate that Pst contributes to the virulence of atypical EPEC and C. rodentium, probably by causing increased expression of an unidentified, Pho-regulated adhesin.
Collapse
|
35
|
Role of FimW, FimY, and FimZ in regulating the expression of type i fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 2009; 191:3003-10. [PMID: 19218381 DOI: 10.1128/jb.01694-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type I fimbriae in Salmonella enterica serovar Typhimurium are surface appendages that facilitate binding to eukaryotic cells. Expression of the fim gene cluster is known to be regulated by three proteins--FimW, FimY, and FimZ--and a tRNA encoded by fimU. In this work, we investigated how these proteins and tRNA coordinately regulate fim gene expression. Our results indicate that FimY and FimZ independently activate the P(fimA) promoter which controls the expression of the fim structural genes. FimY and FimZ were also found to strongly activate each other's expression and weakly activate their own expression. FimW was found to negatively regulate fim gene expression by repressing transcription from the P(fimY) promoter, independent of FimY or FimZ. Moreover, FimW and FimY interact within a negative feedback loop, as FimY was found to activate the P(fimW) promoter. In the case of fimU, the expression of this gene was not found to be regulated by FimW, FimY, or FimZ. We also explored the effect of fim gene expression on Salmonella pathogenicity island 1 (SPI1). Our results indicate that FimZ alone is able to enhance the expression of hilE, a known repressor of SPI1 gene expression. Based on our results, we were able to propose an integrated model for the fim gene circuit. As this model involves a combination of positive and negative feedback, we hypothesized that the response of this circuit may be bistable and thus a possible mechanism for phase variation. However, we found that the response was continuous and not bistable.
Collapse
|
36
|
Sigma32-mediated negative regulation of Salmonella pathogenicity island 1 expression. J Bacteriol 2008; 190:6636-45. [PMID: 18723621 DOI: 10.1128/jb.00744-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Salmonella pathogenicity island 1 (SPI1) enables infecting salmonellae to invade the intestinal epithelium and induce a proinflammatory response and macrophage cell death. SPI1 expression is controlled by a complex cascade with several transcriptional regulators within the island and global regulators outside it. Previously, we reported that DnaK-depleted salmonellae could neither invade epithelial cells nor secrete SPI1-encoded proteins, suggesting that DnaK is involved in the expression of SPI1. Here, we found that DnaK is involved in SPI1 expression through inhibition of sigma(32) protein, which directs the transcription of a group of genes in response to various global stresses. Overproduction of sigma(32) resulted in decreased levels of the SPI1-specific transcriptional regulators HilD and HilA. Further analysis demonstrated that the sigma(32)-mediated system negatively regulates HilD and HilA at the posttranslational and transcriptional levels, respectively. The executioner of this negative regulation was shown to be a sigma(32)-induced protein ATP-dependent Lon protease, which specifically degrades HilD. Since HilD can activate hilA transcription, is at the top of the hierarchical SPI1 regulatory loop, and has a dominant role, the posttranslational control of HilD by Lon is critically important for precise expression of SPI1. Consequently, we suggest that SPI1 expression is controlled by the feedback regulatory loop in which sigma(32) induces Lon to control turnover of HilD, and DnaK, which inhibits sigma(32) function, leading to the modulation of lon expression. This regulation in response to a specific combination of environmental signals would ensure that SPI1 expression is restricted to a few specific locations in the host.
Collapse
|
37
|
Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol 2008; 190:2470-8. [PMID: 18245288 DOI: 10.1128/jb.01385-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium delivers a variety of proteins via the Salmonella pathogenicity island 1 (SPI1)-encoded type III secretion system into host cells, where they elicit several physiological changes, including bacterial invasion, macrophage apoptosis, and enteropathogenesis. Once Salmonella has established a systemic infection, excess macrophage apoptosis would be detrimental to the pathogen, as it utilizes macrophages as vectors for systemic dissemination throughout the host. Therefore, SPI1 expression must be restricted to one or a few specific locations in the host. In the present study, we have demonstrated that the expression of this complex of genes is repressed by the ATP-dependent ClpXP protease, which therefore suppresses macrophage apoptosis. Depletion of ClpXP caused significant increases in the amounts of two SPI1-encoded transcriptional regulators, HilC and HilD, leading to the stimulation of hilA induction and therefore activation of SPI1 expression. Our evidence shows that ClpXP regulates cellular levels of HilC and HilD via the control of flagellar gene expression. Subsequent experiments demonstrated that the flagellum-related gene product FliZ controls HilD posttranscriptionally, and this in turn activates HilC. These findings suggest that the ClpXP protease coregulates SPI1-related virulence phenotypes and motility. ClpXP is a member of the stress protein family induced in bacteria exposed to hostile environments such as macrophages.
Collapse
|
38
|
Lamarche MG, Wanner BL, Crépin S, Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 2008; 32:461-73. [PMID: 18248418 DOI: 10.1111/j.1574-6976.2008.00101.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bacterial pathogens regulate virulence factor gene expression coordinately in response to environmental stimuli, including nutrient starvation. The phosphate (Pho) regulon plays a key role in phosphate homeostasis. It is controlled by the PhoR/PhoB two-component regulatory system. PhoR is an integral membrane signaling histidine kinase that, through an interaction with the ABC-type phosphate-specific transport (Pst) system and a protein called PhoU, somehow senses environmental inorganic phosphate (P(i)) levels. Under conditions of P(i) limitation (or in the absence of a Pst component or PhoU), PhoR activates its partner response regulator PhoB by phosphorylation, which, in turn, up- or down-regulates target genes. Single-cell profiling of PhoB activation has shown recently that Pho regulon gene expression exhibits a stochastic, "all-or-none" behavior. Recent studies have also shown that the Pho regulon plays a role in the virulence of several bacteria. Here, we present a comprehensive overview of the role of the Pho regulon in bacterial virulence. The Pho regulon is clearly not a simple regulatory circuit for controlling phosphate homeostasis; it is part of a complex network important for both bacterial virulence and stress response.
Collapse
Affiliation(s)
- Martin G Lamarche
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
39
|
Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun 2007; 76:1024-35. [PMID: 18160484 DOI: 10.1128/iai.01224-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts. Although the role of SPI1 in promoting epithelial invasion and proinflammatory cell death has been amply documented, SPI4 has only more recently been implicated in Salmonella virulence. SPI4 is a 24-kb pathogenicity island containing six open reading frames, siiA to siiF. Secretion of the 595-kDa SiiE protein requires a type I secretory system encoded by siiC, siiD, and siiF. An operon polarity suppressor (ops) sequence within the 5' untranslated region upstream of siiA is required for optimal SPI4 expression and predicted to bind the antiterminator RfaH. SiiE concentrations are decreased in a SPI1 mutant strain, suggesting that SPI1 and SPI4 may have common regulatory inputs. SPI1 gene expression is positively regulated by the transcriptional activators HilA, HilC, and HilD, encoded within SPI1, and negatively regulated by the regulators HilE and PhoP. Here, we show that mutations in hilA, hilC, or hilD similarly reduce expression of siiE, and mutations in hilE or phoP enhance siiE expression. Individual overexpression of HilA, HilC, or HilD in the absence of SPI1 cannot activate siiE expression, suggesting that these transcriptional regulators act in concert or in combination with additional SPI1-encoded regulatory loci to activate SPI4. HilA is no longer required for siiE expression in an hns mutant strain, suggesting that HilA promotes SPI4 expression by antagonizing the global transcriptional silencer H-NS. Coordinate regulation suggests that SPI1 and SPI4 play complementary roles in the interaction of S. enterica serovar Typhimurium with the host intestinal mucosa.
Collapse
|
40
|
Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 2007; 190:476-86. [PMID: 17993530 DOI: 10.1128/jb.00926-07] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1 structural genes. Expression of hilC, hilD, and rtsA is controlled by a number of regulators that respond to a variety of environmental signals. In this work, we show that one such signal is iron mediated by Fur (ferric uptake regulator). Fur activates hilA transcription in a HilD-dependent manner. Fur regulation of HilD does not appear to be simply at the transcriptional or translational level but rather requires the presence of the HilD protein. Fur activation of SPI1 is not mediated through the Fur-regulated small RNAs RfrA and RfrB, which are the Salmonella ortholog and paralog of RyhB that control expression of sodB. Fur regulation of HilD is also not mediated through the known SPI1 repressor HilE or the CsrABC system. Although understanding the direct mechanism of Fur action on HilD requires further analysis, this work is an important step toward elucidating how various global regulatory systems control SPI1.
Collapse
|
41
|
The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 2007; 190:87-97. [PMID: 17951383 DOI: 10.1128/jb.01323-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon contact with intestinal epithelial cells, Salmonella enterica serovar Typhimurium injects a set of effector proteins into the host cell cytoplasm via the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) to induce inflammatory diarrhea and bacterial uptake. The master SPI1 regulatory gene hilA is controlled directly by three AraC-like regulators: HilD, HilC, and RtsA. Previous work suggested a role for DsbA, a periplasmic disulfide bond oxidase, in SPI1 T3SS function. RtsA directly activates dsbA, and deletion of dsbA leads to loss of SPI1-dependent secretion. We have studied the dsbA phenotypes by monitoring expression of SPI1 regulatory, structural, and effector genes. Here we present evidence that loss of DsbA independently affects SPI1 regulation and SPI1 function. The dsbA-mediated feedback inhibition of SPI1 transcription is not due to defects in the SPI1 T3SS apparatus. Rather, the transcriptional response is dependent on both the flagellar protein FliZ and the RcsCDB system, which also affects fliZ transcription. Thus, the status of disulfide bonds in the periplasm affects expression of the SPI1 system indirectly via the flagellar apparatus. RcsCDB can also affect SPI1 independently of FliZ. All regulation is through HilD, consistent with our current model for SPI1 regulation.
Collapse
|
42
|
Lim S, Yun J, Yoon H, Park C, Kim B, Jeon B, Kim D, Ryu S. Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res 2007; 35:1822-32. [PMID: 17329372 PMCID: PMC1874608 DOI: 10.1093/nar/gkm060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The global regulator Mlc is a repressor of several genes and operons that are involved in sugar uptake and metabolism. A Salmonella enterica serovar Typhimurium mlc mutant showed reduced levels of invasion and cytotoxicity compared to the wild-type, and exhibited reduced expression levels of hilD, hilA and invF, which are regulatory genes in the Salmonella pathogenicity island 1 (SPI1). However, the effects of Mlc on hilD expression and bacterial invasiveness were not seen in the hilE mutant, and hilE expression was increased in the mlc mutant, which suggests that Mlc exerts positive effects on the expression of SPI1 genes by reducing the expression of HilE, which is known to down-regulate the expression of SPI1 genes through direct interaction with HilD. We found that the two known promoters of hilE were not modulated by Mlc, and we identified a third promoter, designated P3, which was repressed by Mlc. The gel mobility shift assay and footprinting analysis revealed that Mlc repressed hilE in a direct manner by binding to two distinct sites in the hilE P3 promoter region. The specific down-regulation of hilD observed in the presence of Mlc regulon-inducible sugars, such as glucose and mannose, could not be detected in the mlc mutant. Based on these results, we propose that Mlc functions to sense the availability of sugars and is linked to virulence gene regulation by its ability to control hilE expression in Salmonella.
Collapse
Affiliation(s)
- Sangyong Lim
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Jiae Yun
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Hyunjin Yoon
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Chehwee Park
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Boowon Kim
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Byeonghwa Jeon
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Dongho Kim
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
- *To whom correspondence should be addressed. 82 2 880 485682 2 873 5095
| |
Collapse
|
43
|
Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 2007; 10:24-9. [PMID: 17208038 DOI: 10.1016/j.mib.2006.12.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/18/2006] [Indexed: 11/28/2022]
Abstract
Salmonella enterica invades the intestinal epithelium of the host using a type III secretion system encoded on Salmonella pathogenicity island 1 (SPI1). The bacteria integrate environmental signals from a variety of global regulatory systems to precisely induce transcription of SPI1. The regulatory circuit converges on expression of HilA, which directly regulates transcription of the SPI1 apparatus genes. Transcription of hilA is controlled by a complex feed-forward loop. Regulatory signals feed into the system through post-transcriptional and post-translational control of HilD, which in turn activates HilC and RtsA. These three regulators act in concert to control hilA transcription. The system acts as a switch, ensuring that SPI1 is fully on at the appropriate time.
Collapse
Affiliation(s)
- Jeremy R Ellermeier
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | |
Collapse
|
44
|
Ellermeier CD, Ellermeier JR, Slauch JM. HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 2005; 57:691-705. [PMID: 16045614 DOI: 10.1111/j.1365-2958.2005.04737.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonella enterica serovar Typhimurium invades intestinal epithelial cells using a type three secretion system (TTSS) encoded on Salmonella Pathogenicity Island 1 (SPI1). The SPI1 TTSS injects effector proteins into the cytosol of host cells where they promote actin rearrangement and engulfment of the bacteria. We previously identified RtsA, an AraC-like protein similar to the known HilC and HilD regulatory proteins. Like HilC and HilD, RtsA activates expression of SPI1 genes by binding upstream of the master regulatory gene hilA to induce its expression. HilA activates the SPI1 TTSS structural genes. Here we present evidence that hilA expression, and hence the SPI1 TTSS, is controlled by a feedforward regulatory loop. We demonstrate that HilC, HilD and RtsA are each capable of independently inducing expression of the hilC, hilD and rtsA genes, and that each can independently activate hilA. Using competition assays in vivo, we show that each of the hilA regulators contribute to SPI1 induction in the intestine. Of the three, HilD has a predominant role, but apparently does not act alone either in vivo or in vitro to sufficiently activate SPI1. The two-component regulatory systems, SirA/BarA and OmpR/EnvZ, function through HilD, thus inducing hilC, rtsA and hilA. However, the two-component systems are not responsible for environmental regulation of SPI1. Rather, we show that 'SPI1 inducing conditions' cause independent activation of the rtsA, hilC and hilD genes in the absence of known regulators. Our model of SPI1 regulation provides a framework for future studies aimed at understanding this complicated regulatory network.
Collapse
|