1
|
Anderson EE, Ilmain JK, Torres VJ. SarS and Rot are necessary for the repression of lukED and lukSF-PV in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0165623. [PMID: 37800956 PMCID: PMC10715151 DOI: 10.1128/spectrum.01656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The leukocidins play an important role in disarming the host immune system and promoting infection. While both SarS and Rot have been established as repressors of leukocidins, the importance of each repressor in infection is unclear. Here, we demonstrate that repression by SarS and Rot is not additive and show that in addition to upregulating expression of each other, they are also able to bind concurrently to the leukocidin promoters. These findings suggest that both repressors are necessary for maximal repression of lukED and lukSF-PV and illuminate another complex relationship among Staphylococcus aureus virulence regulators.
Collapse
Affiliation(s)
- Exene E. Anderson
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Shen J, Wang H, Zhu C, Zhang M, Shang F, Xue T. Effect of biofilm on the survival of Staphylococcus aureus isolated from raw milk in high temperature and drying environment. Food Res Int 2021; 149:110672. [PMID: 34600674 DOI: 10.1016/j.foodres.2021.110672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Microbial contamination in dairy products is a momentous factor affecting food safety. Studies have shown that Staphylococcus aureus, which is an important causative agent of a range of infectious and foodborne diseases, may remain in raw milk after a series of complex processing processes. Although most S. aureus possess biofilm formation capacity, there are few studies concerning the role of biofilm formation of this bacterium in stress tolerance and longtime survival in the dairy products. In this study, we selected 5 S. aureus (RMSA1, RMSA2, RMSA3, RMSA4 and RMSA5) isolates from raw milk and investigated their virulence and biofilm characteristics. Results from biofilm assays showed that all 6 S. aureus strains (5 dairy isolates and 1 human-derived model strain NCTC8325) could form complete biofilms in vitro. The reverse transcription-PCR experiments confirmed that multiple genes related to virulence factors and biofilm formation were expressed in the 6 strains. Furthermore, we simulated the high temperature (at 60 °C for 30 min) and drying pressure (at 37 °C for 24 h) during dairy processing to detect the survival rate of strains culturedunderbiofilm or planktonic condition. The data showed that under high temperature and dry conditions, the survival rates of strains cultured under biofilm conditions were much higher than that of strains cultured under planktonic conditions. In addition, the adversity resistance associated with biofilm formation was more obvious in the milk-isolated strains compared with strain NCTC8325. This study provides evidence regarding the mechanisms of stress resistance of S. aureus strains isolated from raw milk and contribute to prevention of dairy product contamination caused by this bacterium.
Collapse
Affiliation(s)
- Jiawei Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Maofeng Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Jenul C, Horswill AR. Regulation of Staphylococcus aureus Virulence. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0031-2018. [PMID: 30953424 PMCID: PMC6452892 DOI: 10.1128/microbiolspec.gpp3-0031-2018] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that has evolved a complex regulatory network to control virulence. One of the main functions of this interconnected network is to sense various environmental cues and respond by altering the production of virulence factors necessary for survival in the host, including cell surface adhesins and extracellular enzymes and toxins. Of these S. aureus regulatory systems, one of the best studied is the accessory gene regulator (agr), which is a quorum-sensing system that senses the local concentration of a cyclic peptide signaling molecule. This system allows S. aureus to sense its own population density and translate this information into a specific gene expression pattern. Besides agr, this pathogen uses other two-component systems to sense specific cues and coordinates responses with cytoplasmic regulators of the SarA protein family and alternative sigma factors. These divergent regulatory systems integrate the various environmental and host-derived signals into a network that ensures optimal pathogen response to the changing conditions. This article gives an overview of the most important and best-studied S. aureus regulatory systems and summarizes the functions of these regulators during host interactions. The regulatory systems discussed include the agr quorum-sensing system; the SaeRS, SrrAB, and ArlRS two-component systems, the cytoplasmic SarA-family regulators (SarA, Rot, and MgrA); and the alternative sigma factors (SigB and SigH).
Collapse
Affiliation(s)
- Christian Jenul
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
4
|
Bierdeman MA, Torres AM, Caballero AR, Tang A, O'Callaghan RJ. Reactions with Antisera and Pathological Effects of Staphylococcus aureus Gamma-Toxin in the Cornea. Curr Eye Res 2017; 42:1100-1107. [PMID: 28346009 DOI: 10.1080/02713683.2017.1279636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE This study analyzed the toxicity of purified gamma-toxin from Staphylococcus aureus and the protectiveness of antisera to gamma-toxin in the rabbit cornea. MATERIALS AND METHODS Gamma-toxin was purified from cultures of alpha-toxin deficient S. aureus strain Newman Δhla. Antisera to native gamma-toxin (Hlg) were produced in rabbits. These antisera and a commercial polyclonal antibody to recombinant HlgB (rHlgB) were analyzed for specificity and toxin neutralization. Heat-inactivated gamma-toxin, active gamma-toxin either alone or with antisera or with commercial antibody to rHlgB, was injected into the rabbit cornea to observe the pathological effects using slit lamp examination scoring (SLE) and histological analyses. RESULTS Eyes with intrastromal injection of gamma-toxin developed SLE scores that were significantly higher than eyes injected with heat-inactivated gamma-toxin (p ≤ 0.003). Slit lamp and histological examination of eyes revealed that gamma-toxin injected into the cornea mediated conjunctival injection and chemosis, iritis, fibrin accumulation in the anterior chamber, and polymorphonuclear neutrophil infiltration of the cornea and iris. Also, eyes injected with gamma-toxin plus antisera to native whole gamma-toxin or HlgB, but not with commercial antibody to rHlgB, yielded significantly lower SLE scores than eyes injected with gamma-toxin alone (p ≤ 0.003). CONCLUSIONS This study illustrates that S. aureus gamma-toxin is capable of causing significant corneal pathology. Furthermore, the use of polyclonal antisera specific for native gamma-toxin was found to inhibit the damaging effects of the toxin in the rabbit cornea.
Collapse
Affiliation(s)
- Michael A Bierdeman
- a Department of Microbiology and Immunology , University of Mississippi Medical Center , Jackson , MS , USA
| | - Angela M Torres
- a Department of Microbiology and Immunology , University of Mississippi Medical Center , Jackson , MS , USA
| | - Armando R Caballero
- a Department of Microbiology and Immunology , University of Mississippi Medical Center , Jackson , MS , USA
| | - Aihua Tang
- a Department of Microbiology and Immunology , University of Mississippi Medical Center , Jackson , MS , USA
| | - Richard J O'Callaghan
- a Department of Microbiology and Immunology , University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
5
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
6
|
Mootz JM, Benson MA, Heim CE, Crosby HA, Kavanaugh JS, Dunman PM, Kielian T, Torres VJ, Horswill AR. Rot is a key regulator of Staphylococcus aureus biofilm formation. Mol Microbiol 2015; 96:388-404. [PMID: 25612137 DOI: 10.1111/mmi.12943] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus is a significant cause of chronic biofilm infections on medical implants. We investigated the biofilm regulatory cascade and discovered that the repressor of toxins (Rot) is part of this pathway. A USA300 community-associated methicillin-resistant S. aureus strain deficient in Rot was unable to form a biofilm using multiple different assays, and we found rot mutants in other strain lineages were also biofilm deficient. By performing a global analysis of transcripts and protein production controlled by Rot, we observed that all the secreted protease genes were up-regulated in a rot mutant, and we hypothesized that this regulation could be responsible for the biofilm phenotype. To investigate this question, we determined that Rot bound to the protease promoters, and we observed that activity levels of these enzymes, in particular the cysteine proteases, were increased in a rot mutant. By inactivating these proteases, biofilm capacity was restored to the mutant, demonstrating they are responsible for the biofilm negative phenotype. Finally, we tested the rot mutant in a mouse catheter model of biofilm infection and observed a significant reduction in biofilm burden. Thus S. aureus uses the transcription factor Rot to repress secreted protease levels in order to build a biofilm.
Collapse
Affiliation(s)
- Joe M Mootz
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Structure-based functional characterization of repressor of toxin (Rot), a central regulator of Staphylococcus aureus virulence. J Bacteriol 2014; 197:188-200. [PMID: 25331435 DOI: 10.1128/jb.02317-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In order to support its pathogenic lifestyle, S. aureus has to regulate the expression of virulence factors in a coordinated fashion. One of the central regulators of the S. aureus virulence regulatory networks is the transcription factor repressor of toxin (Rot). Rot plays a key role in regulating S. aureus virulence through activation or repression of promoters that control expression of a large number of critical virulence factors. However, the mechanism by which Rot mediates gene regulation has remained elusive. Here, we have determined the crystal structure of Rot and used this information to probe the contribution made by specific residues to Rot function. Rot was found to form a dimer, with each monomer harboring a winged helix-turn-helix (WHTH) DNA-binding motif. Despite an overall acidic pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that R(91), at the tip of the wing, plays an important role in DNA binding, likely through interaction with the minor groove. We also found that Y(66), predicted to bind within the major groove, contributes to Rot interaction with target promoters. Evaluation of Rot binding to different activated and repressed promoters revealed that certain mutations on Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially interacts with target promoters. This work provides insight into a precise mechanism by which Rot controls virulence factor regulation in S. aureus.
Collapse
|
8
|
Benson MA, Ohneck EA, Ryan C, Alonzo F, Smith H, Narechania A, Kolokotronis SO, Satola SW, Uhlemann AC, Sebra R, Deikus G, Shopsin B, Planet PJ, Torres VJ. Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element. Mol Microbiol 2014; 93:664-81. [PMID: 24962815 PMCID: PMC4127135 DOI: 10.1111/mmi.12682] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 01/17/2023]
Abstract
Staphylococcus aureus has evolved as a pathogen that causes a range of diseases in humans. There are two dominant modes of evolution thought to explain most of the virulence differences between strains. First, virulence genes may be acquired from other organisms. Second, mutations may cause changes in the regulation and expression of genes. Here we describe an evolutionary event in which transposition of an IS element has a direct impact on virulence gene regulation resulting in hypervirulence. Whole-genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 revealed acquisition of a transposable element (IS256) that is absent from close relatives of this strain. Of the multiple copies of IS256 found in the USA500 genome, one was inserted in the promoter sequence of repressor of toxins (Rot), a master transcriptional regulator responsible for the expression of virulence factors in S. aureus. We show that insertion into the rot promoter by IS256 results in the derepression of cytotoxin expression and increased virulence. Taken together, this work provides new insight into evolutionary strategies by which S. aureus is able to modify its virulence properties and demonstrates a novel mechanism by which horizontal gene transfer directly impacts virulence through altering toxin regulation.
Collapse
Affiliation(s)
- Meredith A. Benson
- Department of Microbiology, New York University School of Medicine, New York, New York, U.S.A
| | - Elizabeth A. Ohneck
- Department of Microbiology, New York University School of Medicine, New York, New York, U.S.A
| | - Chanelle Ryan
- Department of Medicine, Pediatric Infectious Disease Division, Columbia University, New York, New York, U.S.A
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, New York, U.S.A
| | - Hannah Smith
- Department of Medicine, Pediatric Infectious Disease Division, Columbia University, New York, New York, U.S.A
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | | | - Sarah W. Satola
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, U.S.A
- Atlanta Veterans Affairs Medical Center, Decatur, GA, U.S.A
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, U.S.A
| | - Robert Sebra
- Genome Center, Mount Sinai Hospital, New York, New York, U.S.A
| | - Gintaras Deikus
- Genome Center, Mount Sinai Hospital, New York, New York, U.S.A
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, New York, U.S.A
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, U.S.A
| | - Paul J. Planet
- Department of Medicine, Pediatric Infectious Disease Division, Columbia University, New York, New York, U.S.A
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
9
|
Purrello S, Daum R, Edwards G, Lina G, Lindsay J, Peters G, Stefani S. Meticillin-resistant Staphylococcus aureus (MRSA) update: New insights into bacterial adaptation and therapeutic targets. J Glob Antimicrob Resist 2014; 2:61-69. [DOI: 10.1016/j.jgar.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/06/2014] [Indexed: 12/23/2022] Open
|
10
|
Role of Rot in bacterial autolysis regulation of Staphylococcus aureus NCTC8325. Res Microbiol 2013; 164:695-700. [DOI: 10.1016/j.resmic.2013.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/27/2013] [Indexed: 02/02/2023]
|
11
|
Rot and SaeRS cooperate to activate expression of the staphylococcal superantigen-like exoproteins. J Bacteriol 2012; 194:4355-65. [PMID: 22685286 DOI: 10.1128/jb.00706-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a significant human pathogen that is capable of infecting a wide range of host tissues. This bacterium is able to evade the host immune response by utilizing a repertoire of virulence factors. These factors are tightly regulated by various two-component systems (TCS) and transcription factors. Previous studies have suggested that transcriptional regulation of a subset of immunomodulators, known as the staphylococcal superantigen-like proteins (Ssls), is mediated by the master regulators accessory gene regulator (Agr) TCS, S. aureus exoprotein expression (Sae) TCS, and Rot. Here we demonstrate that Rot and SaeR, the response regulator of the Sae TCS, synergize to coordinate the activation of the ssl promoters. We have determined that both transcription factors are required, but that neither is sufficient, for promoter activation. This regulatory scheme is mediated by direct binding of both transcription factors to the ssl promoters. We also demonstrate that clinically relevant methicillin-resistant S. aureus (MRSA) strains respond to neutrophils via the Sae TCS to upregulate the expression of ssls. Until now, Rot and the Sae TCS have been proposed to work in opposition of one another on their target genes. This is the first example of these two regulators working in concert to activate promoters.
Collapse
|
12
|
Alonzo F, Benson MA, Chen J, Novick RP, Shopsin B, Torres VJ. Staphylococcus aureus leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo. Mol Microbiol 2011; 83:423-35. [PMID: 22142035 DOI: 10.1111/j.1365-2958.2011.07942.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bloodstream infection with Staphylococcus aureus is common and can be fatal. However, virulence factors that contribute to lethality in S. aureus bloodstream infection are poorly defined. We discovered that LukED, a commonly overlooked leucotoxin, is critical for S. aureus bloodstream infection in mice. We also determined that LukED promotes S. aureus replication in vivo by directly killing phagocytes recruited to sites of haematogenously seeded tissue. Furthermore, we established that murine neutrophils are the primary target of LukED, as the greater virulence of wild-type S. aureus compared with a lukED mutant was abrogated by depleting neutrophils. The in vivo toxicity of LukED towards murine phagocytes is unique among S. aureus leucotoxins, implying its crucial role in pathogenesis. Moreover, the tropism of LukED for murine phagocytes highlights the utility of murine models to study LukED pathobiology, including development and testing of strategies to inhibit toxin activity and control bacterial infection.
Collapse
Affiliation(s)
- Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
13
|
Relationship of agr expression and function with virulence and vancomycin treatment outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55:5631-9. [PMID: 21968365 DOI: 10.1128/aac.05251-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accessory gene regulator (agr) locus has been shown to be important for virulence in several animal models of Staphylococcus aureus infection. However, the role of agr in human infections, and specifically in antibiotic treatment, is controversial. Interestingly, agr dysfunction has been associated with reduced vancomycin responses. To systematically investigate the role of agr in virulence and treatment outcome in the context of endovascular infection, 10 well-characterized vancomycin-susceptible methicillin-resistant S. aureus (MRSA) bloodstream isolates (5 agr-I [clonal complex 45, or CC45] and 5 agr-II [CC5]) were studied for (i) agr function, (ii) RNAIII transcriptional profiles, (iii) agr locus sequences, (iv) intrinsic virulence and responses to vancomycin therapy in an experimental infective endocarditis (IE) model, and (v) in vivo RNAIII expression. Significant differences in agr function (determined by delta-hemolysin activity) correlated with the time point of RNAIII transcription (earlier RNAIII onset equals increased agr function). Unexpectedly, four MRSA strains with strong delta-hemolysin activities exhibited significant resistance to vancomycin treatment in experimental IE. In contrast, five of six MRSA strains with weak or no delta-hemolysin activity were highly susceptible to vancomycin therapy in the IE model. agr sequence analyses showed no common single-nucleotide polymorphism predictive of agr functionality. In vivo RNAIII expression in cardiac vegetations did not correlate with virulence or vancomycin treatment outcomes in the IE model. Inactivation of agr in two strains with strong delta-hemolysin activity did not affect virulence or the in vivo efficacy of vancomycin. Our findings suggest that agr dysfunction does not correlate with vancomycin treatment failures in this experimental IE model in two distinct MRSA genetic backgrounds.
Collapse
|
14
|
Benson MA, Lilo S, Wasserman GA, Thoendel M, Smith A, Horswill AR, Fraser J, Novick RP, Shopsin B, Torres VJ. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner. Mol Microbiol 2011; 81:659-75. [PMID: 21651625 PMCID: PMC3217042 DOI: 10.1111/j.1365-2958.2011.07720.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Staphylococcus aureus overproduces a subset of immunomodulatory proteins known as the staphylococcal superantigen-like proteins (Ssls) under conditions of pore-mediated membrane stress. In this study we demonstrate that overproduction of Ssls during membrane stress is due to the impaired activation of the two-component module of the quorum-sensing accessory gene regulator (Agr) system. Agr-dependent repression of ssl expression is indirect and mediated by the transcription factor repressor of toxins (Rot). Surprisingly, we observed that Rot directly interacts with and activates the ssl promoters. The role of Agr and Rot as regulators of ssl expression was observed across several clinically relevant strains, suggesting that overproduction of immunomodulatory proteins benefits agr-defective strains. In support of this notion, we demonstrate that Ssls contribute to the residual virulence of S. aureus lacking agr in a murine model of systemic infection. Altogether, these results suggest that S. aureus compensates for the inactivation of Agr by producing immunomodulatory exoproteins that could protect the bacterium from host-mediated clearance.
Collapse
Affiliation(s)
- Meredith A. Benson
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Sarit Lilo
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Gregory A. Wasserman
- Department of Medicine, Division of Infectious Diseases, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Matthew Thoendel
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Amanda Smith
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John Fraser
- School of Medical Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Richard P. Novick
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- The Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Bo Shopsin
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Department of Medicine, Division of Infectious Diseases, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| | - Victor J. Torres
- Department of Microbiology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
15
|
Rot and Agr system modulate fibrinogen-binding ability mainly by regulating clfB expression in Staphylococcus aureus NCTC8325. Med Microbiol Immunol 2011; 201:81-92. [DOI: 10.1007/s00430-011-0208-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Indexed: 01/19/2023]
|
16
|
Affiliation(s)
- Matthew Thoendel
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| | - Jeffrey S. Kavanaugh
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| | - Caralyn E. Flack
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| | - Alexander R. Horswill
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| |
Collapse
|
17
|
Pantrangi M, Singh VK, Wolz C, Shukla SK. Staphylococcal superantigen-like genes, ssl5 and ssl8, are positively regulated by Sae and negatively by Agr in the Newman strain. FEMS Microbiol Lett 2010; 308:175-84. [PMID: 20528938 PMCID: PMC2941892 DOI: 10.1111/j.1574-6968.2010.02012.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Some of the staphylococcal superantigen-like (SSL) proteins SSL5, SSL7, SSL9, and SSL11 act as immunomodulatory proteins in Staphylococcus aureus. However, little is known about their regulatory mechanisms. We determined the expression levels of ssl5 and ssl8 in seven clinically important S. aureus strains and their regulatory mechanisms in the Newman strain, which had the highest ssl5 and ssl8 expression. Independent comparisons of ssl5 or ssl8 coding and upstream sequences in these strains identified multiple haplotypes that did not correlate with the differential expression of ssl5 and ssl8, suggesting the role of additional regulatory elements. Using knockout mutant strains of known S. aureus global regulators such as Agr, Sae, and SigB in the Newman strain, we showed that both ssl5 and ssl8 were induced by Sae and repressed by Agr, suggesting that Sae and Agr are the positive and the negative regulators, respectively, of these two ssl genes. Moreover, we observed upregulation of sae in the agr mutant and upregulation of agr in the sae mutant compared with the isogenic Newman strain, suggesting that the Agr and Sae may be inhibiting each other. The SigB mutation did not affect ssl5 and ssl8 expression, but they were downregulated in the agr/sigB double mutant, indicating that SigB probably acts synergistically with Agr in their upregulation.
Collapse
Affiliation(s)
- Madhulatha Pantrangi
- Molecular Microbiology Laboratory, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Vineet K. Singh
- A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Christiane Wolz
- Institut für Medizinsche Mikrobiologie und Hygiene, Tübingen, Germany
| | - Sanjay K. Shukla
- Molecular Microbiology Laboratory, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| |
Collapse
|
18
|
Burnside K, Lembo A, de los Reyes M, Iliuk A, BinhTran NT, Connelly JE, Lin WJ, Schmidt BZ, Richardson AR, Fang FC, Tao WA, Rajagopal L. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 2010; 5:e11071. [PMID: 20552019 PMCID: PMC2884019 DOI: 10.1371/journal.pone.0011071] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/14/2010] [Indexed: 02/02/2023] Open
Abstract
Exotoxins, including the hemolysins known as the alpha (alpha) and beta (beta) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Annalisa Lembo
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Melissa de los Reyes
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Nguyen-Thao BinhTran
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - James E. Connelly
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Wan-Jung Lin
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Byron Z. Schmidt
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Anthony R. Richardson
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Growth phase-dependent regulation of the global virulence regulator Rot in clinical isolates of Staphylococcus aureus. Int J Med Microbiol 2009; 300:229-36. [PMID: 19665927 DOI: 10.1016/j.ijmm.2009.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/02/2009] [Accepted: 07/04/2009] [Indexed: 02/08/2023] Open
Abstract
Current models for global virulence regulation in Staphylococcus aureus are mainly based on studies performed with only a limited number of laboratory strains derived from NCTC8325. In these strains the small regulatory RNA, RNAIII, has a central role in virulence gene regulation. Recently, RNAIII was suggested to control transcription of target genes partly by inhibiting translation of the transcriptional regulator Rot. The present study was undertaken to examine if the model for RNAIII/Rot-dependent virulence regulation is conserved among clinical strains. To this end, we used Rot antibodies to directly assess the amount of Rot protein in 4 well-characterized S. aureus laboratory strains (8325-4, COL, Newman, and UAMS-1) and in 9 strains of clinical origin (encompassing USA300 and Mu50). Additionally, the cellular amount of RNAIII and rot mRNA was determined in all strains. The experiments revealed considerable variation in the Rot and RNAIII levels between strains. However, in the majority of strains the cellular amount of Rot was inversely correlated to the RNAIII level. As we demonstrate that Rot is a stable protein and that the level of rot transcript appeared similar in all strains, our data support that the model for RNAIII-mediated inhibition of rot mRNA translation is conserved among clinical strains. Assessment of Rot-dependent regulation of target genes revealed that Rot is a positive regulator of spa (protein A) transcription in all strains examined. In contrast, Rot repression of sspA (serine protease) and hlb (beta-hemolysin) transcription was not conserved between strains. From this study, we conclude that while the paradigm for understanding RNAIII-dependent regulation of Rot is well-conserved, regulation of single genes is subject to considerable strain variation. We propose that variation in global regulatory networks contribute considerably to the phenotypic variation observed between S. aureus isolates.
Collapse
|
20
|
Ballal A, Manna AC. Expression of the sarA family of genes in different strains of Staphylococcus aureus. MICROBIOLOGY-SGM 2009; 155:2342-2352. [PMID: 19389785 DOI: 10.1099/mic.0.027417-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators. The staphylococcal-specific SarA family of transcription regulators control large numbers of target genes involved in virulence, autolysis, biofilm formation, stress responses and metabolic processes, and are recognized as potential therapeutic targets. Expression of some of these important regulators has been examined, mostly in laboratory strains, while the pattern of expression of these genes in other strains, especially clinical isolates, is largely unknown. In this report, a comparative analysis of 10 sarA-family genes was conducted in six different S. aureus strains, including two laboratory (RN6390, SH1000) and four clinical (MW2, Newman, COL and UAMS-1) strains, by Northern and Western blot analyses. Transcription of most of the sarA-family genes showed a strong growth phase-dependence in all strains tested. Among these genes, no difference was observed in expression of the sarA, sarV, sarT and sarU genes, while a major difference was observed in expression of the sarX gene only in strain RN6390. Expression of mgrA, rot, sarZ, sarR and sarS was observed in all strains, but the level of expression varied from strain to strain.
Collapse
Affiliation(s)
- Anand Ballal
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Adhar C Manna
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
21
|
Jarry TM, Memmi G, Cheung AL. The expression of alpha-haemolysin is required forStaphylococcus aureusphagosomal escape after internalization in CFT-1 cells. Cell Microbiol 2008; 10:1801-14. [DOI: 10.1111/j.1462-5822.2008.01166.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Manna AC, Ray B. Regulation and characterization of rot transcription in Staphylococcus aureus. MICROBIOLOGY-SGM 2007; 153:1538-1545. [PMID: 17464068 DOI: 10.1099/mic.0.2006/004309-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of Staphylococcus aureus infections is dependent upon expression of various virulence factors, which are under the control of multiple regulatory systems, including two-component regulatory systems and transcriptional regulators such as the SarA family of proteins. As a part of a continuing effort to understand the regulatory mechanisms that involve the SarA protein family, the regulation and physical characterization of rot transcription is described here. The rot gene, a member of the sarA family of genes, was previously characterized and has been shown to regulate a large number of genes. The rot locus is composed of multiple overlapping transcripts as determined by primer extension and was proposed to encode an open reading frame of 133 residues. Transcription of rot was significantly increased in the sarA mutant. Gel shift and transcriptional studies revealed that SarA could bind to the rot promoter region, probably acting as a repressor for rot transcription. The data indicate that the expression of rot transcription is significantly repressed only by SarA among the sarA family of mutants tested at the post-exponential phase of growth.
Collapse
Affiliation(s)
- Adhar C Manna
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA, and Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | - Binata Ray
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA, and Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
23
|
Oscarsson J, Kanth A, Tegmark-Wisell K, Arvidson S. SarA is a repressor of hla (alpha-hemolysin) transcription in Staphylococcus aureus: its apparent role as an activator of hla in the prototype strain NCTC 8325 depends on reduced expression of sarS. J Bacteriol 2006; 188:8526-33. [PMID: 17012389 PMCID: PMC1698246 DOI: 10.1128/jb.00866-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022] Open
Abstract
In most Staphylococcus aureus strains, inactivation of sarA increases hla transcription, indicating that sarA is a repressor. However, in S. aureus NCTC 8325 and its derivatives, used for most studies of hla regulation, inactivation of sarA resulted in decreased hla transcription. The disparate phenotype of strain NCTC 8325 seems to be associated with its rsbU mutation, which leads to sigma(B) deficiency. This has now been verified by the demonstration that sarA repressed hla transcription in an rsbU+ derivative of strain 8325-4 (SH1000). That sarA could act as a repressor of hla in an 8325-4 background was confirmed by the observation that inactivation of sarA in an agr sarS rot triple mutant dramatically increased hla transcription to wild-type levels. However, the apparent role of sarA as an activator of hla in 8325-4 was not a result of the rsbU mutation alone, as inactivation of sarA in another rsbU mutant, strain V8, led to increased hla transcription. Northern blot analysis revealed much higher levels of sarS mRNA in strain V8 than in 8325-4, which was likely due to the mutation in the sarS activator, tcaR, in 8325-4, which was not found in strain V8. On the other hand, the relative increase in sarS transcription upon the inactivation of sarA was 15-fold higher in 8325-4 than in strain V8. Because of this, inactivation of sarA in 8325-4 means a net increase in repressor activity, whereas in strain V8, inactivation of sarA means a net decrease in repressor activity and, therefore, enhanced hla transcription.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | |
Collapse
|
24
|
Coordinated and differential control of aureolysin (aur) and serine protease (sspA) transcription in Staphylococcus aureus by sarA, rot and agr (RNAIII). Int J Med Microbiol 2006; 296:365-80. [PMID: 16782403 DOI: 10.1016/j.ijmm.2006.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 10/24/2022] Open
Abstract
Previous studies have shown that production of extracellular proteases in Staphylococcus aureus is stimulated by agr (RNAIII) and mgrA, and repressed by sarA. Protease expression is also repressed by rot, however this effect is generally observed only in agr mutants. Several other regulators (sarR, sarV, sarS, sae) that may impact protease expression have been described. As the interactions between all regulators that control protease gene expression are not fully understood, the present study was undertaken to elucidate the regulatory network governing aureolysin (aur) and staphylococcal serine protease (sspA) transcription. The regulation of both genes was studied as activation of the serine protease (SspA) zymogen requires aureolysin. For this purpose we have analyzed the effect of different combinations of regulatory mutations. The present study clearly shows that the positive effect of agr (RNAIII) on aur and sspA transcription requires rot, which is in accordance with the hypothesis that RNAIII acts by neutralizing Rot activity through binding [McNamara, P.J., Milligan-Monroe, K.C., Khalili, S., Proctor, R.A., 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182, 3197-3203]. Concomitantly, overexpression of rot in agr(+) strains or inactivation of rot in strains with low levels of RNAIII clearly affected aur and sspA transcription, indicating that the inhibiting effect of RNAIII on Rot could be titrated. Furthermore, our present data support that the only role of RNAIII in aur and sspA regulation is to counteract the repressive activity of Rot. Apart from an apparent direct positive effect of mgrA on sspA and aur transcription, these genes were mainly controlled through repression by sarA and rot, which seemed to occur via binding of SarA and Rot to the aur and sspA promoters, respectively. Maximum transcription of aur and sspA was obtained when both repressors were absent, either in a sarA mutant where Rot is neutralized by RNAIII during post-exponential phase, or in an agr sarA rot triple mutant. Interestingly, aur was much more sensitive to repression by sarA than by rot, whereas sspA was equally suppressed by sarA and rot. On the other hand, sspA was more sensitive to repression by rot than aur. Thus, SarA and Rot seemed to act independently in an additive way. Inactivation of sarR and sarS had no apparent effect on aur and sspA transcription, although overexpression of these regulators suppressed aur and sspA transcription, respectively, likely in a direct way as indicated by DNA binding experiments. In conclusion, our results indicate that aur and sspA transcription are coordinately regulated but can also be individually modulated by agr, sarA, rot, sarS, sarR, and mgrA. A provisional model for the regulation of aur and sspA transcription is presented.
Collapse
|