1
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024; 12:eesp00042023. [PMID: 39023252 PMCID: PMC11636237 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T. Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Siddique A, Wang Z, Zhou H, Huang L, Jia C, Wang B, Ed-Dra A, Teng L, Li Y, Yue M. The Evolution of Vaccines Development across Salmonella Serovars among Animal Hosts: A Systematic Review. Vaccines (Basel) 2024; 12:1067. [PMID: 39340097 PMCID: PMC11435802 DOI: 10.3390/vaccines12091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella is a significant zoonotic foodborne pathogen, and the global spread of multidrug-resistant (MDR) strains poses substantial challenges, necessitating alternatives to antibiotics. Among these alternatives, vaccines protect the community against infectious diseases effectively. This review aims to summarize the efficacy of developed Salmonella vaccines evaluated in various animal hosts and highlight key transitions for future vaccine studies. A total of 3221 studies retrieved from Web of Science, Google Scholar, and PubMed/Medline databases between 1970 and 2023 were evaluated. One hundred twenty-seven qualified studies discussed the vaccine efficacy against typhoidal and nontyphoidal serovars, including live-attenuated vaccines, killed inactivated vaccines, outer membrane vesicles, outer membrane complexes, conjugate vaccines, subunit vaccines, and the reverse vaccinology approach in different animal hosts. The most efficacious vaccine antigen candidate found was recombinant heat shock protein (rHsp60) with an incomplete Freund's adjuvant evaluated in a murine model. Overall, bacterial ghost vaccine candidates demonstrated the highest efficacy at 91.25% (95% CI = 83.69-96.67), followed by the reverse vaccinology approach at 83.46% (95% CI = 68.21-94.1) across animal hosts. More than 70% of vaccine studies showed significant production of immune responses, including humoral and cellular, against Salmonella infection. Collectively, the use of innovative methods rather than traditional approaches for the development of new effective vaccines is crucial and warrants in-depth studies.
Collapse
Affiliation(s)
- Abubakar Siddique
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zining Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baikui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, BP: 591, Beni Mellal 23000, Morocco
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
3
|
Amagliani G, La Guardia ME, Dominici S, Brandi G, Omiccioli E. Salmonella Abortusovis: An Epidemiologically Relevant Pathogen. Curr Microbiol 2021; 79:3. [PMID: 34878615 DOI: 10.1007/s00284-021-02689-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
The ovine pathogen Salmonella enterica serovar Abortusovis (SAO), a pathogen strictly adapted to ovine hosts, is endemic in several European and Asian countries, where it causes significant economic losses due to the high rates of abortion in infected flocks. In some countries (i.e. Switzerland and Croatia), re-emergence of infection by SAO occurred after decades during which the disease has not been reported. The introduction of (SAO) epidemic strains in new areas is difficult to control due to the asymptomatic behaviors in infected adult lambs, rams, and nonpregnant ewes. Culture-based diagnosis may provide false-negative results. Moreover, the retrospective identification of Salmonella infection in ewes is challenging as excretion of the causative agent is transient and the serum antibodies fall to low titres soon after the abortion. Therefore, regular monitoring of pathogen exposure, mainly through seroconversion assessment, is advisable to prevent disease introduction and spread in SAO-free areas, especially in case of animal export, and to reduce abortion risk.
Collapse
Affiliation(s)
- Giulia Amagliani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, via S. Chiara, 27, 61029, Urbino, PU, Italy.
| | | | | | - Giorgio Brandi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, via S. Chiara, 27, 61029, Urbino, PU, Italy
| | | |
Collapse
|
4
|
Efficacy of a Salmonella enterica serovar Abortusovis (S. Abortusovis) inactivated vaccine in experimentally infected gestating ewes. Res Vet Sci 2020; 135:486-494. [PMID: 33268004 DOI: 10.1016/j.rvsc.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 11/21/2022]
Abstract
Salmonella enterica serovar Abortusovis (S. Abortusovis) infection is one of the most important causes of infectious late-term abortion as well as birth of weak lambs in sheep in many countries throughout the world. Implementation of protocols based on the application of effective vaccines is one of the most effective approaches for controlling this disease, but variable efficacy has been reported, possibly related to factors associated with the host, the vaccine, the parameters used for determining efficacy and the challenge protocols. In this context, a new commercial inactivated vaccine (INMEVA; Laboratorios Hipra S.A., Spain) was evaluated in 20 control and 17 vaccinated gestating ewes, subcutaneously challenged at 90 days of gestation with 5 × 106 colony-forming units (cfu) of a wild strain of S. Abortusovis. Incidence of reproductive failures, bacterial vaginal excretion (by real time PCR), and lamb survival were evaluated as indicators of the vaccine's level of protection. Moreover, humoral response (by ELISA test in serum samples) was studied. Vaccination was showed to be safe under the study conditions. Vaccine efficacy was demonstrated in two different ways: i) it significantly decreased the percentage of abortions [29.4% (5/17) in the vaccinated group compared to the control group (65%; 13/20)] and ii) there was a significant reduction of the overall vaginal excretion in the sampling period (3.05 log cfu/mL ± 0.84 in the vaccinated group vs. 5.68 ± 0.67 in the control group). Given these results, the vaccine evaluated can be considered as an effective alternative for controlling S. Abortusovis infection in ovine flocks.
Collapse
|
5
|
Pandey A, Cabello A, Akoolo L, Rice-Ficht A, Arenas-Gamboa A, McMurray D, Ficht TA, de Figueiredo P. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis. PLoS Negl Trop Dis 2016; 10:e0004572. [PMID: 27537413 PMCID: PMC4990199 DOI: 10.1371/journal.pntd.0004572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms.
Collapse
Affiliation(s)
- Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| | - Ana Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lavoisier Akoolo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Allison Rice-Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Angela Arenas-Gamboa
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- Norman Borlaug Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (AP); (PdF)
| |
Collapse
|
6
|
Lacasta D, Ferrer L, Ramos J, González J, Ortín A, Fthenakis G. Vaccination schedules in small ruminant farms. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4. Infect Immun 2014; 82:4553-62. [PMID: 25135686 DOI: 10.1128/iai.02297-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar (serotype) Abortusovis is a member of the Enterobacteriaceae. This serotype is naturally restricted to ovine species and does not infect humans. Limited information is available about the immune response of sheep to S. Abortusovis. S. Abortusovis, like Salmonella enterica subsp. enterica serovar Typhi, causes a systemic infection in which, under natural conditions, animals are not able to raise a rapid immune response. Failure to induce the appropriate response allows pathogens to reach the placenta and results in an abortion. Lipopolysaccharides (LPSs) are pathogen-associated molecular patterns (PAMPs) that are specific to bacteria and are not synthesized by the host. Toll-like receptors (TLRs) are a family of receptors that specifically recognize PAMPs. As a first step, we were able to identify the presence of Toll-like receptor 4 (TLR4) on the ovine placenta by using an immunohistochemistry technique. To our knowledge, this is the first work describing the interaction between S. Abortusovis LPS and TLR4. Experiments using an embryonic cell line (HEK293) transfected with human and ovine TLR4s showed a reduction of interleukin 8 (IL-8) production by S. Abortusovis and Salmonella enterica subsp. enterica serovar Paratyphi upon LPS stimulation compared to Salmonella enterica subsp. enterica serovar Typhimurium. Identical results were observed using heat-killed bacteria instead of LPS. Based on data obtained with TLR4 in vitro stimulation, we demonstrated that the serotype S. Abortusovis is able to successfully evade the immune system whereas S. Typhimurium and other serovars fail to do so.
Collapse
|
8
|
Swearingen MC, Porwollik S, Desai PT, McClelland M, Ahmer BMM. Virulence of 32 Salmonella strains in mice. PLoS One 2012; 7:e36043. [PMID: 22558320 PMCID: PMC3338620 DOI: 10.1371/journal.pone.0036043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/28/2012] [Indexed: 01/04/2023] Open
Abstract
Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies.
Collapse
Affiliation(s)
- Matthew C. Swearingen
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Steffen Porwollik
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Prerak T. Desai
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Michael McClelland
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Brian M. M. Ahmer
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Chan SSM, Mastroeni P, McConnell I, Blacklaws BA. Salmonella infection of afferent lymph dendritic cells. J Leukoc Biol 2007; 83:272-9. [PMID: 17986631 DOI: 10.1189/jlb.0607401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interactions of Salmonella enterica subspecies I serotype Abortusovis (S. Abortusovis) with ovine afferent lymph dendritic cells (ALDCs) were investigated for their ability to deliver Maedi visna virus (MVV) GAG p25 antigens to ALDCs purified from afferent lymph. Salmonellae were found to enter ALDC populations by a process of cell invasion, as confirmed by electron and confocal microscopy. This led to phenotypical changes in ALDC populations, as defined by CD1b and CD14 expression. No differences in the clearance kinetics of intracellular aroA-negative Salmonella from CD1b+ CD14lo and CD1b+ CD14(-) ALDC populations were noted over 72 h. ALDCs were also shown to present MVV GAG p25 expressed by aroA-negative S. Abortusovis to CD4+ T lymphocytes. Thus, the poor immune responses that Salmonella vaccines elicited in large animal models compared with mice are neither a result of an inability of Salmonella to infect large animal DCs nor an inability of these DCs to present delivered antigens. However, the low efficiency of infection of ALDC compared with macrophages or monocyte-derived DCs may account for the poor immune responses induced in large animal models.
Collapse
Affiliation(s)
- Simon S M Chan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | | | | | | |
Collapse
|
11
|
Rosu V, Chadfield MS, Santona A, Christensen JP, Thomsen LE, Rubino S, Olsen JE. Effects of crp deletion in Salmonella enterica serotype Gallinarum. Acta Vet Scand 2007; 49:14. [PMID: 17488512 PMCID: PMC1885444 DOI: 10.1186/1751-0147-49-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 05/08/2007] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella enterica serotype Gallinarum (S. Gallinarum) remains an important pathogen of poultry, especially in developing countries. There is a need to develop effective and safe vaccines. In the current study, the effect of crp deletion was investigated with respect to virulence and biochemical properties and the possible use of a deletion mutant as vaccine candidate was preliminarily tested. Methods Mutants were constructed in S. Gallinarum by P22 transduction from Salmonella Typhimurium (S. Typhimurium) with deletion of the crp gene. The effect was characterized by measuring biochemical properties and by testing of invasion in a chicken loop model and by challenge of six-day-old chickens. Further, birds were immunized with the deleted strain and challenged with the wild type isolate. Results The crp deletions caused complete attenuation of S. Gallinarum. This was shown by ileal loop experiments not to be due to significantly reduced invasion. Strains with such deletions may have vaccine potential, since oral inoculatoin with S. Gallinarum Δcrp completely protected against challenge with the same dose of wild type S. Gallinarum ten days post immunization. Interestingly, the mutations did not cause the same biochemical and growth changes to the two biotypes of S. Gallinarum. All biochemical effects but not virulence could be complemented by providing an intact crp-gene from S. Typhimurium on the plasmid pSD110. Conclusion Transduction of a Tn10 disrupted crp gene from S. Typhimurium caused attenuation in S. Gallinarum and mutated strains are possible candidates for live vaccines against fowl typhoid.
Collapse
|
12
|
Cagiola M, Severi G, Forti K, Menichelli M, Papa P, De Giuseppe A, Pasquali P. Abortion due to Salmonella enterica serovar Abortusovis (S. Abortusovis) in ewes is associated to a lack of production of IFN-γ and can be prevented by immunization with inactivated S. Abortusovis vaccine. Vet Microbiol 2007; 121:330-7. [PMID: 17257785 DOI: 10.1016/j.vetmic.2006.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 11/30/2022]
Abstract
Salmonellosis due to Salmonella enterica serovar Abortusovis (S. Abortusovis) is mainly characterized by abortion in sheep. Little is known about the immune response, which develops in the host as a result of infection. We evaluated the immune response of pregnant ewes vaccinated and successively exposed to full virulent S. Abortusovis. We found that vaccine constituted by inactivated S. Abortusovis induced both humoral and cellular-mediated immune response and that it provided protection against a challenge infection due to a fully virulent S. Abortusovis. Furthermore, we found an association between the lack of capability to produce IFN-gamma and abortion. This evidence suggests that protection against abortion can be associated to an IFN-gamma mediated mechanism. Our findings represent an interesting insight to better understand the interplay between host and S. Abortusovis and the effector mechanisms underpinning immune-based protection.
Collapse
Affiliation(s)
- Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Frey J. Biological safety concepts of genetically modified live bacterial vaccines. Vaccine 2006; 25:5598-605. [PMID: 17239999 DOI: 10.1016/j.vaccine.2006.11.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Collapse
Affiliation(s)
- Joachim Frey
- Institute of Veterinary Bacteriology, Laenggassstrasse 122, CH-3001 Bern, Switzerland.
| |
Collapse
|