1
|
Li Y, Yu X, Li P, Li X, Wang L. Characterization of the Vibrio anguillarum VaRyhB regulon and role in pathogenesis. Front Cell Infect Microbiol 2025; 14:1531176. [PMID: 39906211 PMCID: PMC11790442 DOI: 10.3389/fcimb.2024.1531176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Background The marine Gram-negative bacterium Vibrio anguillarum is one of the major pathogens in aquaculture. Iron uptake is a prerequisite for virulence and is strictly controlled by a global iron uptake regulator, Fur, which acts as a repressor under iron-replete conditions. When iron is depleted, Fur also functions as an activator, playing an important role in pathogenesis. It is unclear whether this upregulation model is mediated by a small RNA, RyhB. Methods The small RNA, VaryhB, was deleted in V. anguillarum strain 775, and its regulon was investigated using transcriptomic analysis. The roles of VaRyhB in siderophore synthesis, chemotaxis and motility, and oxidative stress were evaluated using chrome azurol S (CAS) liquid assay, swimming motility assay, and intracellular reactive oxygen species (ROS) assay, respectively. The virulence of VaRyhB was evaluated by challenging turbot larvae intraperitoneally. Results The small RNA called VaRyhB identified in V. anguillarum strain 775 is significantly longer than that in Escherichia coli. Transcriptomic analysis revealed that VaRyhB is critical for iron homeostasis under limited iron conditions, and deletion of VaRyhB resulted in lower expression levels of certain genes for siderophore biosynthesis and transport, thereby leading to impaired growth, reduced siderophore production, and decreased pathogenesis. The virulence factor motility is also upregulated by VaRyhB, and reduced motility capability was observed in the ΔVaryhB mutant, which may be another reason resulting in weak pathogenesis. The sensitivity toward H2O2 in the ΔVafur mutant could be restored by the loss of VaRyhB, suggesting that the role of Fur in oxidative stress is mediated by VaRyhB. VaRyhB also functions to inhibit the expression of genes involved in Fe-S assembly and the TCA cycle. In addition, two aspects of the type VI secretion system and molybdenum cofactor biosynthesis were first identified as being regulated by VaRyhB. Conclusion In V. anguillarum, the sRNA VaRyhB plays a critical role in the inhibition of genes involved in the TCA cycle, Fe-S assembly, and the type VI secretion system. It is also essential for the activation of siderophore synthesis, chemotaxis and motility, and anaerobic denitrification. Our work provides the first evidence of the VaRyhB regulon and its role in the pathogenesis of V. anguillarum.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Li
- Research and Development Department, China Rongtong Agricultural Development Group Co., Ltd., Hangzhou, China
| | - Xin Li
- Research and Development Department, China Rongtong Agricultural Development Group Co., Ltd., Hangzhou, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Li Y, Yu X, Li P, Li X, Wang L. Characterization of the ferric uptake regulator VaFur regulon and its role in Vibrio anguillarum pathogenesis. Appl Environ Microbiol 2024; 90:e0150824. [PMID: 39382293 PMCID: PMC11577842 DOI: 10.1128/aem.01508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Xin Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Huang H, Yang H, Feng S, Zhang X, Chen C, Yan H, Li R, Liu M, Lin J, Wen Y, She F. High salt condition alters LPS synthesis and induces the emergence of drug resistance mutations in Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0058724. [PMID: 39240098 PMCID: PMC11459920 DOI: 10.1128/aac.00587-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The burgeoning emergence of drug-resistant Helicobacter pylori strains poses a significant challenge to the clinical success of eradication therapies and is primarily attributed to mutations within drug-targeting genes that lead to antibiotic resistance. This study investigated the effect of high salt conditions on the occurrence of drug-resistance mutations in H. pylori. We found that high salt condition significantly amplifies the frequency of drug resistance mutations in H. pylori. This can be chiefly attributed to our discovery indicating that high salt concentration results in elevated reactive oxygen species (ROS) levels, initiating DNA damage within H. pylori. Mechanistically, high salt condition suppresses lipopolysaccharide (LPS) synthesis gene expression, inducing alterations in the LPS structure and escalating outer membrane permeability. This disruption of LPS synthesis attenuates the expression and activity of SodB, facilitates increased ROS levels, and consequently increases the drug resistance mutation frequency. Impairing LPS synthesis engenders a reduction in intracellular iron levels, leading to diminished holo-Fur activity and increased apo-Fur activity, which represses the expression of SodB directly. Our findings suggest a correlation between high salt intake and the emergence of drug resistance in the human pathogen H. pylori, implying that dietary choices affect the risk of emergence of antimicrobial resistance.IMPORTANCEDrug resistance mutations mainly contribute to the emergence of clinical antibiotic-resistant Helicobacter pylori, a bacterium linked to stomach ulcers and cancer. In this study, we explored how elevated salt conditions influence the emergence of drug resistance in H. pylori. We demonstrate that H. pylori exhibits an increased antibiotic resistance mutation frequency when exposed to a high salt environment. We observed an increase in reactive oxygen species (ROS) under high salt conditions, which can cause DNA damage and potentially lead to mutations. Moreover, our results showed that high salt condition alters the bacterium's lipopolysaccharide (LPS) synthesis, leading to a reduced expression of SodB in a Fur-dependent manner. This reduction, in turn, elevates ROS levels, culminating in a higher frequency of drug-resistance mutations. Our research underscores the critical need to consider environmental influences, such as diet and lifestyle, in managing bacterial infections and combating the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Hongming Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Huang Yang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Chu Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hongyu Yan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Rui Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mengxin Liu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Juan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Li Z, Sun Y, Tan R, Gao Y. Identification, characterization and complete genome analysis of a Vibrio anguillarum isolated from Sebastes schlegelii. Microb Pathog 2024; 190:106611. [PMID: 38467165 DOI: 10.1016/j.micpath.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.
Collapse
Affiliation(s)
- Zeyu Li
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yungui Sun
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ruiming Tan
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yingli Gao
- Laboratory of Pathology and Immunology of Aquatic Animals, School of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Welch TJ. Characterization of a novel Yersinia ruckeri serotype O1-specific bacteriophage with virulence-neutralizing activity. JOURNAL OF FISH DISEASES 2020; 43:285-293. [PMID: 31828808 DOI: 10.1111/jfd.13124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
A lytic bacteriophage (φNC10) specific to serotype O1 Yersinia ruckeri has been identified and evaluated as a model to assess the potential use of bacteriophages and their products for disease control in aquaculture. Electron microscopy of purified φNC10 revealed a virion particle with a small (70 nm) polyhedral head and short tail. φNC10 infected only serotype O1 strains of Y. ruckeri and failed to bind a defined Y. ruckeri mutant strain lacking O1 lipopolysaccharides (O1-LPS), suggesting that φNC10 uses O1-LPS as its receptor. In addition, spontaneous φNC10-resistant mutants of Y. ruckeri exhibited defects in O1-LPS production and were sensitive to rainbow trout serum. Purified φNC10 displayed a polysaccharide depolymerase activity capable of degrading Y. ruckeri O1-LPS and thereby sensitizing Y. ruckeri to the bactericidal effects of rainbow trout serum. The φNC10-associated polysaccharide depolymerase activity also reduced the ability of Y. ruckeri cells to cause mortality following intraperitoneal injection into rainbow trout. These data demonstrate a potential utility of φNC10 and its associated polysaccharide depolymerase activity for Y. ruckeri disease prevention.
Collapse
Affiliation(s)
- Timothy J Welch
- Agricultural Research Service/U.S. Department of Agriculture, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia
| |
Collapse
|
6
|
León M, Kokkari C, García K, Castillo D, Katharios P, Bastías R. Diversification of Vibrio anguillarum Driven by the Bacteriophage CHOED. Front Microbiol 2019; 10:1396. [PMID: 31281297 PMCID: PMC6596326 DOI: 10.3389/fmicb.2019.01396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023] Open
Abstract
Bacteriophages are an important factor in bacterial evolution. Some reports suggest that lytic bacteriophages can select for resistant mutant strains with reduced virulence. The present study explores the role of the CHOED bacteriophage in the diversification and virulence of its host Vibrio anguillarum. Nine phage-resistant strains were analyzed for their phenotype and different virulence factors, showing alterations in their fitness, motility, biofilm formation, lipopolysaccharide profiles and/or protease activity. Seven of the nine phage-resistant strains showed virulence reduction in a Sparus aurata larvae model. However, this is not generalized since two of the resistant strains show equal virulence compared with the parental strain. The genomic analysis of representative resistant strains displayed that the majority of the mutations are specific for each isolate, affecting genes related to lipopolysaccharide biosynthesis, quorum sensing, motility, toxin and membrane transport. The observed mutations were coherent with the phenotypic and virulence differences observed. These results suggest that the CHOED phage acts as a selective pressure on V. anguillarum, allowing proliferation of resistant strains with different genotypes, phenotypes and degrees of virulence, contributing to bacterial diversification.
Collapse
Affiliation(s)
- Marcela León
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Chile
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
7
|
Conley ZC, Carlson-Banning KM, Carter AG, de la Cova A, Song Y, Zechiedrich L. Sugar and iron: Toward understanding the antibacterial effect of ciclopirox in Escherichia coli. PLoS One 2019; 14:e0210547. [PMID: 30633761 PMCID: PMC6329577 DOI: 10.1371/journal.pone.0210547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.
Collapse
Affiliation(s)
- Zachary C. Conley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley G. Carter
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro de la Cova
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Li Y, Ma Q. Iron Acquisition Strategies of Vibrio anguillarum. Front Cell Infect Microbiol 2017; 7:342. [PMID: 28791260 PMCID: PMC5524678 DOI: 10.3389/fcimb.2017.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
The hemorrhagic septicemic disease vibriosis caused by Vibrio anguillarum shows noticeable similarities to invasive septicemia in humans, and in this case, the V. anguillarum–host system has the potential to serve as a model for understanding native eukaryotic host–pathogen interactions. Iron acquisition, as a fierce battle occurring between pathogenic V. anguillarum and the fish host, is a pivotal step for virulence. In this article, advances in defining the roles of iron uptake pathways in growth and virulence of V. anguillarum have been summarized, divided into five aspects, including siderophore biosynthesis and secretion, iron uptake, iron release, and regulation of iron uptake. Understanding the molecular mechanisms of iron acquisition will have important implications for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
9
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Altinok I, Capkin E, Karsi A. Succinate dehydrogenase mutant of Listonella anguillarum protects rainbow trout against vibriosis. Vaccine 2015; 33:5572-5577. [PMID: 26382599 DOI: 10.1016/j.vaccine.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
Listonella anguillarum is a Gram-negative facultative anaerobic rod causing hemorrhagic septicemia in marine and rarely in freshwater fish. Succinate dehydrogenase (SDH) plays an important role in the tricarboxylic acid (TCA) cycle by oxidizing succinate to fumarate while reducing ubiquinone to ubiquinol. Recent studies indicate that central metabolic pathways, including the TCA cycle, contribute to bacterial virulence. However, the role of SDH in L. anguillarum virulence has not been studied. Here, we report in-frame deletion of the succinate dehydrogenase iron-sulfur protein (SDHB) and its role in L. anguillarum virulence in rainbow trout. To accomplish this goal, upstream and downstream regions of the L. anguillarum sdhB gene were amplified in-frame and cloned into a suicide plasmid. The chromosomal sdhB gene of L. anguillarum was deleted by homologous recombination. Virulence and immunogenicity of the L. anguillarum ΔsdhB mutant (LaΔsdhB) were determined in rainbow trout. Results show that LaΔsdhB was highly attenuated in rainbow trout, and fish immunized with LaΔsdhB displayed high relative survival rate after exposure to wild type L. anguillarum. These findings indicate SDH is important in L. anguillarum virulence in rainbow trout, and LaΔsdhB could be used as an immersion, oral, or injection vaccine to protect rainbow trout against vibriosis.
Collapse
Affiliation(s)
- Ilhan Altinok
- Department of Fisheries Technology Engineering, Faculty of Marine Science, Karadeniz Technical University, Trabzon 61530, Turkey.
| | - Erol Capkin
- Department of Fisheries Technology Engineering, Faculty of Marine Science, Karadeniz Technical University, Trabzon 61530, Turkey
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
11
|
Li X, Defoirdt T, Yang Q, Laureau S, Bossier P, Dierckens K. Host-induced increase in larval sea bass mortality in a gnotobiotic challenge test with Vibrio anguillarum. DISEASES OF AQUATIC ORGANISMS 2014; 108:211-216. [PMID: 24695234 DOI: 10.3354/dao02722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vibrio anguillarum is the major cause of haemorrhagic septicaemia, vibriosis, which is a severe disease affecting marine fish. In this work, it was found that the mortality of gnotobiotic sea bass larvae challenged with V. anguillarum was dependent on the number of dead fish in the vials at the moment of challenge. Based on this finding, the effect of dead hosts (homogenised sea bass larvae or brine shrimp) on the virulence of V. anguillarum towards sea bass larvae was further investigated. Addition of homogenised hosts led to significantly increased larval mortality of challenged larvae, and this was observed for 3 different V. anguillarum strains, i.e. 43, NB 10 and HI 610. In contrast, the addition of similar levels of tryptone had no effect on mortality. In line with this, the motility of all 3 V. anguillarum strains was significantly increased by the addition of homogenised hosts but not by tryptone. These results suggest that dead hosts increase infectivity of V. anguillarum, not merely by offering nutrients to the bacteria, but also by increasing virulence-associated activities such as motility.
Collapse
Affiliation(s)
- Xuan Li
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, 9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Frans I, Dierckens K, Crauwels S, Van Assche A, Leisner J, Larsen MH, Michiels CW, Willems KA, Lievens B, Bossier P, Rediers H. Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? PLoS One 2013; 8:e70477. [PMID: 23936439 PMCID: PMC3735585 DOI: 10.1371/journal.pone.0070477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays. METHODOLOGY/PRINCIPAL FINDINGS We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog's Phenotype MicroArray™ technology and some virulence factor assays. CONCLUSIONS/SIGNIFICANCE Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum.
Collapse
Affiliation(s)
- Ingeborg Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Jørgen Leisner
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne H. Larsen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Chris W. Michiels
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
| | - Kris A. Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- * E-mail:
| |
Collapse
|
13
|
Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution. Biometals 2013; 26:537-47. [PMID: 23660776 DOI: 10.1007/s10534-013-9629-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
Abstract
Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios.
Collapse
|
14
|
Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol 2012; 97:2575-85. [DOI: 10.1007/s00253-012-4372-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 01/24/2023]
|
15
|
Lindell K, Fahlgren A, Hjerde E, Willassen NP, Fällman M, Milton DL. Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial cells. PLoS One 2012; 7:e37678. [PMID: 22662189 PMCID: PMC3360773 DOI: 10.1371/journal.pone.0037678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/26/2012] [Indexed: 01/05/2023] Open
Abstract
Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues.
Collapse
Affiliation(s)
- Kristoffer Lindell
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Erik Hjerde
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, Tromsø, Norway
| | - Nils-Peder Willassen
- Department of Chemistry, Faculty of Science and Technology, University of Tromsø, Tromsø, Norway
| | - Maria Fällman
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Debra L. Milton
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Southern Research Institute, Birmingham, Alabama, United States of America
| |
Collapse
|
16
|
Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. JOURNAL OF FISH DISEASES 2011; 34:643-661. [PMID: 21838709 DOI: 10.1111/j.1365-2761.2011.01279.x] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vibrio anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is responsible for severe economic losses worldwide. Because of its high morbidity and mortality rates, substantial research has been carried out to elucidate the virulence mechanisms of this pathogen and to develop rapid detection techniques and effective disease-prevention strategies. This review summarizes the current state of knowledge pertaining to V. anguillarum, focusing on pathogenesis, known virulence factors, diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- I Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology, Department of Microbial and Molecular Systems, K.U. Leuven Association, Lessius Mechelen, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 2011; 79:2889-900. [PMID: 21576332 PMCID: PMC3191993 DOI: 10.1128/iai.05138-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022] Open
Abstract
We dissected the complete genome sequence of the O1 serotype strain Vibrio anguillarum 775(pJM1) and determined the draft genomic sequences of plasmidless strains of serotype O1 (strain 96F) and O2β (strain RV22) and V. ordalii. All strains harbor two chromosomes, but 775 also harbors the virulence plasmid pJM1, which carries the anguibactin-producing and cognate transport genes, one of the main virulence factors of V. anguillarum. Genomic analysis identified eight genomic islands in chromosome 1 of V. anguillarum 775(pJM1) and two in chromosome 2. Some of them carried potential virulence genes for the biosynthesis of O antigens, hemolysins, and exonucleases as well as others for sugar transport and metabolism. The majority of genes for essential cell functions and pathogenicity are located on chromosome 1. In contrast, chromosome 2 contains a larger fraction (59%) of hypothetical genes than does chromosome 1 (42%). Chromosome 2 also harbors a superintegron, as well as host "addiction" genes that are typically found on plasmids. Unique distinctive properties include homologues of type III secretion system genes in 96F, homologues of V. cholerae zot and ace toxin genes in RV22, and the biofilm formation syp genes in V. ordalii. Mobile genetic elements, some of them possibly originated in the pJM1 plasmid, were very abundant in 775, resulting in the silencing of specific genes, with only few insertions in the 96F and RV22 chromosomes.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | - Graciela M. Dias
- Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| | - Cristiane C. Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Christopher Dubay
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Jorge H. Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
18
|
Naka H, Crosa JH. Genetic Determinants of Virulence in the Marine Fish Pathogen Vibrio anguillarum. FISH PATHOLOGY 2011; 46:1-10. [PMID: 21625345 PMCID: PMC3103123 DOI: 10.3147/jsfp.46.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the most studied fish pathogens is Vibrio anguillarum. Development of the genetics and biochemistry of the mechanisms of virulence in this fish pathogen together with clinical and ecologic studies has permitted the intensive development of microbiology in fish diseases. It is the intention of this review to compile the exhaustive knowledge accumulated on this bacterium and its interaction with the host fish by reporting a complete analysis of the V. anguillarum virulence factors and the genetics of their complexity.
Collapse
|
19
|
Zou YX, Mo ZL, Hao B, Ye XH, Guo DS, Zhang PJ. Screening of genes expressed in vivo after infection by Vibrio anguillarum M3. Lett Appl Microbiol 2010; 51:564-9. [PMID: 20849396 DOI: 10.1111/j.1472-765x.2010.02935.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). METHODS AND RESULTS The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD(50) ) of these mutants were evaluated. CONCLUSIONS The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.
Collapse
Affiliation(s)
- Y-X Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
20
|
Lemos ML, Balado M, Osorio CR. Anguibactin- versus vanchrobactin-mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:19-26. [PMID: 23765994 DOI: 10.1111/j.1758-2229.2009.00103.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrio anguillarum is a marine bacterium that is present in many marine aquatic environments and that is the main cause of vibriosis in diverse wild and cultured fish species. Two siderophore-mediated iron uptake systems have been described in V. anguillarum. One, mediated by the siderophore anguibactin, is encoded by the pJM1-type plasmids and is restricted to serotype O1 strains. The second one is mediated by the vanchrobactin siderophore and is widespread in many strains belonging to different serotypes. Both siderophores belong to the catecholate group of siderophores, sharing a 2,3-dihydroxybenzoic acid moiety. Vanchrobactin biosynthesis and transport genes are present in all strains examined although the siderophore is not produced in serotype O1 strains harbouring a pJM1-type plasmid. In these strains the insertion of an IS element in the main vanchrobactin biosynthetic gene vabF leads to the fact that only anguibactin is produced. From our current knowledge we can presume that vanchrobactin is the ancestral siderophore in this species and that the anguibactin-mediated system was later acquired during evolution, likely by horizontal transfer. The role of these two different iron uptake mechanisms in the biology, evolution and ecology of V. anguillarum is discussed although they are still far from being completely understood.
Collapse
Affiliation(s)
- Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | | | | |
Collapse
|
21
|
Naka H, López CS, Crosa JH. Role of the pJM1 plasmid-encoded transport proteins FatB, C and D in ferric anguibactin uptake in the fish pathogen Vibrio anguillarum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:104-111. [PMID: 21304833 PMCID: PMC3034151 DOI: 10.1111/j.1758-2229.2009.00110.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vibrio anguillarum serotype O1 is part of the natural flora in the aquatic habitat, but under certain circumstances it can cause terminal haemorrhagic septicemia in marine and fresh water fish due to the action of the anguibactin iron uptake system encoded by the virulence plasmid pJM1. This plasmid harbours the genes for the biosynthesis of the siderophore anguibactin and the ferric anguibactin transport proteins FatD, C, B and A encoded in the iron transport operon. The FatA protein is the outer membrane receptor for the ferric siderophore complex and the FatB lipoprotein provides the periplasmic domain for its internalization, whereas the FatC and D proteins are located in the cytoplasmic membrane and might play a role as part of the ABC transporter for internalization of the ferric siderophore. In this work we demonstrate the essential role of these two inner membrane proteins in ferric anguibactin transport and that the lipo-protein nature of FatB is not necessary for ferric anguibactin transport.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Claudia S. López
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jorge H. Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
22
|
Gratacap RML, Thompson KD, Bricknell IR, Adams A. Lipopolysaccharide extraction: a phenol alternative. JOURNAL OF FISH DISEASES 2009; 32:811-814. [PMID: 19490391 DOI: 10.1111/j.1365-2761.2009.01061.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- R M L Gratacap
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | |
Collapse
|
23
|
Naka H, López CS, Crosa JH. Reactivation of the vanchrobactin siderophore system of Vibrio anguillarum by removal of a chromosomal insertion sequence originated in plasmid pJM1 encoding the anguibactin siderophore system. Environ Microbiol 2008; 10:265-77. [PMID: 18005167 PMCID: PMC3032565 DOI: 10.1111/j.1462-2920.2007.01450.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A chromosomal gene cluster encoding vanchrobactin biosynthesis and transport genes was identified in the Vibrio anguillarum serotype O1 strain, 775(pJM1), harbouring the anguibactin biosynthetic genes in the pJM1 plasmid. In this strain only anguibactin is produced as the vanchrobactin chromosome cluster has a RS1 transposition insertion into vabF, one of the vanchrobactin biosynthesis genes. Removal of this RS1 generating 775(pJM1)Delta tnp, still resulted in the detection of only anguibactin in specific bioassays. Surprisingly, when the pJM1 plasmid was not present as in the plasmidless strain H775-3, removal of the RS1 resulted in the detection of only vanchrobactin. These results thus can be interpreted as if presence of the pJM1 plasmid or of anguibactin itself is associated with the lack of detection of the vanchrobactin siderophore in bioassays. As high-performance liquid chromatography (HPLC) and mass spectrometry analysis demonstrated that both vanchrobactin and anguibactin were indeed produced in 775(pJM1)Delta tnp, it is clear that the pJM1-encoded anguibactin siderophore has higher affinity for iron than the vanchrobactin system in strains in which both systems are expressed at the same time. Our results underscore the importance of the anguibactin system in the survival of V. anguillarum 775 under conditions of iron limitation.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Claudia S. López
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jorge H. Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|