1
|
Garrett SR, Palmer T. The role of proteinaceous toxins secreted by Staphylococcus aureus in interbacterial competition. FEMS MICROBES 2024; 5:xtae006. [PMID: 38495077 PMCID: PMC10941976 DOI: 10.1093/femsmc/xtae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Staphylococcus aureus is highly adapted to colonization of the mammalian host. In humans the primary site of colonization is the epithelium of the nasal cavity. A major barrier to colonization is the resident microbiota, which have mechanisms to exclude S. aureus. As such, S. aureus has evolved mechanisms to compete with other bacteria, one of which is through secretion of proteinaceous toxins. S. aureus strains collectively produce a number of well-characterized Class I, II, and IV bacteriocins as well as several bacteriocin-like substances, about which less is known. These bacteriocins have potent antibacterial activity against several Gram-positive organisms, with some also active against Gram-negative species. S. aureus bacteriocins characterized to date are sporadically produced, and often encoded on plasmids. More recently the type VII secretion system (T7SS) of S. aureus has also been shown to play a role in interbacterial competition. The T7SS is encoded by all S. aureus isolates and so may represent a more widespread mechanism of competition used by this species. T7SS antagonism is mediated by the secretion of large protein toxins, three of which have been characterized to date: a nuclease toxin, EsaD; a membrane depolarizing toxin, TspA; and a phospholipase toxin, TslA. Further study is required to decipher the role that these different types of secreted toxins play in interbacterial competition and colonization of the host.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
2
|
Schindler Y, Rahav G, Nissan I, Valenci G, Ravins M, Hanski E, Ment D, Tekes-Manova D, Maor Y. Type VII secretion system and its effect on group B Streptococcus virulence in isolates obtained from newborns with early onset disease and colonized pregnant women. Front Cell Infect Microbiol 2023; 13:1168530. [PMID: 37545859 PMCID: PMC10400891 DOI: 10.3389/fcimb.2023.1168530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios. Methods GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. Galleria mellonella larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS. Results Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in G. mellonella modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC. Conclusions We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
Collapse
Affiliation(s)
- Yulia Schindler
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Rahav
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Nissan
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Gal Valenci
- National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorit Tekes-Manova
- Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel
| | - Yasmin Maor
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
3
|
Zhou K, Xie L, Xu X, Sun J. Comparative Genomic Analysis of Type VII Secretion System in Streptococcus agalactiae Indicates Its Possible Sequence Type-Dependent Diversity. Front Cell Infect Microbiol 2022; 12:880943. [PMID: 35663471 PMCID: PMC9160427 DOI: 10.3389/fcimb.2022.880943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus agalactiae causes sepsis and meningitis in neonates, presenting substantial clinical challenges. Type VII secretion system (T7SS), an important secretion system identified in Mycobacterium sp. and Gram-positive bacteria, was recently characterized in S. agalactiae and considered to contribute to its virulence and pathogenesis. In the present study, 128 complete genomic sequences of S. agalactiae were retrieved from GenBank to build a public dataset, and their sequences, capsular types, and clonal complexes were determined. Polymerase chain reaction (PCR) screening and genomic sequencing were conducted in an additional clinical dataset. STs and capsular types were determined using PCR. Eleven different types of T7SS were detected with similarities in gene order but differences in gene content. Strains with incomplete T7SS or lack of T7SS were also identified. Deletion, insertion, and segmentation of T7SS might be related to insertion sequences. The genetic environment of T7SS in S. agalactiae was also investigated and different patterns were identified downstream the T7SS, which were related to the diversity of T7SS putative effectors. The T7SS demonstrated possible sequence type (ST)-dependent diversity in both datasets. This work elucidated detailed genetic characteristics of T7SS and its genetic environment in S. agalactiae and further identified its possible ST-dependent diversity, which gave a clue of its mode of transmission. Further investigations are required to elucidate the underlying mechanisms and its functions.
Collapse
Affiliation(s)
- Kaixin Zhou
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Lianyan Xie
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiaogang Xu, ; Jingyong Sun,
| | - Jingyong Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaogang Xu, ; Jingyong Sun,
| |
Collapse
|
4
|
Abstract
The type VII protein secretion system (T7SS) of Staphylococcus aureus is encoded at the ess locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across S. aureus strains, each accompanied by a specific suite of substrate proteins. The ess genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as Staphylococcus warneri that lack the T7SS points to a major role for the secretion system in bacterial antagonism. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Bowman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| |
Collapse
|
5
|
Bowran K, Palmer T. Extreme genetic diversity in the type VII secretion system of Listeria monocytogenes suggests a role in bacterial antagonism. MICROBIOLOGY-SGM 2021; 167. [PMID: 33599605 DOI: 10.1099/mic.0.001034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The type VII protein secretion system (T7SS) has been characterized in members of the phyla Actinobacteria and Firmicutes. In mycobacteria the T7SS is intimately linked with pathogenesis and intracellular survival, while in Firmicutes there is mounting evidence that the system plays a key role in interbacterial competition. A conserved membrane-bound ATPase protein, termed EssC in Staphylococcus aureus, is a critical component of the T7SS and is the primary receptor for substrate proteins. Genetic diversity in the essC gene of S. aureus has previously been reported, resulting in four protein variants that are linked to specific subsets of substrates. Here we have analysed the genetic diversity of the T7SS-encoding genes and substrate proteins across Listeria monocytogenes genome sequences. We find that there are seven EssC variants across the species that differ in their C-terminal region; each variant is correlated with a distinct subset of genes for likely substrate and accessory proteins. EssC1 is most common and is exclusively linked with polymorphic toxins harbouring a YeeF domain, whereas EssC5, EssC6 and EssC7 variants all code for an LXG domain protein adjacent to essC. Some essC1 variant strains encode an additional, truncated essC at their T7 gene cluster. The truncated EssC, comprising only the C-terminal half of the protein, matches the sequence of either EssC2, EssC3 or EssC4. In each case the truncated gene directly precedes a cluster of substrate/accessory protein genes acquired from the corresponding strain. Across L. monocytogenes strains we identified 40 LXG domain proteins, most of which are encoded at conserved genomic loci. These loci also harbour genes encoding immunity proteins and sometimes additional toxin fragments. Collectively our findings strongly suggest that the T7SS plays an important role in bacterial antagonism in this species.
Collapse
Affiliation(s)
- Kieran Bowran
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
6
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol 2017; 25:192-204. [DOI: 10.1016/j.tim.2016.11.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023]
|
8
|
Abstract
Bacterial pathogens utilize a multitude of methods to invade mammalian hosts, damage tissue sites, and thwart the immune system from responding. One essential component of these strategies for many bacterial pathogens is the secretion of proteins across phospholipid membranes. Secreted proteins can play many roles in promoting bacterial virulence, from enhancing attachment to eukaryotic cells, to scavenging resources in an environmental niche, to directly intoxicating target cells and disrupting their functions. Many pathogens use dedicated protein secretion systems to secrete virulence factors from the cytosol of the bacteria into host cells or the host environment. In general, bacterial protein secretion apparatuses can be divided into classes, based on their structures, functions, and specificity. Some systems are conserved in all classes of bacteria and secrete a broad array of substrates, while others are only found in a small number of bacterial species and/or are specific to only one or a few proteins. In this chapter, we review the canonical features of several common bacterial protein secretion systems, as well as their roles in promoting the virulence of bacterial pathogens. Additionally, we address recent findings that indicate that the innate immune system of the host can detect and respond to the presence of protein secretion systems during mammalian infection.
Collapse
|
9
|
Das C, Ghosh TS, Mande SS. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization. J Biosci 2016; 41:133-43. [PMID: 26949095 DOI: 10.1007/s12038-016-9599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.
Collapse
Affiliation(s)
- Chandrani Das
- Bio-Sciences R and D Division, TCS Innovation Labs, Tata Research Development and Design Centre, Tata Consultancy Service Ltd., Pune 411 013, India
| | | | | |
Collapse
|
10
|
Pinheiro J, Reis O, Vieira A, Moura IM, Zanolli Moreno L, Carvalho F, Pucciarelli MG, García-Del Portillo F, Sousa S, Cabanes D. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence 2016; 8:993-1004. [PMID: 27723420 DOI: 10.1080/21505594.2016.1244589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Bacterial pathogenicity deeply depends on the ability to secrete virulence factors that bind specific targets on host cells and manipulate host responses. The Gram-positive bacterium Listeria monocytogenes is a human foodborne pathogen that remains a serious public health concern. To transport proteins across its cell envelope, this facultative intracellular pathogen engages a set of specialized secretion systems. Here we show that L. monocytogenes EGDe uses a specialized secretion system, named ESX-1, to secrete EsxA, a homolog of the virulence determinants ESAT-6 and EsxA of Mycobacterium tuberculosis and Staphylococcus aureus, respectively. Our data show that the L. monocytogenes ESX-1 secretion system and its substrates are dispensable for bacterial invasion and intracellular multiplication in eukaryotic cell lines. Surprisingly, we found that the EssC-dependent secretion of EsxA has a detrimental effect on L. monocytogenes in vivo infection.
Collapse
Affiliation(s)
- Jorge Pinheiro
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Olga Reis
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Ana Vieira
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Ines M Moura
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Luisa Zanolli Moreno
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,d Laboratório de Saúde Pública , Faculdade de Saúde Pública, Universidade de São Paulo , São Paulo , Brazil
| | - Filipe Carvalho
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - M Graciela Pucciarelli
- e Centro Nacional de Biotecnología-CSIC (CNB-CSIC) , Madrid , Spain.,f Departamento de Biología Molecular , Universidad Autónoma de Madrid, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC) , Madrid , Spain
| | | | - Sandra Sousa
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Didier Cabanes
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| |
Collapse
|
11
|
Abstract
Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.
Collapse
|
12
|
Abstract
Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms.
Collapse
|
13
|
Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages. Infect Immun 2014; 82:5132-42. [PMID: 25267834 DOI: 10.1128/iai.02426-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is an intrinsic immune defense mechanism in the host response to microbial infection. Not surprisingly, many pathogens have evolved various strategies to manipulate this important pathway to benefit their own survival and dissemination in the host during infection. To our knowledge, no attempts have been made to explore the host cell survival signals modulated by the bacterium Enterococcus faecalis. Here, we show for the first time that during early stages of infection, internalized enterococci can prevent host cell (RAW264.7 cells, primary macrophages, and mouse embryonic fibroblasts [MEFs]) apoptosis induced by a wide spectrum of proapoptotic stimuli. Activation of caspase 3 and cleavage of the caspase 3 substrate poly(ADP-ribose) polymerase were inhibited in E. faecalis-infected cells, indicating that E. faecalis protects macrophages from apoptosis by inhibiting caspase 3 activation. This antiapoptotic activity in E. faecalis-infected cells was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which resulted in the increased expression of the antiapoptotic factor Bcl-2 and decreased expression of the proapoptotic factor Bax. Further analysis revealed that active E. faecalis physiology was important for inhibition of host cell apoptosis, and this feature seemed to be a strain-independent trait among E. faecalis isolates. Employing a mouse peritonitis model, we also determined that cells collected from the peritoneal lavage fluid of E. faecalis-infected mice showed reduced levels of apoptosis compared to cells from uninfected mice. These results show early modulation of apoptosis during infection and have important implications for enterococcal pathogenesis.
Collapse
|
14
|
Halbedel S, Reiss S, Hahn B, Albrecht D, Mannala GK, Chakraborty T, Hain T, Engelmann S, Flieger A. A systematic proteomic analysis of Listeria monocytogenes house-keeping protein secretion systems. Mol Cell Proteomics 2014; 13:3063-81. [PMID: 25056936 DOI: 10.1074/mcp.m114.041327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Listeria monocytogenes is a firmicute bacterium causing serious infections in humans upon consumption of contaminated food. Most of its virulence factors are secretory proteins either released to the medium or attached to the bacterial surface. L. monocytogenes encodes at least six different protein secretion pathways. Although great efforts have been made in the past to predict secretory proteins and their secretion routes using bioinformatics, experimental evidence is lacking for most secretion systems. Therefore, we constructed mutants in the main housekeeping protein secretion systems, which are the Sec-dependent transport, the YidC membrane insertases SpoIIIJ and YqjG, as well as the twin-arginine pathway, and analyzed their secretion and virulence defects. Our results demonstrate that Sec-dependent secretion and membrane insertion of proteins via YidC proteins are essential for viability of L. monocytogenes. Depletion of SecA or YidC activity severely affected protein secretion, whereas loss of the Tat-pathway was without any effect on secretion, viability, and virulence. Two-dimensional gel electrophoresis combined with protein identification by mass spectrometry revealed that secretion of many virulence factors and of enzymes synthesizing and degrading the cell wall depends on the SecA route. This finding was confirmed by SecA inhibition experiments using sodium azide. Analysis of secretion of substrates typically dependent on the accessory SecA2 ATPase in wild type and azide resistant mutants of L. monocytogenes revealed for the first time that SecA2-dependent protein secretion also requires the ATPase activity of the house-keeping SecA protein.
Collapse
Affiliation(s)
- Sven Halbedel
- From the ‡Robert Koch Institute, FG11 - Division of Enteropathogenic Bacteria and Legionella, Burgstrasse 37, 38855 Wernigerode, Germany;
| | - Swantje Reiss
- §Institute of Microbiology, University of Greifswald, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany
| | - Birgit Hahn
- From the ‡Robert Koch Institute, FG11 - Division of Enteropathogenic Bacteria and Legionella, Burgstrasse 37, 38855 Wernigerode, Germany
| | - Dirk Albrecht
- §Institute of Microbiology, University of Greifswald, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany
| | - Gopala Krishna Mannala
- ¶Institute of Medical Microbiology, University of Gießen, Schubertstrasse 81, 35392 Gießen, Germany
| | - Trinad Chakraborty
- ¶Institute of Medical Microbiology, University of Gießen, Schubertstrasse 81, 35392 Gießen, Germany
| | - Torsten Hain
- ¶Institute of Medical Microbiology, University of Gießen, Schubertstrasse 81, 35392 Gießen, Germany
| | - Susanne Engelmann
- §Institute of Microbiology, University of Greifswald, F.-L.-Jahn-Strasse 15, 17487 Greifswald, Germany; ‖Institute of Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; **Helmholtz Centre for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Antje Flieger
- From the ‡Robert Koch Institute, FG11 - Division of Enteropathogenic Bacteria and Legionella, Burgstrasse 37, 38855 Wernigerode, Germany;
| |
Collapse
|
15
|
Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun 2014; 82:4144-53. [PMID: 25047846 DOI: 10.1128/iai.01576-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell.
Collapse
|
16
|
Rychli K, Müller A, Zaiser A, Schoder D, Allerberger F, Wagner M, Schmitz-Esser S. Genome sequencing of Listeria monocytogenes "Quargel" listeriosis outbreak strains reveals two different strains with distinct in vitro virulence potential. PLoS One 2014; 9:e89964. [PMID: 24587155 PMCID: PMC3935953 DOI: 10.1371/journal.pone.0089964] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/25/2014] [Indexed: 12/18/2022] Open
Abstract
A large listeriosis outbreak occurred in Austria, Germany and the Czech Republic in 2009 and 2010. The outbreak was traced back to a traditional Austrian curd cheese called “Quargel” which was contaminated with two distinct serovar 1/2a Listeria monocytogenes strains (QOC1 and QOC2). In this study we sequenced and analysed the genomes of both outbreak strains in order to investigate the extent of genetic diversity between the two strains belonging to MLST sequence types 398 (QOC2) and 403 (QOC1). Both genomes are highly similar, but also display distinct properties: The QOC1 genome is approximately 74 kbp larger than the QOC2 genome. In addition, the strains harbour 93 (QOC1) and 45 (QOC2) genes encoding strain-specific proteins. A 21 kbp region showing highest similarity to plasmid pLMIV encoding three putative internalins is integrated in the QOC1 genome. In contrast to QOC1, strain QOC2 harbours a vip homologue, which encodes a LPXTG surface protein involved in cell invasion. In accordance, in vitro virulence assays revealed distinct differences in invasion efficiency and intracellular proliferation within different cell types. The higher virulence potential of QOC1 in non-phagocytic cells may be explained by the presence of additional internalins in the pLMIV-like region, whereas the higher invasion capability of QOC2 into phagocytic cells may be due to the presence of a vip homologue. In addition, both strains show differences in stress-related gene content. Strain QOC1 encodes a so-called stress survival islet 1, whereas strain QOC2 harbours a homologue of the uncharacterized LMOf2365_0481 gene. Consistently, QOC1 shows higher resistance to acidic, alkaline and gastric stress. In conclusion, our results show that strain QOC1 and QOC2 are distinct and did not recently evolve from a common ancestor.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anneliese Müller
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Schoder
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecularbiological Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Baptista C, Barreto HC, São-José C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS One 2013; 8:e67840. [PMID: 23861817 PMCID: PMC3701619 DOI: 10.1371/journal.pone.0067840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The recently discovered Type VII/Esat-6 secretion systems seem to be widespread among bacteria of the phyla Actinobacteria and Firmicutes. In some species they play an important role in pathogenic interactions with eukaryotic hosts. Several studies have predicted that the locus yukEDCByueBC of the non-pathogenic, Gram-positive bacterium Bacillus subtilis would encode an Esat-6-like secretion system (Ess). We provide here for the first time evidences for the functioning of this secretion pathway in an undomesticated B. subtilis strain. We show that YukE, a small protein with the typical features of the secretion substrates from the WXG100 superfamily is actively secreted to culture media. YukE secretion depends on intact yukDCByueBC genes, whose products share sequence or structural homology with known components of the S. aureus Ess. Biochemical characterization of YukE indicates that it exists as a dimer both in vitro and in vivo. We also show that the B. subtilis Ess essentially operates in late stationary growth phase in absolute dependence of phosphorylated DegU, the response regulator of the two-component system DegS-DegU. We present possible reasons that eventually have precluded the study of this secretion system in the B. subtilis laboratory strain 168.
Collapse
Affiliation(s)
- Catarina Baptista
- Centro de Patogénese Molecular – Unidade de Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Condessa Barreto
- Centro de Patogénese Molecular – Unidade de Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Carlos São-José
- Centro de Patogénese Molecular – Unidade de Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
18
|
Palmer SR, Miller JH, Abranches J, Zeng L, Lefebure T, Richards VP, Lemos JA, Stanhope MJ, Burne RA. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One 2013; 8:e61358. [PMID: 23613838 PMCID: PMC3628994 DOI: 10.1371/journal.pone.0061358] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.
Collapse
Affiliation(s)
- Sara R. Palmer
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - James H. Miller
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jacqueline Abranches
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Tristan Lefebure
- Université de Lyon, CNRS, Ecologie des Hydrosystèmes Naturels et Anthropisés; Université Lyon, Villeurbanne, France
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Vincent P. Richards
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - José A. Lemos
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael J. Stanhope
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Fyans JK, Bignell D, Loria R, Toth I, Palmer T. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2013; 14:119-30. [PMID: 23009676 PMCID: PMC6638804 DOI: 10.1111/j.1364-3703.2012.00835.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Streptomyces scabies is a model organism for the investigation of plant-microbe interactions in Gram-positive bacteria. Here, we investigate the type VII protein secretion system (T7SS) in S. scabies; the T7SS is required for the virulence of other Gram-positive bacteria, including Mycobacterium tuberculosis and Staphylococcus aureus. The hallmarks of a functional T7SS are an EccC protein that forms an essential component of the secretion apparatus and two small, sequence-related substrate proteins, EsxA and EsxB. A putative transmembrane protein, EccD, may also be associated with T7S in Actinobacteria. In this study, we constructed strains of the plant pathogen S. scabies carrying marked mutations in genes coding for EccC, EccD, EsxA and EsxB. Unexpectedly, we showed that all four mutant strains retain full virulence towards several plant hosts. However, disruption of the esxA or esxB, but not eccC or eccD, genes affects S. scabies development, including a delay in sporulation, abnormal spore chains and resistance to lysis by the Streptomyces-specific phage ϕC31. We further showed that these phenotypes are specific to the loss of the T7SS substrate proteins EsxA and EsxB, and are not observed when components of the T7SS secretion machinery are lacking. Taken together, these results imply an unexpected intracellular role for EsxA and EsxB.
Collapse
Affiliation(s)
- Joanna K Fyans
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
20
|
Rowe JH, Ertelt JM, Xin L, Way SS. Listeria monocytogenes cytoplasmic entry induces fetal wastage by disrupting maternal Foxp3+ regulatory T cell-sustained fetal tolerance. PLoS Pathog 2012; 8:e1002873. [PMID: 22916020 PMCID: PMC3420962 DOI: 10.1371/journal.ppat.1002873] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/08/2012] [Indexed: 11/26/2022] Open
Abstract
Although the intracellular bacterium Listeria monocytogenes has an established predilection for disseminated infection during pregnancy that often results in spontaneous abortion or stillbirth, the specific host-pathogen interaction that dictates these disastrous complications remain incompletely defined. Herein, we demonstrate systemic maternal Listeria infection during pregnancy fractures fetal tolerance and triggers fetal wastage in a dose-dependent fashion. Listeria was recovered from the majority of concepti after high-dose infection illustrating the potential for in utero invasion. Interestingly with reduced inocula, fetal wastage occurred without direct placental or fetal invasion, and instead paralleled reductions in maternal Foxp3(+) regulatory T cell suppressive potency with reciprocal expansion and activation of maternal fetal-specific effector T cells. Using mutants lacking virulence determinants required for in utero invasion, we establish Listeria cytoplasmic entry is essential for disrupting fetal tolerance that triggers maternal T cell-mediated fetal resorption. Thus, infection-induced reductions in maternal Foxp3(+) regulatory T cell suppression with ensuing disruptions in fetal tolerance play critical roles in pathogenesis of immune-mediated fetal wastage.
Collapse
Affiliation(s)
| | | | | | - Sing Sing Way
- Departments of Pediatrics and Microbiology, Center for Infectious Disease and Microbiology Translational Research, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
| |
Collapse
|
21
|
Leisner J, Hansen M, Larsen M, Hansen L, Ingmer H, Sørensen S. The genome sequence of the lactic acid bacterium, Carnobacterium maltaromaticum ATCC 35586 encodes potential virulence factors. Int J Food Microbiol 2012; 152:107-15. [DOI: 10.1016/j.ijfoodmicro.2011.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/25/2023]
|
22
|
Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res 2010; 9:5076-92. [PMID: 20839850 DOI: 10.1021/pr1003642] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defined as proteins actively transported via secretion systems, secreted proteins can have radically different subcellular destinations in monoderm (Gram-positive) bacteria. From degradative enzymes in saprophytes to virulence factors in pathogens, secreted proteins are the main tools used by bacteria to interact with their surroundings. The etiological agent of listeriosis, Listeria monocytogenes, is a Gram-positive facultative intracellular foodborne pathogen, whose ecological niche is the soil and as such should be primarily considered as a ubiquitous saprophyte. Recent advances on protein secretion systems in this species prompted us to investigate the exoproteome. First, an original and rational bioinformatic strategy was developed to mimic the protein exportation steps leading to the extracellular localization of secreted proteins; 79 exoproteins were predicted as secreted via Sec, 1 exoprotein via Tat, 4 bacteriocins via ABC exporters, 3 exoproteins via holins, and 3 exoproteins via the WXG100 system. This bioinformatic analysis allowed for defining a databank of the mature protein set in L. monocytogenes, which was used for generating the theoretical exoproteome and for subsequent protein identification by proteomics. 2-DE proteomic analyses were performed over a wide pI range to experimentally cover the largest protein spectrum possible. A total of 120 spots could be resolved and identified, which corresponded to 50 distinct proteins. These exoproteins were essentially virulence factors, degradative enzymes, and proteins of unknown functions, which exportation would essentially rely on the Sec pathway or nonclassical secretion. This investigation resulted in the first comprehensive appraisal of the exoproteome of L. monocytogenes EGD-e based on theoretical and experimental secretomic analyses, which further provided indications on listerial physiology in relation with its habitat and lifestyle. The novel and rational strategy described here is generic and has been purposely designed for the prediction of proteins localized extracellularly in monoderm bacteria.
Collapse
Affiliation(s)
- Mickaël Desvaux
- INRA, UR454 Microbiology, Food Quality and Safety Team, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
23
|
Conservation of structure and protein-protein interactions mediated by the secreted mycobacterial proteins EsxA, EsxB, and EspA. J Bacteriol 2010; 192:326-35. [PMID: 19854905 DOI: 10.1128/jb.01032-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis EsxA and EsxB proteins are founding members of the WXG100 (WXG) protein family, characterized by their small size (approximately 100 amino acids) and conserved WXG amino acid motif. M. tuberculosis contains 11 tandem pairs of WXG genes; each gene pair is thought to be coexpressed to form a heterodimer. The precise role of these proteins in the biology of M. tuberculosis is unknown, but several of the heterodimers are secreted, which is important for virulence. However, WXG proteins are not simply virulence factors, since nonpathogenic mycobacteria also express and secrete these proteins. Here we show that three WXG heterodimers have structures and properties similar to those of the M. tuberculosis EsxBA (MtbEsxBA) heterodimer, regardless of their host species and apparent biological function. Biophysical studies indicate that the WXG proteins from M. tuberculosis (EsxG and EsxH), Mycobacterium smegmatis (EsxA and EsxB), and Corynebacterium diphtheriae (EsxA and EsxB) are heterodimers and fold into a predominately alpha-helical structure. An in vivo protein-protein interaction assay was modified to identify proteins that interact specifically with the native WXG100 heterodimer. MtbEsxA and MtbEsxB were fused into a single polypeptide, MtbEsxBA, to create a biomimetic bait for the native heterodimer. The MtbEsxBA bait showed specific association with several esx-1-encoded proteins and EspA, a virulence protein secreted by ESX-1. The MtbEsxBA fusion peptide was also utilized to identify residues in both EsxA and EsxB that are important for establishing protein interactions with Rv3871 and EspA. Together, the results are consistent with a model in which WXG proteins perform similar biological roles in virulent and nonvirulent species.
Collapse
|
24
|
Simeone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 2009; 12:4-10. [PMID: 19155186 DOI: 10.1016/j.mib.2008.11.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 01/22/2023]
Abstract
The ESX-1 system is responsible for the secretion of the prototypic ESX proteins, namely the 6 kDa early secreted antigenic target (ESAT-6) and the 10 kDa culture filtrate protein (CFP-10). These two proteins, which form a 1:1 heterodimeric complex, are among the most important proteins of Mycobacterium tuberculosis involved in host-pathogen interaction. They induce a strong T cell mediated immune response, are apparently involved in membrane and/or host-cell lysis and represent key virulence factors. There are four other paralogous ESX systems in M. tuberculosis, some of which are essential for in vitro growth. ESX systems also exist in many other actinobacteria and Gram-positive bacteria, and have recently been suggested to be named type VII secretion systems.
Collapse
Affiliation(s)
- Roxane Simeone
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, 25 Rue du Dr. Roux, 75724 Paris, France
| | | | | |
Collapse
|
25
|
Abdallah AM, Gey van Pittius NC, DiGiuseppe Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, Appelmelk BJ, Bitter W. Type VII secretion — mycobacteria show the way. Nat Rev Microbiol 2007; 5:883-91. [PMID: 17922044 DOI: 10.1038/nrmicro1773] [Citation(s) in RCA: 535] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Abstract
Mycobacteria have a unique cell-envelope structure which protects the bacteria from the extracellular environment by limiting access to noxious molecules from the outside. This extremely hydrophobic and thick barrier also poses a unique problem for the export of bacterial products. Here we review the multiple protein secretion pathways in Mycobacteria, including the general secretion pathway and the Twin-Arginine Transporter, with an emphasis on the ESX-1 alternate secretion system. This newly identified protein secretion system is required for growth during infection and has provided insight into how M. tuberculosis manipulates the host immune response during infection.
Collapse
Affiliation(s)
- Patricia A DiGiuseppe Champion
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, 600 16th Street, Campus Box 2200, San Francisco, CA 94143-2200, USA.
| | | |
Collapse
|
27
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|