1
|
Pylkkö T, Schneider YKH, Rämä T, Andersen JH, Tammela P. Bioprospecting of inhibitors of EPEC virulence from metabolites of marine actinobacteria from the Arctic Sea. Front Microbiol 2024; 15:1432475. [PMID: 39282555 PMCID: PMC11392781 DOI: 10.3389/fmicb.2024.1432475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 09/19/2024] Open
Abstract
A considerable number of antibacterial agents are derived from bacterial metabolites. Similarly, numerous known compounds that impede bacterial virulence stem from bacterial metabolites. Enteropathogenic Escherichia coli (EPEC) is a notable human pathogen causing intestinal infections, particularly affecting infant mortality in developing regions. These infections are characterized by microvilli effacement and intestinal epithelial lesions linked with aberrant actin polymerization. This study aimed to identify potential antivirulence compounds for EPEC infections among bacterial metabolites harvested from marine actinobacteria (Kocuria sp. and Rhodococcus spp.) from the Arctic Sea by the application of virulence-based screening assays. Moreover, we demonstrate the suitability of these antivirulence assays to screen actinobacteria extract fractions for the bioassay-guided identification of metabolites. We discovered a compound in the fifth fraction of a Kocuria strain that interferes with EPEC-induced actin polymerization without affecting growth. Furthermore, a growth-inhibiting compound was identified in the fifth fraction of a Rhodococcus strain. Our findings include the bioassay-guided identification, HPLC-MS-based dereplication, and isolation of a large phospholipid and a likely antimicrobial peptide, demonstrating the usefulness of this approach in screening for compounds capable of inhibiting EPEC virulence.
Collapse
Affiliation(s)
- Tuomas Pylkkö
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Teppo Rämä
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Päivi Tammela
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Gershberg J, Morhaim M, Rostrovsky I, Eichler J, Sal-Man N. The sequence of events of enteropathogenic E. coli's type III secretion system translocon assembly. iScience 2024; 27:109108. [PMID: 38375228 PMCID: PMC10875159 DOI: 10.1016/j.isci.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Many bacterial pathogens employ the type III secretion system (T3SS), a specialized complex that transports effector proteins that manipulate various cellular processes. The T3SS forms a translocon pore within the host-cell membrane consisting of two secreted proteins that transition from a soluble state into a transmembrane complex. Still, the exact sequence of events leading to the formation of a membranous functional pore remains uncertain. Here, we utilized the translocon proteins of enteropathogenic E. coli (EPEC) to investigate the sequence of those steps leading to translocon assembly, including self-oligomerization, hetero-oligomerization, interprotein interaction, and membrane insertion. We found that in EPEC, EspD (SctE) plays a dominant role in pore formation as it assembles into an oligomeric state, regardless of pH, membrane contact, or the presence of EspB (SctB). Subsequently, EspB subunits integrate into EspD homo-oligomers to create EspB-EspD hetero-oligomers that adopt a transmembrane orientation to create a functional pore complex.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - May Morhaim
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irina Rostrovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Kaur P, Dudeja PK. Pathophysiology of Enteropathogenic Escherichia coli-induced Diarrhea. NEWBORN (CLARKSVILLE, MD.) 2023; 2:102-113. [PMID: 37388762 PMCID: PMC10308259 DOI: 10.5005/jp-journals-11002-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are important diarrheal pathogens of infants and young children. Since the availability of molecular diagnosis methods, we now have new insights into the incidence and prevalence of these infections. Recent epidemiological studies indicate that atypical EPEC (aEPEC) are seen more frequently than typical EPEC (tEPEC) worldwide, including in both endemic diarrhea and diarrhea outbreaks. Therefore, it is important to further characterize the pathogenicity of these emerging strains. The virulence mechanisms and pathophysiology of the attaching and effacing lesion (A/E) and the type-three-secretion-system (T3SS) are complex but well-studied. A/E strains use their pool of locus of enterocyte effacement (LEE)-encoded and non-LEE-encoded effector proteins to subvert and modulate cellular and barrier properties of the host. However, the exact mechanisms of diarrhea in EPEC infection are not completely understood. From the clinical perspective, there is a need for fast, easy, and inexpensive diagnostic methods to define optimal treatment and prevention for children in endemic areas. In this article, we present a review of the classification of EPEC, epidemiology, pathogenesis of the disease caused by these bacteria, determinants of virulence, alterations in signaling, determinants of colonization vs. those of disease, and the limited information we have on the pathophysiology of EPEC-induced diarrhea. This article combines peer-reviewed evidence from our own studies and the results of an extensive literature search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Prabhdeep Kaur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, United States of America
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Abstract
The type III secretion system (T3SS) is crucial for the virulence of several pathogenic Escherichia coli species as well as for other gram-negative bacterial strains. Therefore, the ability to monitor this system constitutes a valuable tool for assessing the involvement of different proteins in bacterial virulence, for identifying critical domains and specific mutations, and for evaluating the antivirulence activities of various drugs. The major advantage of the T3SS secretion assay for E. coli over assays for other gram-negative pathogens is that it does not necessarily require specific antibodies. Here, we describe how to grow enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) strains under T3SS-inducing conditions, separate the supernatant fraction from the bacterial pellet, analyze this fraction on sodium dodecyl sulfate (SDS)-polyacrylamide gels, and evaluate the level of T3SS activity. We describe a qualitative analysis using Coomassie staining and a quantitative assay using western blotting.
Collapse
Affiliation(s)
- Bosko Mitrovic
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
5
|
He Z, Li T, Wang J, Luo D, Ning N, Li Z, Chen F, Wang H. AtaT Improves the Stability of Pore-Forming Protein EspB by Acetylating Lysine 206 to Enhance Strain Virulence. Front Microbiol 2021; 12:627141. [PMID: 33732222 PMCID: PMC7957018 DOI: 10.3389/fmicb.2021.627141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
A novel type II toxin of toxin–antitoxin systems (TAs), Gcn5-related N-acetyltransferase (GNAT) family, was reported recently. GNAT toxins are mainly present in pathogenic species, but studies of their involvement in pathogenicity are rare. This study discovered that the GANT toxin AtaT in enterohemorrhagic Escherichia coli (EHEC) can significantly enhance strain pathogenicity. First, we detected the virulence of ΔataT and ΔataR in cell and animal models. In the absence of ataT, strains showed a lower adhesion number, and host cells presented weaker attaching and effacing lesions, inflammatory response, and pathological injury. Next, we screened the acetylation substrate of AtaT to understand the underlying mechanism. Results showed that E. coli pore-forming protein EspB, which acts as a translocon in type III secretion system (T3SS) in strains, can be acetylated specifically by AtaT. The acetylation of K206 in EspB increases protein stability and maintains the efficiency of effectors translocating into host cells to cause close adhesion and tissue damage.
Collapse
Affiliation(s)
- Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fanghong Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
6
|
Gershberg J, Braverman D, Sal-Man N. Transmembrane domains of type III-secreted proteins affect bacterial-host interactions in enteropathogenic E. coli. Virulence 2021; 12:902-917. [PMID: 33729090 PMCID: PMC7993127 DOI: 10.1080/21505594.2021.1898777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Hillman Y, Gershberg J, Lustiger D, Even D, Braverman D, Dror Y, Ashur I, Vernick S, Sal-Man N, Wine Y. Monoclonal Antibody-Based Biosensor for Point-of-Care Detection of Type III Secretion System Expressing Pathogens. Anal Chem 2020; 93:928-935. [DOI: 10.1021/acs.analchem.0c03621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yaron Hillman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Jenia Gershberg
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Dan Lustiger
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Dan Even
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Dor Braverman
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Yael Dror
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Idan Ashur
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, 68 Hamaccabim Rd, Rishon Lezion 5025001, Israel
| | - Sefi Vernick
- Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, 68 Hamaccabim Rd, Rishon Lezion 5025001, Israel
| | - Neta Sal-Man
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Yariv Wine
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Green building, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
9
|
Enterococcus faecalis Enhances Expression and Activity of the Enterohemorrhagic Escherichia coli Type III Secretion System. mBio 2019; 10:mBio.02547-19. [PMID: 31744919 PMCID: PMC6867897 DOI: 10.1128/mbio.02547-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gut microbiota can significantly impact invading pathogens and the disease they cause; however, many of the mechanisms that dictate commensal-pathogen interactions remain unclear. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal human intestinal pathogen that uses microbiota-derived molecules as cues to efficiently regulate virulence factor expression. Here, we investigate the interaction between EHEC and Enterococcus faecalis, a common human gut commensal, and show that E. faecalis affects both expression and activity of the EHEC type III secretion system (T3SS) via two distinct mechanisms. First, in the presence of E. faecalis there is increased transcription of genes encoding the EHEC T3SS. This leads to increased effector translocation and ultimately greater numbers of pedestals formed on host cells. The same effect was observed with several strains of enterococci, suggesting that it is a general characteristic of this group. In a mechanism separate from E. faecalis-induced transcription of the T3SS, we report that an E. faecalis-secreted protease, GelE, cleaves a critical structural component of the EHEC T3SS, EspB. Our data suggest that this cleavage actually increases effector translocation by the T3SS, supporting a model where EspB proteolysis promotes maximum T3SS activity. Finally, we report that treatment of EHEC with E. faecalis-conditioned cell-free medium is insufficient to induce increased T3SS expression, suggesting that this effect relies on cell contact between E. faecalis and EHEC. This work demonstrates a complex interaction between a human commensal and pathogen that impacts both expression and function of a critical virulence factor.IMPORTANCE This work reveals a complex and multifaceted interaction between a human gut commensal, Enterococcus faecalis, and a pathogen, enterohemorrhagic E. coli We demonstrate that E. faecalis enhances expression of the enterohemorrhagic E. coli type III secretion system and that this effect likely depends on cell contact between the commensal and the pathogen. Additionally, the GelE protease secreted by E. faecalis cleaves a critical structural component of the EHEC type III secretion system. In agreement with previous studies, we find that this cleavage actually increases effector protein delivery into host cells by the secretion system. This work demonstrates that commensal bacteria can significantly shape expression and activity of pathogen virulence factors, which may ultimately shape the progression of disease.
Collapse
|
10
|
Multitalented EspB of enteropathogenic Escherichia coli (EPEC) enters cells autonomously and induces programmed cell death in human monocytic THP-1 cells. Int J Med Microbiol 2018; 308:387-404. [PMID: 29550166 DOI: 10.1016/j.ijmm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.
Collapse
|
11
|
Litvak Y, Sharon S, Hyams M, Zhang L, Kobi S, Katsowich N, Dishon S, Nussbaum G, Dong N, Shao F, Rosenshine I. Epithelial cells detect functional type III secretion system of enteropathogenic Escherichia coli through a novel NF-κB signaling pathway. PLoS Pathog 2017; 13:e1006472. [PMID: 28671993 PMCID: PMC5510907 DOI: 10.1371/journal.ppat.1006472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/14/2017] [Accepted: 06/15/2017] [Indexed: 02/02/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC), a common cause of infant diarrhea, is associated with high risk of mortality in developing countries. The primary niche of infecting EPEC is the apical surface of intestinal epithelial cells. EPEC employs a type three secretion system (TTSS) to inject the host cells with dozens of effector proteins, which facilitate attachment to these cells and successful colonization. Here we show that EPEC elicit strong NF-κB activation in infected host cells. Furthermore, the data indicate that active, pore-forming TTSS per se is necessary and sufficient for this NF-κB activation, regardless of any specific effector or protein translocation. Importantly, upon infection with wild type EPEC this NF-κB activation is antagonized by anti-NF-κB effectors, including NleB, NleC and NleE. Accordingly, this NF-κB activation is evident only in cells infected with EPEC mutants deleted of nleB, nleC, and nleE. The TTSS-dependent NF-κB activation involves a unique pathway, which is independent of TLRs and Nod1/2 and converges with other pathways at the level of TAK1 activation. Taken together, our results imply that epithelial cells have the capacity to sense the EPEC TTSS and activate NF-κB in response. Notably, EPEC antagonizes this capacity by delivering anti-NF-κB effectors into the infected cells.
Collapse
Affiliation(s)
- Yael Litvak
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shir Sharon
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meirav Hyams
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Li Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Simi Kobi
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naama Katsowich
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Dishon
- The Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Gabriel Nussbaum
- The Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Na Dong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Feng Shao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Li D, Chen Z, Cheng H, Zheng JX, Pan WG, Yang WZ, Yu ZJ, Deng QW. Inhibition of Adhesion of Enteropathogenic Escherichia coli to HEp-2 Cells by Binding of a Novel Peptide to EspB Protein. Curr Microbiol 2016; 73:361-365. [PMID: 27246497 DOI: 10.1007/s00284-016-1070-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/23/2016] [Indexed: 12/21/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. The translocator EspB is a key virulence factor in the process of the attaching and effacing effect of EPEC and plays a critical role in the pathogenesis of the bacteria. In this study, we aimed to select the peptides binding to EspB protein by phage display library and further investigate whether these peptides can decrease the extent of invasion and virulence of EPEC on host cells by targeting to EspB protein. The expression and purification of EspB protein from E. coli was demonstrated by Western blotting. The Ph.D. 12-mer peptide phage display library was used to screen the candidate peptides binding specifically to EspB protein. Furthermore, the affinity of these candidate peptides bound to EspB was identified by enzyme-linked immunosorbent assay (ELISA). Moreover, we investigated whether these screened peptides could decrease the adherence ratio of EPEC to HEp-2 cells with increasing concentration. Successful purification of EspB protein from pET21b-EspB-transformed E. coli was identified by Western blotting. Then, the candidate peptides including phages 6, 7, 8, and 12 were screened by the Ph.D. 12-mer peptide phage display library and ELISA test demonstrated that their affinity binding to EspB protein was high compared with the control. Functional analysis indicated that synthetic peptide-6 (YFPYSHTSPRQP) significantly decreased the adherence ratio of EPEC to HEp-2 cells with increasing concentration (P < 0.01). Peptide-6 (100 µg/mL) could lead to a 40 % decrease in the adherence ratio of EPEC to HEp-2 cells compared with control (P < 0.01). However, the other three peptides at different concentrations showed only a slight ability to block the adherence of EPEC to host cells. Our data provided a potential strategy to inhibit the adhesion of EPEC to epithelial cells by a candidate peptide targeted toward EspB protein.
Collapse
Affiliation(s)
- Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Hang Cheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Jin-Xin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Wei-Guang Pan
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Wei-Zhi Yang
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Qi-Wen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, The Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, No 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| |
Collapse
|
13
|
Guignot J, Tran Van Nhieu G. Bacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap. Front Immunol 2016; 7:84. [PMID: 27014264 PMCID: PMC4783396 DOI: 10.3389/fimmu.2016.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the virulence of many Gram-negative pathogens, enabling the injection of bacterial type III effectors into host cells. The T3SS-dependent injection of effectors requires the insertion into host cell membranes of a pore-forming "translocon," whose effects on cell responses remain ill-defined. As opposed to pore-forming toxins that damage host cell plasma membranes and induce cell survival mechanisms, T3SS-dependent pore formation is transient, being regulated by cell membrane repair mechanisms or bacterial effectors. Here, we review host cell responses to pore formation induced by T3SSs associated with the loss of plasma membrane integrity and regulation of innate immunity. We will particularly focus on recent advances in mechanisms controlling pore formation and the activity of the T3SS linked to type III effectors or bacterial proteases. The implications of the regulation of the T3SS translocon activity during the infectious process will be discussed.
Collapse
Affiliation(s)
- Julie Guignot
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, Paris, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, Paris, France
| |
Collapse
|
14
|
SepD/SepL-dependent secretion signals of the type III secretion system translocator proteins in enteropathogenic Escherichia coli. J Bacteriol 2015; 197:1263-75. [PMID: 25645555 DOI: 10.1128/jb.02401-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The type III protein secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE) is essential for the pathogenesis of attaching/effacing bacterial pathogens, including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and Citrobacter rodentium. These pathogens use the T3SS to sequentially secrete three categories of proteins: the T3SS needle and inner rod protein components; the EspA, EspB, and EspD translocators; and many LEE- and non-LEE-encoded effectors. SepD and SepL are essential for translocator secretion, and mutations in either lead to hypersecretion of effectors. However, how SepD and SepL control translocator secretion and secretion hierarchy between translocators and effectors is poorly understood. In this report, we show that the secreted T3SS components, the translocators, and both LEE- and non-LEE-encoded effectors all carry N-terminal type III secretion and translocation signals. These signals all behave like those of the effectors and are sufficient for mediating type III secretion and translocation by wild-type EPEC and hypersecretion by the sepD and sepL mutants. Our results extended previous observations and suggest that the secretion hierarchy of the different substrates is determined by a signal other than the N-terminal secretion signal. We identified a domain located immediately downstream of the N-terminal secretion signal in the translocator EspB that is required for SepD/SepL-dependent secretion. We further demonstrated that this EspB domain confers SepD/SepL- and CesAB-dependent secretion on the secretion signal of effector EspZ. Our results thus suggest that SepD and SepL control and regulate secretion hierarchy between translocators and effectors by recognizing translocator-specific export signals. IMPORTANCE Many bacterial pathogens use a syringe-like protein secretion apparatus, termed the type III protein secretion system (T3SS), to secrete and inject numerous proteins directly into the host cells to cause disease. The secreted proteins perform different functions at various stages during infection and are classified into three substrate categories (T3SS components, translocators, and effectors). They all contain secretion signals at their N termini, but how their secretion hierarchy is determined is poorly understood. Here, we show that the N-terminal secretion signals from different substrate categories all behave the same and do not confer substrate specificity. We further characterize the secretion signals of the translocators and identify a translocator-specific signal, demonstrating that substrate-specific secretion signals are required in regulating T3SS substrate hierarchy.
Collapse
|
15
|
Aguilera L, Ferreira E, Giménez R, Fernández FJ, Taulés M, Aguilar J, Vega MC, Badia J, Baldomà L. Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded type III secretion system in enteropathogenic Escherichia coli. Int J Biochem Cell Biol 2012; 44:955-62. [PMID: 22433988 DOI: 10.1016/j.biocel.2012.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 01/14/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional housekeeping protein secreted by pathogens and involved in adhesion and/or virulence. Previously we reported that enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli secrete GAPDH into the culture medium. This bacterial protein binds human plasminogen and fibrinogen and remains associated with Caco-2 cells upon infection. In these pathogens, GAPDH secretion is not linked to outer membrane vesicles and depends on growth conditions, although the secretion mechanism is still unknown. EPEC is an attaching and effacing pathogen able to secrete and translocate multiple effector proteins into infected cells through a type III secretion system (T3SS). The secretion process is often dependent on a bacterial chaperone. The chaperone CesT displays broad substrate specificity and plays a central role in the recruitment of multiple type III effectors to the T3SS apparatus. Here we provide genetic evidences on GAPDH secretion through T3SS by EPEC grown in DMEM. Secretion of GAPDH is increased in ΔsepD mutants and abolished in mutants defective in the type III ATPase EscN. Complementation with escN gene restores GAPDH secretion. In addition, we prove by means of pull down experiments, overlay immunoblotting and biolayer interferometry a novel interaction between GAPDH and the chaperone CesT. This interaction, which is strong and slow dissociating, may stabilize a population of GAPDH molecules in a secretion competent-state and target them to the type III secretion apparatus. This is the first description of CesT interaction with a housekeeping protein and its export through T3SS.
Collapse
Affiliation(s)
- Laura Aguilera
- Departament de Bioquímica i Biología Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ochoa TJ, Contreras CA. Enteropathogenic escherichia coli infection in children. Curr Opin Infect Dis 2011; 24:478-83. [PMID: 21857511 DOI: 10.1097/qco.0b013e32834a8b8b] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Enteropathogenic Escherichia coli (EPEC) is an important diarrheal pathogen of young children. As the diagnosis of EPEC is now based mainly on molecular criteria, there has been an important change in its prevalence. The purpose of this study is to review the current epidemiology of EPEC infection and the new insights into its physiopathology. RECENT FINDINGS Recent epidemiological studies indicate that atypical EPEC (aEPEC) is more prevalent than typical EPEC (tEPEC) in both developed and developing countries, and that aEPEC is important in both pediatric endemic diarrhea and diarrhea outbreaks. Therefore, it is important to further characterize the pathogenicity of these emerging strains. The virulence mechanisms and physiopathology of the attaching and effacing lesion (A/E) and the type three secretion-system (T3SS) are complex but well studied. A/E strains use their pool of locus of enterocyte effacement (LEE)-encoded and non-LEE-encoded effector proteins to subvert and modulate cellular and barrier properties of the host. However, the exact mechanisms of diarrhea in EPEC infection are not completely understood. SUMMARY Remarkable progress has been made to identify virulence determinants required to mediate the pathogenesis of EPEC. However, fast, easy, and inexpensive diagnostic methods are needed in order to define optimal treatment and prevention for children in endemic areas.
Collapse
Affiliation(s)
- Theresa J Ochoa
- Instituto de Medicina Tropical 'Alexander von Humboldt', Universidad Peruana Cayetano Heredia, Lima, Perú.
| | | |
Collapse
|
17
|
Dasanayake D, Richaud M, Cyr N, Caballero-Franco C, Pitroff S, Finn RM, Ausió J, Luo W, Donnenberg MS, Jardim A. The N-terminal amphipathic region of the Escherichia coli type III secretion system protein EspD is required for membrane insertion and function. Mol Microbiol 2011; 81:734-50. [PMID: 21651628 PMCID: PMC3254054 DOI: 10.1111/j.1365-2958.2011.07727.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. These pathogenic E. coli express a syringe-like protein machine, known as the type III secretion system (T3SS), used for the injection of virulence factors into the cytosol of the host epithelial cell. Breaching the epithelial plasma membrane requires formation of a translocation pore that contains the secreted protein EspD. Here we demonstrate that the N-terminal segment of EspD, encompassing residues 1-171, contains two amphipathic domains spanning residues 24-41 and 66-83, with the latter of these helices being critical for EspD function. Fluorescence and circular dichroism analysis revealed that, in solution, His₆-EspD₁₋₁₇₁ adopts a native disordered structure; however, on binding anionic small unilamellar vesicles composed of phosphatidylserine, His₆-EspD₁₋₁₇₁ undergoes a pH depended conformational change that increases the α-helix content of this protein approximately sevenfold. This change coincides with insertion of the region circumscribing Trp₄₇ into the hydrophobic core of the lipid bilayer. On the HeLa cell plasma membrane, His₆-EspD₁₋₁₇₁ forms a homodimer that is postulated to promote EspD-EspD oligomerization and pore formation. Complementation of ΔespD null mutant bacteria with an espDΔ66-83 gene showed that this protein was secreted but non-functional.
Collapse
Affiliation(s)
- Dayal Dasanayake
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Manon Richaud
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Normand Cyr
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Celia Caballero-Franco
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Sabrina Pitroff
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Ron M. Finn
- Department of Biochemistry, University of Victoria, Petch Bldg., Room 258, Victoria, BC, V8W 3P6, Canada
| | - Juan Ausió
- Department of Biochemistry, University of Victoria, Petch Bldg., Room 258, Victoria, BC, V8W 3P6, Canada
| | - Wensheng Luo
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Michael S. Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
18
|
Vilte DA, Larzábal M, Garbaccio S, Gammella M, Rabinovitz BC, Elizondo AM, Cantet RJ, Delgado F, Meikle V, Cataldi A, Mercado EC. Reduced faecal shedding of Escherichia coli O157:H7 in cattle following systemic vaccination with γ-intimin C280 and EspB proteins. Vaccine 2011; 29:3962-8. [DOI: 10.1016/j.vaccine.2011.03.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|
19
|
Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB. J Bacteriol 2011; 193:2972-80. [PMID: 21498649 DOI: 10.1128/jb.00153-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type 3 secretion systems (T3SSs) are critical for the virulence of numerous deadly Gram-negative pathogens. T3SS translocator proteins are required for effector proteins to traverse the host cell membrane and perturb cell function. Translocator proteins include two hydrophobic proteins, represented in enteropathogenic Escherichia coli (EPEC) by EspB and EspD, which are thought to interact and form a pore in the host membrane. Here we adapted a sequence motif recognized by a host kinase to demonstrate that residues on the carboxyl-terminal side of the EspB transmembrane domain are localized to the host cell cytoplasm. Using functional internal polyhistidine tags, we confirm an interaction between EspD and EspB, and we demonstrate, for the first time, an interaction between EspD and the hydrophilic translocator protein EspA. Using a panel of espB insertion mutations, we describe two regions on either side of a putative transmembrane domain that are required for the binding of EspB to EspD. Finally, we demonstrate that EspB variants incapable of binding EspD fail to adopt the proper host cell membrane topology. These results provide new insights into interactions between translocator proteins critical for virulence.
Collapse
|
20
|
A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J 2010; 29:1363-76. [PMID: 20300064 DOI: 10.1038/emboj.2010.33] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/19/2010] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens often harbour a type III secretion system (TTSS) that injects effector proteins into eukaryotic cells to manipulate host processes and cause diseases. Identification of host targets of bacterial effectors and revealing their mechanism of actions are crucial for understating bacterial virulence. We show that EspH, a type III effector conserved in enteric bacterial pathogens including enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli and Citrobacter rodentium, markedly disrupts actin cytoskeleton structure and induces cell rounding up when ectopically expressed or delivered into HeLa cells by the bacterial TTSS. EspH inactivates host Rho GTPase signalling pathway at the level of RhoGEF. EspH directly binds the DH-PH domain in multiple RhoGEFs, which prevents their binding to Rho and thereby inhibits nucleotide exchange-mediated Rho activation. Consistently, infection of mouse macrophages with EPEC harbouring EspH attenuates phagocytosis of the bacteria as well as FcgammaR-mediated phagocytosis. EspH represents the first example of targeting RhoGEFs by bacterial effectors, and our results also reveal an unprecedented mechanism used by enteric pathogens to counteract the host defence system.
Collapse
|
21
|
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) employs a type III secretion system (T3SS) to export translocator and effector proteins required for mucosal colonization. The T3SS is encoded in a pathogenicity island called the locus of enterocyte effacement (LEE) that is organized in five major operons, LEE1 to LEE5. LEE4 encodes a regulator of secretion (SepL), translocators (EspA, D and B), two chaperones (CesD2 and L0017), a T3SS component (EscF) and an effector protein (EspF). It was originally proposed that the esp transcript is transcribed from a promoter located at the end of sepL but other authors suggested that this transcript is the result of a post-transcriptional processing event. In this study, we established that the espADB mRNA is generated by post-transcriptional processing at the end of the sepL coding sequence. RNase E is the endonuclease involved in the cleavage, but the interaction of this enzyme with other proteins through its C-terminal half is dispensable. A putative transcription termination event in the cesD2 coding region would generate the 3' end of the transcript. Similar to what has been described for other processed transcripts, the cleavage of LEE4 seems a mechanism to differentially regulate SepL and Esp protein production.
Collapse
Affiliation(s)
- Patricia B. Lodato
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, Maryland 21201
| | - James B. Kaper
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, Maryland 21201
| |
Collapse
|
22
|
Increased production of the ether-lipid platelet-activating factor in intestinal epithelial cells infected by Salmonella enteritidis. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:270-6. [DOI: 10.1016/j.bbalip.2008.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/19/2008] [Indexed: 01/09/2023]
|
23
|
Wu X, Vallance BA, Boyer L, Bergstrom KSB, Walker J, Madsen K, O'Kusky JR, Buchan AM, Jacobson K. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am J Physiol Gastrointest Liver Physiol 2008; 294:G295-306. [PMID: 18032474 DOI: 10.1152/ajpgi.00173.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces boulardii has received increasing attention as a probiotic effective in the prevention and treatment of infectious and inflammatory bowel diseases. The aim of this study was to examine the ameliorating effects of S. boulardii on Citrobacter rodentium colitis in vivo and identify potential mechanisms of action. C57BL/6 mice received 2.5 x 10(8) C. rodentium by gavage on day 0, followed by S. boulardii (25 mg; 5 x 10(8) live cells) gavaged twice daily from day 2 to day 9. Animal weights were monitored until death on day 10. Colons were removed and assessed for epithelial barrier function, histology, and myeloperoxidase activity. Bacterial epithelial attachment and type III secreted proteins translocated intimin receptor Tir (the receptor for bacterial intimin) and EspB (a translocation apparatus protein) required for bacterial virulence were assayed. In infected mice, S. boulardii treatment significantly attenuated weight loss, ameliorated crypt hyperplasia (234.7 +/- 7.2 vs. 297.8 +/- 17.6 microm) and histological damage score (0.67 +/- 0.67 vs. 4.75 +/- 0.75), reduced myeloperoxidase activity (2.1 +/- 0.4 vs. 4.7 +/- 0.9 U/mg), and attenuated increased mannitol flux (17.2 +/- 5.0 vs. 31.2 +/- 8.2 nm.cm(-2).h(-1)). The ameliorating effects of S. boulardii were associated with significantly reduced numbers of mucosal adherent C. rodentium, a marked reduction in Tir protein secretion and translocation into mouse colonocytes, and a striking reduction in EspB expression and secretion. We conclude that S. boulardii maintained colonic epithelial barrier integrity and ameliorated inflammatory sequelae associated with C. rodentium infection by attenuating C. rodentium adherence to host epithelial cells through putative actions on the type III secretion system.
Collapse
Affiliation(s)
- X Wu
- Div. of Gastroenterology, BC Children's Hospital, 4480 Oak St., Rm. K4-181, Vancouver, BC, Canada V6H 3V4
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng Q, Luo W, Donnenberg MS. Rapid site-directed domain scanning mutagenesis of enteropathogenic Escherichia coli espD. Biol Proced Online 2007; 9:18-26. [PMID: 18213361 PMCID: PMC2211572 DOI: 10.1251/bpo130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/13/2007] [Accepted: 07/13/2007] [Indexed: 11/30/2022] Open
Abstract
We developed a rapid mutagenesis method based on a modification of the QuikChange(R) system (Stratagene) to systemically replace endogenous gene sequences with a unique similar size sequence tag. The modifications are as follows: 1: the length of the anchoring homologous sequences of both mutagenesis primers were increased to 16 - 22 bp to achieve melting temperatures greater than 80 degrees C. 2: the final concentrations of both primers were increased to 5-10 ng/microl and the final concentration of template to 1-2 ng/mul. 3: the annealing temperature was adjusted when necessary from 52 degrees C to 58 degrees C. We generated 25 sequential mutants in the cloned espD gene (1.2 kb), which encodes an essential component of the type III secretion translocon required for the pathogenesis of enteropathogenic E. coli (EPEC) infection. Each mutation consisted of the replacement of 15 codons (45 bp) with 8 codons representing a 24 bp sequence containing three unique restriction endonuclease sites (KpnI/MfeI/SpeI) starting from the second codon. The insertion of the restriction endonuclease sites provides a convenient method for further insertions of purification and/or epitope tags into permissive domains. This method is rapid, site-directed and allows for the systematic creation of mutants evenly distributed throughout the entire gene of interest.
Collapse
Affiliation(s)
- Qiwen Deng
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|