1
|
Lu J, Ding W, Wei J, Ye H, Luo H, Li Y, Lin Y, Yu Y, Yao J, Wu R. The role of aroA and ppk1 in Aeromonas veronii pathogenicity and the efficacy evaluation of mutant strain AV-ΔaroA/ppk1 as a live attenuated vaccine. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109869. [PMID: 39222829 DOI: 10.1016/j.fsi.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas veronii is an opportunistic pathogen that poses great threat to aquaculture and human health, so there is an urgent need for green and efficient methods to deal with its infection. In this study, single and double gene deletion strains (AV-ΔaroA, AV-Δppk1 and AV-ΔaroA/ppk1) that can be stably inherited were constructed. Pathogenicity test showed that the toxicity of AV-ΔaroA and AV-ΔaroA/ppk1 was significantly lower compared to wild-type A. veronii. Biological characterization analysis revealed that the decrease in pathogenicity might be due to the declined growth, motility, biofilm formation abilities and the expression of virulence-related genes in mutants. Subsequently, we evaluated the efficacy of AV-ΔaroA/ppk1 as a live attenuated vaccine (LAV). Safety assessment experiments showed that AV-ΔaroA/ppk1 injected at a concentration of 3 × 107 CFU/mL was safe for C. carassius. The relative percentage survival of AV-ΔaroA/ppk1 was 67.85 %, significantly higher than that of the inactivated A. veronii, which had an RPS of 54.84 %. This improved protective effect was mainly attributed to the increased levels of A. veronii specific IgM antibody, enhanced alkaline phosphatase, lysozyme and superoxide dismutase activities, as well as higher expression levels of several immune related genes. Together, these findings deepen our understanding of the functional roles of aroA and ppk1 in A. veronii pathogenicity, provide a good candidate of LAV for A. veronii.
Collapse
Affiliation(s)
- Jiahui Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Wan'e Ding
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Jinming Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Yun Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Ying Lin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Jiayun Yao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Ronghua Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Horspool AM, Sen-Kilic E, Malkowski AC, Breslow SL, Mateu-Borras M, Hudson MS, Nunley MA, Elliott S, Ray K, Snyder GA, Miller SJ, Kang J, Blackwood CB, Weaver KL, Witt WT, Huckaby AB, Pyles GM, Clark T, Al Qatarneh S, Lewis GK, Damron FH, Barbier M. Development of an anti- Pseudomonas aeruginosa therapeutic monoclonal antibody WVDC-5244. Front Cell Infect Microbiol 2023; 13:1117844. [PMID: 37124031 PMCID: PMC10140502 DOI: 10.3389/fcimb.2023.1117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti-P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa. The anti-P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro, even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.
Collapse
Affiliation(s)
- Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C. Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Scott L. Breslow
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borras
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S. Hudson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sean Elliott
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Krishanu Ray
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Greg A. Snyder
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Tammy Clark
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - Saif Al Qatarneh
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - George K. Lewis
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
3
|
Maleki M, Salouti M. Immunization effect of lipopolysaccharide antigen in conjugation with PLGA nanoparticles as a nanovaccine against Brucella melitensis infection. Biologicals 2021; 72:10-17. [PMID: 34167853 DOI: 10.1016/j.biologicals.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
Brucella is an infectious disease with difficult treatment faced with drug resistance and recurrence of infection. Despite advances in the development of effective vaccines against brucellosis infections, there is still a need for more effective vaccine against brucellosis. In this study, we developed a nanovaccine for delivery of lipopolysaccharide Brucella melitensis antigen to the immune system using PLGA nanoparticles to prevent Brucella infection, which is associated with the stimulation of both humoral and cellular immune systems. In particular, we determined the rate of produced immunoglobulines and their functional effectiveness on the immune system by carring out opsonophagocytosis and challenge tests. According to the results, it was determined that PLGA improve the delivery of LPS antigen to the immune system to enhance the production of immunoglobulins levels and their efficiency to remove Brucella bacteria.
Collapse
Affiliation(s)
- Masoud Maleki
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
4
|
López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021; 45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance is a major threat to global public health. Vaccination is an effective approach for preventing bacterial infections, however it has not been successfully applied to infections caused by some of the most problematic multidrug resistant pathogens. In this review, the potential for vaccines to contribute to reducing the burden of disease of infections caused by multidrug resistant Gram negative bacteria is presented. Technical, logistical and societal hurdles that have limited successful vaccine development for these infections in the past are identified, and recent advances that can contribute to overcoming these challenges are assessed. A synthesis of vaccine technologies that have been employed in the development of vaccines for key multidrug resistant Gram negative bacteria is included, and emerging technologies that may contribute to future successes are discussed. Finally, a comprehensive review of vaccine development efforts over the last 40 years for three of the most worrisome multidrug resistant Gram negative pathogens, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa is presented, with a focus on recent and ongoing studies. Finally, future directions for the vaccine development field are highlighted.
Collapse
Affiliation(s)
- Mireia López-Siles
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Corral-Lugo
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
5
|
Ito S, Nakamura J, Fukuta M, Ura T, Teshigawara T, Fukushima J, Mizuki N, Okuda K, Shimada M. Prophylactic and therapeutic vaccine against Pseudomonas aeruginosa keratitis using bacterial membrane vesicles. Vaccine 2021; 39:3152-3160. [PMID: 33934918 DOI: 10.1016/j.vaccine.2021.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Pseudomonas aeruginosa (P. aeruginosa) infection is one of the major causes of keratitis. However, effective prophylactic and therapeutic vaccines against P. aeruginosa keratitis have yet to be developed. In this study, we explored the use of P. aeruginosa membrane vesicles (MVs) as a prophylactic vaccine as well as the use of immune sera derived from P. aeruginosa MV-immunized animals as a treatment for P. aeruginosa corneal infections in C57BL/6 mice. METHODS C57BL/6 mice were intramuscularly immunized with P. aeruginosa MVs; the mouse corneas were then scarified and topically infected with several P. aeruginosa strains, followed by determination of corneal clinical score and corneal bacterial load. Next, immune sera derived from P. aeruginosa MV-immunized ICR mice were administered intraperitoneally to naïve C57BL/6 mice, followed by topical P. aeruginosa challenge. Finally, the immune sera were also used as a topical treatment in the mice with established P. aeruginosa corneal infections. RESULTS P. aeruginosa-specific IgG and IgA antibodies induced by intramuscular immunization were detected not only in the sera but also in the eye-wash solution. Both active and passive immunization significantly inhibited P. aeruginosa corneal infection. Finally, topical treatment with immune sera in the mice with established P. aeruginosa corneal infections notably decreased the corneal clinical score and corneal bacterial load. CONCLUSIONS P. aeruginosa keratitis can be attenuated by vaccination of P. aeruginosa MVs and topical application of P. aeruginosa MV-specific immune sera.
Collapse
Affiliation(s)
- Saori Ito
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jutaro Nakamura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Michiko Fukuta
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takehiro Ura
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takeshi Teshigawara
- Department of Ophthalmology, Yokosuka Chuoh Eye Clinic, Yokosuka 238-0008, Japan
| | - Jun Fukushima
- Department of Microbiology, Akita Prefectural University, Akita 010-0195, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
6
|
Grosjean M, Guénard S, Giraud C, Muller C, Plésiat P, Juarez P. Targeted Genome Reduction of Pseudomonas aeruginosa Strain PAO1 Led to the Development of Hypovirulent and Hypersusceptible rDNA Hosts. Front Bioeng Biotechnol 2021; 9:640450. [PMID: 33777913 PMCID: PMC7991573 DOI: 10.3389/fbioe.2021.640450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a human opportunistic pathogen responsible for nosocomial infections, which is largely used as a model organism to study antibiotic resistance and pathogenesis. As other species of the genus, its wide metabolic versatility appears to be attractive to study biotechnological applications. However, its natural resistance to antibiotics and its capacity to produce a wide range of virulence factors argue against its biotechnological potential. By reducing the genome of the reference strain PAO1, we explored the development of four hypovirulent and hypersusceptible recombinant DNA hosts (rDNA hosts). Despite deleting up to 0.8% of the core genome, any of the developed strains presented alterations of fitness when cultured under standard laboratory conditions. Other features such as antibiotic susceptibility, cytotoxicity, in vivo pathogenesis, and expression of heterologous peptides were also explored to highlight the potential applications of these models. This work stands as the first stage of the development of a safe-platform strain of Pseudomonas aeruginosa that will be further optimized for biotechnological applications.
Collapse
Affiliation(s)
- Mélanie Grosjean
- Département Recherche et Développement, Smaltis SAS, Besançon, France.,Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Sophie Guénard
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | | | - Cédric Muller
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire de Besançon, Besançon, France
| | - Paulo Juarez
- Département Recherche et Développement, Smaltis SAS, Besançon, France
| |
Collapse
|
7
|
Ma C, Chen W. Where are we and how far is there to go in the development of an Acinetobacter vaccine? Expert Rev Vaccines 2021; 20:281-295. [PMID: 33554671 DOI: 10.1080/14760584.2021.1887735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Healthcare-associated infections caused by multidrug-resistant Acinetobacter baumannii are becoming alarming worldwide. However, the pipeline of new antibiotics is very limited. Vaccination is one of the most cost effective and promising strategies to prevent infections and can play an important role in combat multidrug resistance A. baumannii and prevent the development of new drug resistance. AREA COVERED This review gives an overview of the research and development of A. baumannii vaccines during the past five years (2015-2020), discusses the key progresses and current challenges of the field, and speculates on the future of A. baumannii vaccine development. EXPERT OPINION Moderate progresses have been made in the research and development of A. baumannii vaccine in the last five years, in particular in the areas of identification of new protein targets, development of multicomponent vaccines, and use of vaccines and antibodies as adjuncts for antibiotics therapies. However, substantial scientific and logistic challenges, such as selection of lead vaccine candidates and formulation, vaccine clinical trials and targeted population, and financial incentives, remain. Thus, innovative strategies will be needed before an A. baumannii vaccine candidate can be brought into late stage of preclinical development in next five years.
Collapse
Affiliation(s)
- Crystal Ma
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Ontario Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Ontario Canada.,Department of Biology, Brock University, St. Catharines, Ontario Canada
| |
Collapse
|
8
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
9
|
Maleki M, Salouti M, Shafiee Ardestani M, Talebzadeh A. Preparation of a nanovaccine against Brucella melitensis M16 based on PLGA nanoparticles and oligopolysaccharide antigen. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4248-4256. [DOI: 10.1080/21691401.2019.1687490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Masoud Maleki
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Biology Research Center, Islamic Azad University, Zanjan, Iran
| | - Mehdi Shafiee Ardestani
- Faculty of Pharmacy, Department of Radiopharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Talebzadeh
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
10
|
Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, Yuan X, Wu M. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:909-924. [PMID: 30936684 PMCID: PMC6431001 DOI: 10.2147/dddt.s189847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccines for Pseudomonas aeruginosa have been of longstanding interest to immunologists, bacteriologists, and clinicians, due to the widespread prevalence of hospital-acquired infection. As P. aeruginosa becomes increasingly antibiotic resistant, there is a dire need for novel treatments and preventive vaccines. Despite intense efforts, there currently remains no vaccine on the market to combat this dangerous pathogen. This article summarizes current and past vaccines under development that target various constituents of P. aeruginosa. Targeting lipopolysaccharides and O-antigens have shown some promise in preventing infection. Recombinant flagella and pili that target TLR5 have been utilized to combat P. aeruginosa by blocking its motility and adhesion. The type 3 secretion system components, such as needle-like structure PcrV or exotoxin PopB, are also potential vaccine targets. Outer membrane proteins including OprF and OprI are newer representatives of vaccine candidates. Live attenuated vaccines are a focal point in this review, and are also considered for novel vaccines. In addition, phage therapy is revived as an effective option for treating refractory infections after failure with antibiotic treatment. Many of the aforementioned vaccines act on a single target, thus lacking a broad range of protection. Recent studies have shown that mixtures of vaccines and combination approaches may significantly augment immunogenicity, thereby increasing their preventive and therapeutic potential.
Collapse
Affiliation(s)
- Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Andrew Weaver
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Ting Huang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA, .,Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jacob Schettler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| | - Feng Chen
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Xiefang Yuan
- Pulmonary and Allergy Institute, Affiliated Hospital of Southwestern Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA,
| |
Collapse
|
11
|
|
12
|
Shu MH, MatRahim N, NorAmdan N, Pang SP, Hashim SH, Phoon WH, AbuBakar S. An Inactivated Antibiotic-Exposed Whole-Cell Vaccine Enhances Bactericidal Activities Against Multidrug-Resistant Acinetobacter baumannii. Sci Rep 2016; 6:22332. [PMID: 26923424 PMCID: PMC4770312 DOI: 10.1038/srep22332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections.
Collapse
Affiliation(s)
- Meng-Hooi Shu
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - NorAziyah MatRahim
- Virology Unit, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - NurAsyura NorAmdan
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sui-Ping Pang
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sharina H Hashim
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai-Hong Phoon
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Functions of Peptidoglycan Recognition Proteins (Pglyrps) at the Ocular Surface: Bacterial Keratitis in Gene-Targeted Mice Deficient in Pglyrp-2, -3 and -4. PLoS One 2015; 10:e0137129. [PMID: 26332373 PMCID: PMC4558058 DOI: 10.1371/journal.pone.0137129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Functions of antimicrobial peptidoglycan recognition proteins (Pglyrp1-4) at the ocular surface are poorly understood. Earlier, we reported an antibacterial role for Pglyrp-1 in Pseudomonas aeruginosa keratitis. Here we investigated functions of three other related genes Pglyrp-2, -3 and -4 in a mouse model of P. aeruginosa keratitis. METHODS Wild type (WT) and each of the Pglyrp-null genotypes were challenged with P. aeruginosa keratitis. The eyes were scored in a blinded manner 24 and 48h post infection. Viable bacterial counts and inflammatory factors (IL-12, TNF-α, IFN-γ, CCL2, IL-6 and IL-10) were measured in whole eye homogenates using cytometric bead arrays. Expressions of Pglyrp-1-4, mouse beta defensins (mBD)-2,-3, cathelicidin-related antimicrobial peptide (CRAMP) were determined by qRTPCR in total RNA extracts of uninfected and infected eyes of WT and each of the Pglyrp-null mouse types. RESULTS The Pglyrp-2-/- mice showed reduced disease and lower induction of pro-inflammatory TNF-α (p = 0.02) than WT or the other Pglyrp null mice. Viable bacterial yield was significantly lower in the Pglyrp-2-/- (p = 0.0007) and the Pglyrp-4-/- (p = 0.098) mice. With regards to expression of these antimicrobial genes, Pglyrp-2 expression was induced after infection in WT mice. Pglyrp-3 expression was low before and after infection in WT mice, while Pglyrp-4 expression was slightly elevated after infection in WT, Pglyrp-2 and -3 null mice. Pglyrp-1 expression was slightly elevated after infection in all genotypes without statistical significance. Transcripts for antimicrobial peptides mBD2, mBD3 and CRAMP were elevated in infected Pglyrp-2-/- males without statistical significance. CONCLUSIONS Efficient resolution of keratitis in the Pglyrp-2-/- mice may be due to a reduced pro-inflammatory microenvironment and synergistic antibacterial activities of defensins, CRAMP and Pglyrp-1. Therefore, in ocular infections the pro-inflammatory functions of Pglyrp-2 must be regulated to benefit the host.
Collapse
|
14
|
Azkargorta M, Soria J, Ojeda C, Guzmán F, Acera A, Iloro I, Suárez T, Elortza F. Human Basal Tear Peptidome Characterization by CID, HCD, and ETD Followed by in Silico and in Vitro Analyses for Antimicrobial Peptide Identification. J Proteome Res 2015; 14:2649-58. [DOI: 10.1021/acs.jproteome.5b00179] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mikel Azkargorta
- Proteomics Platform,
CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Javier Soria
- Bioftalmik Applied Research, Bizkaia
Science and Technology Park, 48160 Derio, Spain
| | - Claudia Ojeda
- Instituto
de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Fanny Guzmán
- Núcleo
Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia
Science and Technology Park, 48160 Derio, Spain
| | - Ibon Iloro
- Proteomics Platform,
CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia
Science and Technology Park, 48160 Derio, Spain
| | - Felix Elortza
- Proteomics Platform,
CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| |
Collapse
|
15
|
McKown RL, Coleman Frazier EV, Zadrozny KK, Deleault AM, Raab RW, Ryan DS, Sia RK, Lee JK, Laurie GW. A cleavage-potentiated fragment of tear lacritin is bactericidal. J Biol Chem 2014; 289:22172-82. [PMID: 24942736 DOI: 10.1074/jbc.m114.570143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1-10 nM dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.
Collapse
Affiliation(s)
- Robert L McKown
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Erin V Coleman Frazier
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Kaneil K Zadrozny
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Andrea M Deleault
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Ronald W Raab
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Denise S Ryan
- the Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia 22060, and
| | - Rose K Sia
- the Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia 22060, and
| | - Jae K Lee
- the Departments of Public Health Sciences, Systems and Information Engineering
| | - Gordon W Laurie
- Cell Biology, Ophthalmology, and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
16
|
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines 2014; 13:507-19. [PMID: 24575895 DOI: 10.1586/14760584.2014.890053] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.
Collapse
|
17
|
Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 2013; 9:e1003582. [PMID: 24039572 PMCID: PMC3764216 DOI: 10.1371/journal.ppat.1003582] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/12/2013] [Indexed: 01/22/2023] Open
Abstract
High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200-1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Vincent Cattoir
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deborah Yoder-Himes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
|
19
|
Topical neutralization of interleukin-17 during experimental Pseudomonas aeruginosa corneal infection promotes bacterial clearance and reduces pathology. Infect Immun 2012; 80:3706-12. [PMID: 22802348 DOI: 10.1128/iai.00249-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proinflammatory cytokine interleukin-17 (IL-17) is involved in neutrophilic tissue infiltration, contributing to both microbial clearance as well as inflammation-associated tissue damage. Its role during bacterial corneal infections is unknown. We hypothesized that IL-17 responses would be detrimental in this setting and tested the impact of IL-17 receptor deficiency or antibody-mediated neutralization of IL-17 in a murine model of Pseudomonas aeruginosa ulcerative keratitis after scratch injury. We found that, compared with infected corneas from wild-type mice, those from IL-17 receptor (IL-17R)-deficient mice had significantly lower corneal pathology scores, neutrophil influx, and intracellular bacterial levels. Infected IL-17R-deficient corneas had low intercellular adhesion molecule 1 (ICAM-1) expression, and ICAM-1-deficient mice were similarly resistant to infection. Topical treatment with polyclonal antibodies to IL-17 resulted in significant reductions in corneal pathology and also lowered bacterial counts after infection with six different laboratory or clinical P. aeruginosa strains, including both invasive and cytotoxic strains. Thus, neutralization of IL-17 during P. aeruginosa corneal infection reduces neutrophil influx and pathology without compromising bacterial clearance and offers a promising new avenue for therapy of these potentially sight-threatening infections.
Collapse
|
20
|
Norcross EW, Sanders ME, Moore QC, Taylor SD, Tullos NA, Caston RR, Dixon SN, Nahm MH, Burton RL, Thompson H, McDaniel LS, Marquart ME. Active Immunization with Pneumolysin versus 23-Valent Polysaccharide Vaccine for Streptococcus pneumoniae Keratitis. Invest Ophthalmol Vis Sci 2011; 52:9232-43. [PMID: 22039231 DOI: 10.1167/iovs.10-6968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to determine whether active immunization against pneumolysin (PLY), or polysaccharide capsule, protects against the corneal damage associated with Streptococcus pneumoniae keratitis. METHODS New Zealand White rabbits were actively immunized with Freund's adjuvant mixed with pneumolysin toxoid (ψPLY), Pneumovax 23 (PPSV23; Merck, Whitehouse Station, NJ), or phosphate-buffered saline (PBS), before corneal infection with 10⁵ colony-forming units (CFU) of S. pneumoniae. Serotype-specific rabbit polyclonal antisera or mock antisera were passively administered to rabbits before either intravenous infection with 10¹¹ CFU S. pneumoniae or corneal infection with 10⁵ CFU of S. pneumoniae. RESULTS After active immunization, clinical scores of corneas of the rabbits immunized with ψPLY and Freund's adjuvant were significantly lower than scores of the rabbits that were mock immunized with PBS and Freund's adjuvant or with PPSV23 and Freund's adjuvant at 48 hours after infection (P ≤ 0.0010), whereas rabbits immunized with PPSV23 and Freund's adjuvant failed to show differences in clinical scores compared with those in mock-immunized rabbits (P = 1.00) at 24 and 48 hours after infection. Antisera from rabbits actively immunized with PPSV23 and Freund's adjuvant were nonopsonizing. Bacterial loads recovered from infected corneas were higher for the ψPLY- and PPSV23-immunized rabbits after infection with WU2, when compared with the mock-immunized rabbits (P ≤ 0.007). Conversely, after infection with K1443, the ψPLY-immunized rabbits had lower bacterial loads than the control rabbits (P = 0.0008). Quantitation of IgG, IgA, and IgM in the sera of ψPLY-immunized rabbits showed high concentrations of PLY-specific IgG. Furthermore, anti-PLY IgG purified from ψPLY-immunized rabbits neutralized the cytolytic effects of PLY on human corneal epithelial cells. Passive administration of serotype-specific antisera capable of opsonizing and killing S. pneumoniae protected against pneumococcal bacteremia (P ≤ 0.05), but not against keratitis (P ≥ 0.476). CONCLUSIONS Active immunization with pneumococcal capsular polysaccharide and Freund's adjuvant fails to produce opsonizing antibodies, and passive administration of serotype specific opsonizing antibodies offers no protection against pneumococcal keratitis in the rabbit, whereas active immunization with the conserved protein virulence factor PLY and Freund's adjuvant is able to reduce corneal inflammation associated with pneumococcal keratitis, but has variable effects on bacterial loads in the cornea.
Collapse
Affiliation(s)
- Erin W Norcross
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sharma A, Krause A, Worgall S. Recent developments for Pseudomonas vaccines. HUMAN VACCINES 2011; 7:999-1011. [PMID: 21941090 DOI: 10.4161/hv.7.10.16369] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with Pseudomonas aeruginosa are a major health problem for immune-compromised patients and individuals with cystic fibrosis. A vaccine against: P. aeruginosa has long been sought after, but is so far not available. Several vaccine candidates have been assessed in experimental animals and humans, which include sub-cellular fractions, capsule components, purified and recombinant proteins. Unique characteristics of the host and the pathogen have complicated the vaccine development. This review summarizes the current state of vaccine development for this ubiquitous pathogen, in particular to provide mucosal immunity against infections of the respiratory tract in susceptible individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | |
Collapse
|
22
|
Animal models of bacterial keratitis. J Biomed Biotechnol 2011; 2011:680642. [PMID: 21274270 PMCID: PMC3022227 DOI: 10.1155/2011/680642] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/29/2010] [Accepted: 12/09/2010] [Indexed: 11/20/2022] Open
Abstract
Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades.
Collapse
|
23
|
McConnell MJ, Pachón J. Active and passive immunization against Acinetobacter baumannii using an inactivated whole cell vaccine. Vaccine 2010; 29:1-5. [DOI: 10.1016/j.vaccine.2010.10.052] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/28/2010] [Accepted: 10/20/2010] [Indexed: 09/30/2022]
|
24
|
de Anaya MAM, Davicino R, Casali Y, Correa S, Micalizzi B. Cross-reaction between proteins of Larrea divaricata Cav. (jarilla) and proteins of Gram-negative bacteria. Immunopharmacol Immunotoxicol 2009; 31:654-60. [PMID: 19874237 DOI: 10.3109/08923970902971101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Larrea divaricata is an abundant plant of northwest of Argentina used to treat different pathologies. We aimed to characterize the immunogenicity of proteins from a partially purified crude aqueous extract (JPCE) of jarilla. We evaluated the cross reaction between JPCE and whole cell-bacterial proteins (W-CBP) of Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, and Klebsiella pneumoniae using a mouse anti-JPCE serum. Protein profiles of JPCE and W-CBP were analyzed. For JPCE, 18 bands were observed in a 20-176 kDa range. Levels of IgG against JPCE and W-CBP were determined. Bacterial proteins showed a strong reaction with the anti-JPCE serum. Plant proteins could be used as immune stimulants.
Collapse
Affiliation(s)
- María Aída Mattar de Anaya
- Microbiology Unit, Department of Biochemistry and Biological Sciences, Faculty of Chemistry and Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | | |
Collapse
|
25
|
Prophylactic and therapeutic efficacy of a fully human immunoglobulin G1 monoclonal antibody to Pseudomonas aeruginosa alginate in murine keratitis infection. Infect Immun 2008; 76:4720-5. [PMID: 18644881 DOI: 10.1128/iai.00496-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of ulcerative keratitis due to Pseudomonas aeruginosa is difficult, time-consuming, and uncomfortable owing to the need for the frequent application of antibiotic drops to the infected corneal surface. We examined here whether a fully human immunoglobulin G1 monoclonal antibody (MAb) specific to the conserved alginate surface polysaccharide of P. aeruginosa could mediate protective immunity against typically nonmucoid strains isolated from human cases of keratitis. MAb F429 effectively opsonized alginate-positive, but not alginate-negative, nonmucoid strains in conjunction with phagocytes and complement. Prophylactic administration of MAb F429 18 h prior to infection with two clinical isolates significantly reduced bacterial levels in the eye and the associated corneal pathology. Along similar lines, systemic intraperitoneal injection, as well as topical application of the MAb onto the infected eye, starting 8 h postinfection in both experimental protocols resulted in significant reductions in bacteria in the eye, as well as minimizing pathological damage to the cornea. These findings indicate that MAb F429 could be useful as an additional therapeutic component for the treatment of P. aeruginosa keratitis.
Collapse
|
26
|
Strategies for the development of vaccines conferring broad-spectrum protection. Int J Med Microbiol 2008; 298:379-95. [DOI: 10.1016/j.ijmm.2008.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/07/2007] [Accepted: 01/14/2008] [Indexed: 11/21/2022] Open
|
27
|
Kintz E, Goldberg JB. Regulation of lipopolysaccharide O antigen expression in Pseudomonas aeruginosa. Future Microbiol 2008; 3:191-203. [DOI: 10.2217/17460913.3.2.191] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is ubiquitously found in the environment. It is an important opportunistic pathogen in immunocompromised patients and causes life-threatening lung infections in individuals with cystic fibrosis. A prominent virulence factor for many Gram-negative bacteria, including P. aeruginosa, is lipopolysaccharide (LPS), which is an immunodominant antigen located in the outer portion of the outer membrane. P. aeruginosa produces two O antigens that are attached to lipid A + core: a B-band O antigen and an A-band O polysaccharide. The B-band O antigen-repeating unit of LPS is responsible for serotype specificity; strains lacking O antigen have been shown to be less virulent in animal models of infection. What is less well understood is how the O antigen chain length is regulated and why P. aeruginosa and some other bacteria show two preferred O antigen lengths. P. aeruginosa encodes two genes encoding O antigen chain length regulators. These genes, wzz1 and wzz2, influence the expression of the long and very long chain lengths, respectively. The long chain length appears more important for resistance to the action of sera and virulence in a mouse model of infection, while the very long chain length appears to be more sensitive to environmental stress conditions. Studies in other bacteria point to regulation at the level of transcription and complex formation as being involved in determining the O antigen chain length and may provide clues to the regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Erica Kintz
- Department of Microbiology, University of Virginia Health System, 1300 Jefferson Park Avenue, 7230 Jordan Hall, Charlottesville, VA 22908-0734, USA
| | - Joanna B Goldberg
- Department of Microbiology, University of Virginia Health System, 1300 Jefferson Park Avenue, 7230 Jordan Hall, Charlottesville, VA 22908-0734, USA
| |
Collapse
|
28
|
Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 2008; 26:1011-24. [PMID: 18242792 DOI: 10.1016/j.vaccine.2007.12.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 11/21/2022]
|
29
|
|
30
|
Green SN, Sanders M, Moore QC, Norcross EW, Monds KS, Caballero AR, McDaniel LS, Robinson SA, Onwubiko C, O'Callaghan RJ, Marquart ME. Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum. Invest Ophthalmol Vis Sci 2008; 49:290-4. [PMID: 18172105 PMCID: PMC2633641 DOI: 10.1167/iovs.07-0492] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether passive immunization with pneumolysin antiserum can reduce corneal damage associated with pneumococcal keratitis. METHODS New Zealand White rabbits were intrastromally injected with Streptococcus pneumoniae and then passively immunized with control serum, antiserum against heat-inactivated pneumolysin (HI-PLY), or antiserum against cytotoxin-negative pneumolysin (psiPLY). Slit lamp examinations (SLEs) were performed at 24, 36, and 48 hours after infection. An additional four corneas from rabbits passively immunized with antiserum against psiPLY were examined up to 14 days after infection. Colony forming units (CFUs) were quantitated from corneas extracted at 20 and 48 hours after infection. Histopathology of rabbit eyes was performed at 48 hours after infection. RESULTS SLE scores at 36 and 48 hours after infection were significantly lower in rabbits passively immunized with HI-PLY antiserum than in control rabbits (P < or = 0.043). SLE scores at 24, 36, and 48 hours after infection were significantly lower in rabbits passively immunized with psiPLY antiserum than in control rabbits (P < or = 0.010). The corneas of passively immunized rabbits that were examined up to 14 days after infection exhibited a sequential decrease in keratitis, with an SLE score average of 2.000 +/- 1.586 at 14 days. CFUs recovered from infected corneas were not significantly different between each experimental group and the respective control group at 20 or 48 hours after infection (P > or = 0.335). Histologic sections showed more corneal edema and polymorphonuclear leukocyte (PMN) infiltration in control rabbits compared with passively immunized rabbits. CONCLUSIONS HI-PLY and psiPLY both elicit antibodies that provide passive protection against S. pneumoniae keratitis.
Collapse
Affiliation(s)
- Sherrina N Green
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sharifi-Yyazdi MK, Esmaily F, Vaezzadeh F, Dargahi H. Evaluation of outer membrane proteins of Pseudomonas aeruginosa as a protective agent in mice model. Pak J Biol Sci 2007; 10:4515-8. [PMID: 19093522 DOI: 10.3923/pjbs.2007.4515.4518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The crude Outer Membrane Protein (OMP) from a strain of P. aeruginosa isolated from burn patient was purified by two different methods. One procedure involved separation of Sodium Dodecyle Sulphate (SDS) and Triton X-100, where as the other involved using lysozyme enzyme. Both methods showed very similar polypeptide pattern and the major peptide band with molecular weight of 37 KD was common in both procedures. The protein estimation of OMP extracted by lysosyme was 3 mg mL(-1) compared to 5.5 mg mL(-1) extracted by Triton-X100 method. The latter was chosen to examine for the immunogenicity study in a mice model. The efficacy of immunization with OMP and challenge with homologous strain in mice showed a very good protection compared to control mice injected with saline. The passive haemoagglutination test (PHA) in mice, injected with OMP showed increased level of antibody after the second injection and stayed constant after repeated injection. The results of this study showed that the crude OMP extracted from P. aeruginosa induced a significant protection in mice against Pseudomonas infections and could be used as a vaccine candidate.
Collapse
|
32
|
Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007; 297:277-95. [PMID: 17466590 PMCID: PMC1994162 DOI: 10.1016/j.ijmm.2007.03.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most important bacterial pathogens encountered by immunocompromised hosts and patients with cystic fibrosis (CF), and the lipopolysaccharide (LPS) elaborated by this organism is a key factor in virulence as well as both innate and acquired host responses to infection. The molecule has a fair degree of heterogeneity in its lipid A and O-antigen structure, and elaborates two different outer-core glycoforms, of which only one is ligated to the O-antigen. A close relatedness between the chemical structures and genes encoding biosynthetic enzymes has been established, with 11 major O-antigen groups identified. The lipid A can be variably penta-, hexa- or hepta-acylated, and these isoforms have differing potencies when activating host innate immunity via binding to Toll-like receptor 4 (TLR4). The O-antigen is a major target for protective immunity as evidenced by numerous animal studies, but attempts, to date, to produce a human vaccine targeting these epitopes have not been successful. Newer strategies employing live attenuated P. aeruginosa, or heterologous attenuated bacteria expressing P. aeruginosa O-antigens are potential means to solve some of the existing problems related to making a P. aeruginosa LPS-specific vaccine. Overall, there is now a large amount of information available about the genes and enzymes needed to produce the P. aeruginosa LPS, detailed chemical structures have been determined for the major O-antigens, and significant biologic and immunologic studies have been conducted to define the role of this molecule in virulence and immunity to P. aeruginosa infection.
Collapse
Affiliation(s)
- Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|