1
|
Bittner-Eddy PD, Fischer LA, Parachuru PV, Costalonga M. MHC-II presentation by oral Langerhans cells impacts intraepithelial Tc17 abundance and Candida albicans oral infection via CD4 T cells. FRONTIERS IN ORAL HEALTH 2024; 5:1408255. [PMID: 38872986 PMCID: PMC11169704 DOI: 10.3389/froh.2024.1408255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
In a murine model (LCΔMHC-II) designed to abolish MHC-II expression in Langerhans cells (LCs), ∼18% of oral LCs retain MHC-II, yet oral mucosal CD4 T cells numbers are unaffected. In LCΔMHC-II mice, we now show that oral intraepithelial conventional CD8αβ T cell numbers expand 30-fold. Antibody-mediated ablation of CD4 T cells in wild-type mice also resulted in CD8αβ T cell expansion in the oral mucosa. Therefore, we hypothesize that MHC class II molecules uniquely expressed on Langerhans cells mediate the suppression of intraepithelial resident-memory CD8 T cell numbers via a CD4 T cell-dependent mechanism. The expanded oral CD8 T cells co-expressed CD69 and CD103 and the majority produced IL-17A [CD8 T cytotoxic (Tc)17 cells] with a minority expressing IFN-γ (Tc1 cells). These oral CD8 T cells showed broad T cell receptor Vβ gene usage indicating responsiveness to diverse oral antigens. Generally supporting Tc17 cells, transforming growth factor-β1 (TGF-β1) increased 4-fold in the oral mucosa. Surprisingly, blocking TGF-β1 signaling with the TGF-R1 kinase inhibitor, LY364947, did not reduce Tc17 or Tc1 numbers. Nonetheless, LY364947 increased γδ T cell numbers and decreased CD49a expression on Tc1 cells. Although IL-17A-expressing γδ T cells were reduced by 30%, LCΔMHC-II mice displayed greater resistance to Candida albicans in early stages of oral infection. These findings suggest that modulating MHC-II expression in oral LC may be an effective strategy against fungal infections at mucosal surfaces counteracted by IL-17A-dependent mechanisms.
Collapse
Affiliation(s)
- Peter D. Bittner-Eddy
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Lori A. Fischer
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Praveen Venkata Parachuru
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| | - Massimo Costalonga
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Cavallone IN, Belda W, de Carvalho CHC, Laurenti MD, Passero LFD. New Immunological Markers in Chromoblastomycosis-The Importance of PD-1 and PD-L1 Molecules in Human Infection. J Fungi (Basel) 2023; 9:1172. [PMID: 38132773 PMCID: PMC10744586 DOI: 10.3390/jof9121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The pathogenesis of chromoblastomycosis (CBM) is associated with Th2 and/or T regulatory immune responses, while resistance is associated with a Th1 response. However, even in the presence of IFN-γ, fungi persist in the lesions, and the reason for this persistence is unknown. To clarify the factors associated with pathogenesis, this study aimed to determine the polarization of the cellular immune response and the densities of cells that express markers of exhaustion in the skin of CBM patients. In the skin of patients with CBM, a moderate inflammatory infiltrate was observed, characterized primarily by the occurrence of histiocytes. Analysis of fungal density allowed us to divide patients into groups that exhibited low and high fungal densities; however, the intensity of the inflammatory response was not related to mycotic loads. Furthermore, patients with CBM exhibited a significant increase in the number of CD4+ and CD8+ cells associated with a high density of IL-10-, IL-17-, and IFN-γ-producing cells, indicating the presence of a chronic and mixed cellular immune response, which was also independent of fungal load. A significant increase in the number of PD-1+ and PD-L1+ cells was observed, which may be associated with the maintenance of the fungus in the skin and the progression of the disease.
Collapse
Affiliation(s)
- Italo N. Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, Brazil
| | - Walter Belda
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Caroline Heleno C. de Carvalho
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Marcia D. Laurenti
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Luiz Felipe D. Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
3
|
Correia AA, Weber MA, Krishnan U. Prevalence, Predictive Factors, and Clinical Manifestations of Fungal Esophagitis in Children. J Pediatr Gastroenterol Nutr 2023; 77:610-617. [PMID: 37608450 DOI: 10.1097/mpg.0000000000003927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Fungal esophagitis (FE) is the most common cause of esophageal infection and its prevalence in immunocompetent adults is rising. However, there is minimal data on FE in children without human immunodeficiency virus. Therefore, the objective of this study was to determine the prevalence, symptoms, endoscopic appearances, and predictive factors of FE in children, regardless of immune status. METHODS A 2010-2020 retrospective case-control study was conducted on 1823 children presenting to Sydney Children's Hospital for elective endoscopy with esophageal biopsy. Histopathology reports were reviewed to identify FE cases and determine prevalence rates. Thirty-two patients with FE were age- and sex-matched (1:2) to 64 controls. Significant symptoms and risk factors of FE were identified via univariate and multivariate logistic regression analysis. RESULTS The prevalence of FE in children was 1.76%. Common symptoms included dysphagia (25%), heartburn (25%), poor oral intake (21.9%), vomiting (18.8%), cough (15.6%), nausea (12.5%), and weight loss (9.4%). No significant differences in symptoms were found between cases and controls. On endoscopy, although white plaques were associated with FE ( P < 0.001), visually normal findings were reported in 28.1% of cases. Topical swallowed corticosteroids were a significant independent risk factor for FE (adjusted odds ratio = 10.740, 95% confidence interval: 1.213-95.101, P = 0.033). CONCLUSIONS The prevalence of FE in this pediatric cohort reflects rates among immunocompetent adults. Given that many of these children presented with a wide range of gastrointestinal symptoms, esophageal biopsy is required to accurately diagnose FE. Pediatricians should consider the risk of FE when prescribing topical swallowed corticosteroids.
Collapse
Affiliation(s)
- Alison A Correia
- From the Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Martin A Weber
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- the Department of Anatomical Pathology, New South Wales Health Pathology East (Randwick Campus), Randwick, New South Wales, Australia
| | - Usha Krishnan
- the Department of Gastroenterology, Sydney Children's Hospital, Sydney, New South Wales, Australia
- the School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Abe M, Kinjo Y, Sadamoto S, Shinozaki M, Nagi M, Shibuya K, Miyazaki Y. α-galactosylceramide-stimulated invariant natural killer T-cells play a protective role in murine vulvovaginal candidiasis by Candida albicans. PLoS One 2021; 16:e0259306. [PMID: 34784362 PMCID: PMC8594805 DOI: 10.1371/journal.pone.0259306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vulvovaginal candidiasis is a common superficial candidiasis; however, a host's immunological mechanism against vaginal Candida infection remains unknown. OBJECTIVES In this study, we aimed to elucidate the effect of iNKT cell activation on vulvovaginal candidiasis. METHODS Using a vulvovaginal candidiasis model with estrogenized mice, we evaluated the fungal burden and number of leukocyte infiltrations in the vaginal lavage of wild-type C57BL/6J mice after Candida albicans inoculation. One day before C. albicans inoculation, α-galactosylceramide (the α-GalCer group) or sterile phosphate-buffered saline (the sham group) was intraperitoneally injected into the mice. We also evaluated the level of antimicrobial peptide S100A8 in the vaginal lavage and analyzed the correlation between S100A8 concentration and the number of vaginal leukocyte infiltrations. Moreover, the number of uterine and vaginal immune cells were evaluated using flow cytometry. RESULTS The number of vaginal leukocyte infiltrations was significantly higher in the α-GalCer group than in the sham group 3 days after C. albicans inoculation. In addition, the fungal burden was significantly lower in the α-GalCer group than the sham group at 7 days after inoculation. In the analysis of S100A8 concentration of vaginal lavage, there were no significant differences between these two groups, although S100A8 concentration and the number of vaginal leukocyte infiltrations were positively correlated in the α-GalCer group. Moreover, the number of vaginal iNKT cells, NK cells and CD8+ T-cells was significantly higher in the α-GalCer group 3 days after inoculation. CONCLUSIONS α-GalCer-stimulated iNKT cells likely play a protective role against vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sota Sadamoto
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Shinozaki
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
6
|
Dunne MR, Wagener J, Loeffler J, Doherty DG, Rogers TR. Unconventional T cells - New players in antifungal immunity. Clin Immunol 2021; 227:108734. [PMID: 33895356 DOI: 10.1016/j.clim.2021.108734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Life-threatening invasive fungal diseases (IFD) are increasing in incidence, especially in immunocompromised patients and successful resolution of IFD requires a variety of different immune cells. With the limited repertoire of available antifungal drugs there is a need for more effective therapeutic strategies. This review interrogates the evidence on the human immune response to the main pathogens driving IFD, with a focus on the role of unconventional lymphocytes e.g. natural killer (NK) cells, gamma/delta (γδ) T cells, mucosal associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILC). Recent discoveries and new insights into the roles of these novel lymphocyte groups in antifungal immunity will be discussed, and we will explore how an improved understanding of antifungal action by lymphocytes can inform efforts to improve antifungal treatment options.
Collapse
Affiliation(s)
- Margaret R Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland; Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | - Johannes Wagener
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
7
|
Alexandre AF, Quaresma JAS, Barboza TC, de Brito AC, Xavier MB, de Oliveira CMM, Unger DAA, Kanashiro-Galo L, Sotto MN, Duarte MIS, Pagliari C. The cytotoxic T cells may contribute to the in situ immune response in Jorge Lobo's Disease human lesions. Med Mycol 2017; 55:145-149. [PMID: 27562863 DOI: 10.1093/mmy/myw059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 04/13/2016] [Accepted: 06/10/2016] [Indexed: 11/14/2022] Open
Abstract
Jorge Lobo's Disease (JLD) is a cutaneous chronic granulomatous disease caused by the pathogenic fungus Lacazia loboi. It is characterized by a granulomatous reaction with multinucleated giant cells and high number of fungal cells. In order to contribute to the comprehension of immune mechanisms in JLD human lesions, we studied the cytotoxic immune response, focusing on TCD8+ and NK cells, and granzyme B. Forty skin biopsies of lower limbs were selected and an immunohistochemistry protocol was developed to detect CD8+ T cells, NK cells and Granzyme B. In order to compare the cellular populations, we also performed a protocol to visualize TCD4+ cells. Immunolabeled cells were quantified in nine randomized fields in the dermis. Lesions were characterized by inflammatory infiltrate of macrophages, lymphocytes, epithelioid and multinucleated giant cells with intense number of fungal forms. There was a prevalence of CD8 over CD4 cells, followed by NK cells. Our results suggest that in JLD the cytotoxic immune response could represent another important mechanism to control Lacazia loboi infection. We may suggest that, although CD4+ T cells are essential for host defense in JLD, CD8+ T cells could play a role in the elimination of the fungus.
Collapse
Affiliation(s)
- Ariane Fernandes Alexandre
- Faculdade de Medicina, Universidade de São Paulo, Departamento de Patologia.,Programa de Pós-graduação em Ciências da Saúde/Instituto de Assistência Médica ao Servidor Público Estadual
| | | | - Tânia Cristina Barboza
- Faculdade de Medicina, Universidade de São Paulo, Departamento de Patologia.,Programa de Pós-graduação em Ciências da Saúde/Instituto de Assistência Médica ao Servidor Público Estadual
| | | | | | | | | | | | | | | | - Carla Pagliari
- Faculdade de Medicina, Universidade de São Paulo, Departamento de Patologia .,Programa de Pós-graduação em Ciências da Saúde/Instituto de Assistência Médica ao Servidor Público Estadual
| |
Collapse
|
8
|
Barlow ML, Cummings RJ, Pentland AP, Love TMT, Haidaris CG, Ryan JL, Lord EM, Gerber SA. Total-Body Irradiation Exacerbates Dissemination of Cutaneous Candida Albicans Infection. Radiat Res 2016; 186:436-446. [PMID: 27710703 DOI: 10.1667/rr14295.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to radiation, particularly a large or total-body dose, weakens the immune system through loss of bone marrow precursor cells, as well as diminished populations of circulating and tissue-resident immune cells. One such population is the skin-resident immune cells. Changes in the skin environment can be of particular importance as the skin is also host to a number of commensal organisms, including Candida albicans , a species of fungus that causes opportunistic infections in immunocompromised patients. In a previous study, we found that a 6 Gy sublethal dose of radiation in mice caused a reduction of cutaneous dendritic cells, indicating that the skin may have a poorer response to infection after irradiation. In this study, the same 6 Gy sublethal radiation dose led to a weakened response to a C. ablicans cutaneous infection, which resulted in systemic dissemination from the ear skin to the kidneys. However, this impaired response was mitigated through the use of interleukin-12 (IL-12) administered to the skin after irradiation. Concomitantly with this loss of local control of infection, we also observed a reduction of CD4+ and CD8+ T cells in the skin, as well as the reduced expression of IFN-γ, CXCL9 and IL-9, which influence T-cell infiltration and function in infected skin. These changes suggest a mechanism by which an impaired immune environment in the skin after a sublethal dose of radiation increases susceptibility to an opportunistic fungal infection. Thus, in the event of radiation exposure, it is important to include antifungal agents, or possibly IL-12, in the treatment regimen, particularly if wounds are involved that result in loss of the skin's physical barrier function.
Collapse
Affiliation(s)
- Margaret L Barlow
- Department of a Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Ryan J Cummings
- Department of a Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Alice P Pentland
- b Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
| | - Tanzy M T Love
- c Department of Biostatistics, University of Rochester Medical Center, Rochester, New York 14642
| | - Constantine G Haidaris
- Department of a Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Julie L Ryan
- b Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
| | - Edith M Lord
- Department of a Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642
| | - Scott A Gerber
- d Department of Surgery, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
9
|
de Repentigny L, Goupil M, Jolicoeur P. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene. Pathogens 2015; 4:406-21. [PMID: 26110288 PMCID: PMC4493482 DOI: 10.3390/pathogens4020406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023] Open
Abstract
IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110, avenue des Pins Ouest, Montreal, PQ H2W 1R7, Canada.
| |
Collapse
|
10
|
Abstract
Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases.
Collapse
Affiliation(s)
- Akash Verma
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - George Deepe
- Veterans Affairs Hospital, University of Cincinnati College of Medicine, Cincinnati, Ohio 45220 Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Bruce Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792 Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| |
Collapse
|
11
|
Goupil M, Cousineau-Côté V, Aumont F, Sénéchal S, Gaboury L, Hanna Z, Jolicoeur P, de Repentigny L. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene. BMC Immunol 2014; 15:49. [PMID: 25344377 PMCID: PMC4213580 DOI: 10.1186/s12865-014-0049-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. RESULTS Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. CONCLUSIONS These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.
Collapse
Affiliation(s)
- Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Vincent Cousineau-Côté
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Francine Aumont
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Serge Sénéchal
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Louis Gaboury
- Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
- Histology and Molecular Pathology research unit, Institute for Research in Immunology and Cancer, C.P. 6128, succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada.
| | - Zaher Hanna
- Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| | - Paul Jolicoeur
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| | - Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
12
|
Altered immune response differentially enhances susceptibility to Cryptococcus neoformans and Cryptococcus gattii infection in mice expressing the HIV-1 transgene. Infect Immun 2013; 81:1100-13. [PMID: 23340313 DOI: 10.1128/iai.01339-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans var. grubii is the most frequent cause of AIDS-associated cryptococcosis worldwide, while Cryptococcus gattii usually infects immunocompetent people. To understand the mechanisms which cause differential susceptibility to these cryptococcal species in HIV infection, we established and characterized a model of cryptococcosis in CD4C/HIV(MutA) transgenic (Tg) mice expressing gene products of HIV-1 and developing an AIDS-like disease. Tg mice infected intranasally with C. neoformans var. grubii strain H99 or C23 consistently displayed reduced survival compared to non-Tg mice at three graded inocula, while shortened survival of Tg mice infected with C. gattii strain R265 or R272 was restricted to a single high inoculum. HIV-1 transgene expression selectively augmented systemic dissemination to the liver and spleen for strains H99 and C23 but not strains R265 and R272. Histopathologic examination of lungs of Tg mice revealed large numbers of widely scattered H99 cells, with a minimal inflammatory cell response, while in the non-Tg mice H99 was almost completely embedded within extensive mixed inflammatory cell infiltrates. In contrast to H99, R265 was dispersed throughout the lung parenchyma and failed to induce a strong inflammatory response in both Tg and non-Tg mice. HIV-1 transgene expression reduced pulmonary production of CCL2 and CCL5 after infection with H99 or R265, and production of these two chemokines was lower after infection with R265. These results indicate that an altered immune response in these Tg mice markedly enhances C. neoformans but not C. gattii infection. This model therefore provides a powerful new tool to further investigate the immunopathogenesis of cryptococcosis.
Collapse
|
13
|
Abstract
Oropharyngeal candidiasis is a frequent cause of morbidity in patients with defects in cell-mediated immunity or saliva production. Animal models of this infection are important for studying disease pathogenesis and evaluating vaccines and antifungal therapies. Here we describe a simple mouse model of oropharyngeal candidiasis. Mice are rendered susceptible to oral infection by injection with cortisone acetate and then inoculated by placing a swab saturated with Candida albicans sublingually. This process results in a reproducible level of infection, the histopathology of which mimics that of pseudomembranous oropharyngeal candidiasis in humans. By using this model, data are obtained after 5-9 d of work.
Collapse
Affiliation(s)
- Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
14
|
Marakalala MJ, Kerrigan AM, Brown GD. Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome 2011; 22:55-65. [PMID: 20700596 PMCID: PMC3026934 DOI: 10.1007/s00335-010-9277-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022]
Abstract
The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease.
Collapse
Affiliation(s)
- Mohlopheni J. Marakalala
- Institute of Infectious Diseases and Molecular Medicine, Division of Immunology, CLS, University of Cape Town, Cape Town, 7925 South Africa
| | - Ann M. Kerrigan
- Aberdeen Fungal Group, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Gordon D. Brown
- Aberdeen Fungal Group, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
15
|
van de Veerdonk FL, Netea MG, Joosten LA, van der Meer JWM, Kullberg BJ. Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev 2011; 34:1063-75. [PMID: 20528948 DOI: 10.1111/j.1574-6976.2010.00232.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections caused by Candida spp. continue to be a substantial cause of disease burden, especially in immunocompromised patients. New approaches are needed to improve the outcome of patients suffering from Candida infections, because it seems unlikely that the established standard treatment will drastically lower the morbidity of mucocutaneous Candida infections and the high mortality associated with invasive candidiasis. New insights into the mechanisms of the anti-Candida host response have contributed to the design of novel immunotherapeutic approaches that have been proposed as adjuvant therapy in Candida infections. This review presents an overview of novel strategies in the prevention and treatment of Candida infections, with a special focus on adjuvant immunotherapy.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Medicine, Radboud University Nijmegen Medical Center, Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Abstract
It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens.
Collapse
Affiliation(s)
- Frank L. van de Veerdonk
- Department of Medicine (463), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA The Netherlands
| | - Mihai G. Netea
- Department of Medicine (463), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA The Netherlands
| |
Collapse
|
17
|
Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 2010; 234:335-52. [PMID: 20193029 DOI: 10.1111/j.0105-2896.2009.00882.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Section of Infection and Immunity, Institute of Molecular Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
18
|
Macrophage-mediated responses to Candida albicans in mice expressing the human immunodeficiency virus type 1 transgene. Infect Immun 2009; 77:4136-49. [PMID: 19564379 DOI: 10.1128/iai.00453-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The critical impairments of innate and adaptive immunity that cause susceptibility to mucosal candidiasis in human immunodeficiency virus (HIV) infection have not been fully determined. We therefore conducted an analysis of macrophage-mediated responses to Candida albicans in transgenic (Tg) mice expressing Nef, Env, and Rev of HIV type 1 (HIV-1) in CD4(+) T cells, dendritic cells, and macrophages and developing an AIDS-like disease (CD4C/HIV(MutA) Tg mice). Macrophages were successfully recruited to the oral and gastric mucosae of these Tg mice in response to chronic carriage of C. albicans and displayed polarization toward an alternatively activated phenotype. Functionally, peritoneal macrophages from uninfected Tg mice exhibited increased phagocytosis of C. albicans and enhanced production of interleukin 6 and monocyte chemoattractant protein 1, demonstrating that the HIV-1 transgene independently activates selected macrophage functions. Production of H(2)O(2) by macrophages from Tg mice primed with gamma interferon and treated with phorbol 12-myristate 13-acetate or C. albicans was moderately reduced, but expression of the HIV-1 transgene did not alter production of nitric oxide or reduce killing of C. albicans. A knockout of the inducible nitric oxide synthase (NOS2) gene in these Tg mice did not augment oral or gastrointestinal burdens during chronic carriage of C. albicans or cause systemic dissemination, likely due to a redundancy provided by partially preserved production of H(2)O(2) and oxygen-independent candidacidal mechanisms. Thus, the macrophage response to C. albicans is largely preserved in these Tg mice, and no functional macrophage defect appears to primarily determine the susceptibility to mucosal candidiasis.
Collapse
|
19
|
de Repentigny L, Lewandowski D, Aumont F, Hanna Z, Jolicoeur P. Oral mucosal cell response to Candida albicans in transgenic mice expressing HIV-1. Methods Mol Biol 2009; 470:359-368. [PMID: 19089395 DOI: 10.1007/978-1-59745-204-5_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Controlled studies on the immunopathogenesis of mucosal candidiasis in HIV infection have been hampered by the lack of a relevant animal model. We have previously reported that oral Candida infection in CD4C/HIV transgenic mice expressing gene products of HIV-1 in immune cells and developing an AIDS-like disease closely mimics oropharyngeal candidiasis in human HIV infection. The role of defective dendritic cells and CD4+ T cells in impaired induction of protective immunity and in the phenotype of chronic oral carriage of C. albicans can now be investigated under controlled conditions in these transgenic mice.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology and Immunology, Sainte-Justine Hospital and University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
20
|
Abstract
Pertussis is an acute respiratory disease caused by the bacterium Bordetella pertussis, for which humans are the only known reservoir. During infection, B. pertussis releases several toxins, including pertussis toxin (PT) and adenylate cyclase toxin (ACT), which have both been shown to play roles in promoting bacterial growth during early infection in a mouse model. Furthermore, in vitro and in vivo studies suggest that PT and ACT affect neutrophil chemotaxis and/or function, thereby altering the innate immune response. In this study we depleted animals of neutrophils to investigate whether neutrophils play a protective role during B. pertussis infection in mice. In addition, by infection with toxin-deficient strains, we investigated whether neutrophils are the main targets for PT and/or ACT activity in promoting bacterial growth. Surprisingly, we found no role for neutrophils during B. pertussis infection in naïve mice. However, in previously infected (immune) mice or in mice receiving immune serum, we observed a significant role for neutrophils during infection. Furthermore, in this immune mouse model our evidence indicates that neutrophils appear to be the main target cells for ACT, but not for PT.
Collapse
|
21
|
Leibundgut-Landmann S, Osorio F, Brown GD, Reis e Sousa C. Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood 2008; 112:4971-80. [PMID: 18818389 DOI: 10.1182/blood-2008-05-158469] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The C-type lectin receptor dectin-1 functions as a pattern recognition receptor for beta-glucans and signals via Syk kinase but independently of the Toll-like receptor (TLR) pathway to regulate expression of innate response genes. Dectin-1 signaling can promote activation of dendritic cells (DCs), rendering them competent to prime Th1 and Th17 responses. Here we show that dectin-1-activated DCs can also prime cytotoxic T-lymphocyte (CTL) responses. DCs exposed to a dectin-1 agonist induced antigen-specific expansion of TCR transgenic CD8(+) T cells and their differentiation into CTLs in vitro. Dectin-1 agonist also acted as an adjuvant for CTL crosspriming in vivo, eliciting potent CTL responses that protected mice from tumor challenge. In vitro but not in vivo, CTL crosspriming was dependent on IL-12 p70, which was produced by dectin-1-activated DCs in response to IFN-gamma secreted by newly activated CD8(+) T cells. The dectin-1/Syk pathway is thus able to couple innate immune recognition of beta-glucans to all branches of the adaptive immune system, including CD4(+) T-helper cells, B cells, and CD8(+) cytotoxic T cells. These data highlight the ability of non-TLR receptors to bridge innate and adaptive immunity and suggest that dectin-1 agonists may constitute useful adjuvants for immunotherapy and vaccination.
Collapse
Affiliation(s)
- Salomé Leibundgut-Landmann
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | | | | |
Collapse
|
22
|
Villar CC, Dongari-Bagtzoglou A. Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Expert Rev Mol Med 2008; 10:e29. [PMID: 18847522 PMCID: PMC2712880 DOI: 10.1017/s1462399408000835] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The prevalence of oropharyngeal candidiasis continues to be high, mainly because of an increasing population of immunocompromised patients. Traditional treatment of oropharyngeal candidiasis has relied on the use of antimicrobial drugs. However, unsatisfactory results with drug monotherapy and the emergence of resistant strains have prompted investigations into the potential use of adjunctive immunoenhancing therapies for the treatment of these infections. Here we review the host-recognition systems of Candida albicans, the immune and inflammatory response to infection, and antifungal effector mechanisms. The potential of immune modulation as a therapeutic strategy in oropharyngeal candidiasis is also discussed.
Collapse
MESH Headings
- Animals
- Antifungal Agents/therapeutic use
- Candidiasis, Oral/drug therapy
- Candidiasis, Oral/immunology
- Cytokines/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular
- Immunity, Innate
- Immunity, Mucosal
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/metabolism
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Models, Biological
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Oropharynx
- Pharyngeal Diseases/immunology
- Pharyngeal Diseases/microbiology
- Pharyngeal Diseases/therapy
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- T-Lymphocytes, Regulatory/immunology
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Department of Periodontics, University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
23
|
Vachot L, Williams VG, Bess JW, Lifson JD, Robbiani M. Candida albicans-induced DC activation partially restricts HIV amplification in DCs and increases DC to T-cell spread of HIV. J Acquir Immune Defic Syndr 2008; 48:398-407. [PMID: 18614931 DOI: 10.1097/qai.0b013e3181776bc7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) are central to the innate and adaptive responses needed to control pathogens, yet HIV exploits DCs to promote infection. The influence of other pathogens on DC-HIV interplay has not been extensively studied. We used Candida albicans (Candida) as a model pathogen which elicits innate DC responses that are likely important in controlling Candida by healthy immune systems. HIV did not impede Candida-specific DC activation. Candida-induced CD80 and CD83 upregulation was greater in DCs that had captured HIV, coinciding with increased amplification in presence of T cells and reduced but persistent low-level DC infection. In contrast, HIV-infected DCs matured normally in response to Candida, but this did not shut down HIV replication in DCs, and again Candida augmented HIV amplification in DC-T-cell mixtures. HIV-infected DCs secreted more IL-10 and IL-1beta earlier than uninfected DCs and initially induced a higher frequency of CD4CD25FoxP3 T-regulatory cells in response to Candida. Elevated early IL-10 production in cocultures was evident only when azidothymidine (AZT) was included to limit T-regulatory cell infection and destruction. Therefore, HIV manipulates the DC's innate and adaptive responses to Candida to further augment HIV spread, ultimately destroying the cells needed to limit candidiasis.
Collapse
Affiliation(s)
- Laurence Vachot
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
24
|
Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 2008; 4:e35. [PMID: 18282097 PMCID: PMC2242836 DOI: 10.1371/journal.ppat.0040035] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 01/07/2008] [Indexed: 01/17/2023] Open
Abstract
Candida albicans fungemia in cancer patients is thought to develop from initial gastrointestinal (GI) colonization with subsequent translocation into the bloodstream after administration of chemotherapy. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but we have hypothesized that both neutropenia and GI mucosal damage are critical for allowing widespread invasive C. albicans disease. We investigated these parameters in a mouse model of C. albicans GI colonization that led to systemic spread after administration of immunosuppression and mucosal damage. After depleting resident GI intestinal flora with antibiotic treatment and achieving stable GI colonization levels of C. albicans, it was determined that systemic chemotherapy with cyclophosphamide led to 100% mortality, whereas selective neutrophil depletion, macrophage depletion, lymphopenia or GI mucosal disruption alone resulted in no mortality. Selective neutrophil depletion combined with GI mucosal disruption led to disseminated fungal infection and 100% mortality ensued. GI translocation and dissemination by C. albicans was also dependent on the organism's ability to transform from the yeast to the hyphal form. This mouse model of GI colonization and fungemia is useful for studying factors of innate host immunity needed to prevent invasive C. albicans disease as well as identifying virulence factors that are necessary for fungal GI colonization and dissemination. The model may also prove valuable for evaluating therapies to control C. albicans infections.
Collapse
Affiliation(s)
- Andrew Y Koh
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
25
|
Backer R, van Leeuwen F, Kraal G, den Haan J. CD8– dendritic cells preferentially cross-presentSaccharomyces cerevisiae antigens. Eur J Immunol 2008; 38:370-80. [DOI: 10.1002/eji.200737647] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|