1
|
Yao S, Chen Y, Zhang X, Dong Z. Enhanced corrosion resistance and biofilm inhibition of TC4 with slight Cu addition against marine Pseudomonas aeruginosa. Bioelectrochemistry 2025; 162:108852. [PMID: 39566251 DOI: 10.1016/j.bioelechem.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Ti-6Al-4V (TC4) alloy is widely utilized as the structural material in marine industries owing to its low density, high specific strength, and favorable corrosion resistance. However, as biofouling drastically alters, some reported the major deleterious effect of bacteria has imposed a challenge to improve microbiologically influenced corrosion (MIC) resistance. A further opportunity for solving this problem is Cu micro-alloying, which was inspired by adding Cu for biomedical applications. Herein, a Ti-6Al-4V alloy with slight Cu addition (TC4-Cu) was exposed to 2216E media inoculated with Pseudomonas aeruginosa (P. A.), and then investigated compared to TC4. TC4-Cu exhibits lower corrosion current, more denser passive film, and lower weight loss with weaker pitting (a maximum pitting depth of 0.2 μm), compared to TC4 with a maximum pitting crater depth of 9.6 μm. Those demonstrated that the presence of Cu significantly improved the MIC resistance, and inhibited the proliferation of P. A., leading to a good antimicrobial efficacy against marine P. A. Moreover, besides the well-known bactericidal role, Cu ions were transferred to form Cu2O and CuO, constituting protective corrosion products, and thus improving the anti-microbial properties of TC4-Cu.
Collapse
Affiliation(s)
- Shengchao Yao
- School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin, China
| | - Yulin Chen
- School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin, China.
| | - Xin Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin, China.
| | - Zhizhong Dong
- School of Materials Science and Engineering, Tianjin University of Technology, 300384 Tianjin, China
| |
Collapse
|
2
|
Franco A, Chukwubuikem A, Meiners C, Rosenbaum MA. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa. Bioelectrochemistry 2024; 157:108636. [PMID: 38181591 DOI: 10.1016/j.bioelechem.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
Pseudomonas aeruginosa phenazines contribute to survival under microaerobic and anaerobic conditions by extracellular electron discharge to regulate cellular redox balances. This electron discharge is also attractive to be used for bioelectrochemical applications. However, elements of the respiratory pathways that interact with phenazines are not well understood. Five terminal oxidases are involved in the aerobic electron transport chain (ETC) of Pseudomonas putida and P. aeruginosa. The latter bacterium also includes four reductases that allow for denitrification. Here, we explored if phenazine-1-carboxylic acid interacts with those elements to enhance anodic electron discharge and drive bacterial growth in oxygen-limited conditions. Bioelectrochemical evaluations of terminal oxidase-deficient mutants of both Pseudomonas strains and P. aeruginosa with stimulated denitrification pathways indicated no direct beneficial interaction of phenazines with ETC elements for extracellular electron discharge. However, the single usage of the Cbb3-2 oxidase increased phenazine production, electron discharge, and cell growth. Assays with purified periplasmic cytochromes NirM and NirS indicated that pyocyanin acts as their electron donor. We conclude that phenazines play an important role in electron transfer to, between, and from terminal oxidases under oxygen-limiting conditions and their modulation might enhance EET. However, the phenazine-anode interaction cannot replace oxygen respiration to deliver energy for biomass formation.
Collapse
Affiliation(s)
- Angel Franco
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Anthony Chukwubuikem
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany
| | - Carina Meiners
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), Fürstengraben 1, 07743 Jena, Germany.
| |
Collapse
|
3
|
Tanvir RU, Li Y, Hu Z. Competitive partitioning of denitrification pathways during arrested methanogenesis: Implications in ammonium recovery, N 2O emission, and volatile fatty acid production. BIORESOURCE TECHNOLOGY 2024; 401:130717. [PMID: 38642664 DOI: 10.1016/j.biortech.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The complex interaction between nitrate (NO3-) reduction and fermentation is poorly understood when high levels of NO3- are introduced into anaerobic systems. This study investigated the competitive distribution between conventional denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA) during simultaneous denitrification and fermentation in arrested methanogenesis. Up to 62% of initial NO3- (200 mg-N/L) was retained as ammonium through DNRA at a chemical oxygen demand (COD)/N ratio of 25. Significant N2O emission occurred (1.7 - 8.0% of the initial NO3-) with limited carbon supply (≤1600 mg COD/L) and sludge concentration (≤3000 mg COD/L). VFA composition shifted predominantly towards acetic acid (>50%) in the presence of nitrate. A novel kinetic model was developed to predict DNRA vs. DEN partitioning and NO2- accumulation. Overall, NO3- input, organic loading, and carbon source characteristics independently and collectively controlled competitive DNRA vs. DEN partitioning.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yebo Li
- Quasar Energy Group, 8600 E Pleasant Valley Road, Independence, OH 44131, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Li S, Luo Z, Wang S, Nan Q, Ji G. Denitrification fractionates N and O isotopes of nitrate following a ratio independent of carbon sources in freshwaters. Environ Microbiol 2023; 25:2404-2415. [PMID: 37503781 DOI: 10.1111/1462-2920.16468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The stable isotope technique has been used in tracking nitrogen cycling processes, but the isotopic characteristics are influenced by environmental conditions. To better understand the variability of nitrate isotopes in nature, we investigated the influence of organic carbon sources on isotope fractionation characteristics during microbial denitrification. Denitrifying cultures were inoculated with freshwater samples and enriched with five forms of organic compounds, that is, acetate, citrate, glucose, cellobiose, and leucine. Though the isotope enrichment factors of nitrogen and oxygen (15 ε and 18 ε) changed with carbon sources, 18 ε/15 ε always followed a proportionality near 1. Genome-centred metagenomics revealed the enrichment of a few populations, such as Pseudomonas, Enterobacter, and Atlantibacter, most of which contained both NapA- and NarG-type nitrate reductases. Metatranscriptome showed that both NapA and NarG were expressed but to different extents in the enrichments. Furthermore, isotopic data collected from a deep reservoir was analysed. The results showed δ18 O- and δ15 N-nitrate did not correlate in the surface water where nitrification was active, but 18 ε/15 ε followed a proportionality of 1.05 ± 011 in deeper waters (≥ 12 m) where denitrification controlled the nitrate isotope. The independence of 18 ε/15 ε from carbon sources provides an opportunity to determine heterotrophic denitrification and helps the interpretation of nitrate isotopes in freshwaters.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhongxin Luo
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- China Institute of Water Resources and Hydropower Research, Beijing, China
- National Research Center for Sustainable Hydropower Development, Beijing, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Qiong Nan
- Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
5
|
Evans CR, Smiley MK, Asahara Thio S, Wei M, Florek LC, Dayton H, Price-Whelan A, Min W, Dietrich LEP. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation. Proc Natl Acad Sci U S A 2023; 120:e2313208120. [PMID: 37847735 PMCID: PMC10614215 DOI: 10.1073/pnas.2313208120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. In this study, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that under specific conditions, biofilms lacking RpoS and/or Crc show increased sensitivity to phenazines indicating that the increased metabolic activity in these mutants comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Collapse
Affiliation(s)
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Sean Asahara Thio
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
| | | |
Collapse
|
6
|
Thalhammer KO, Newman DK. A phenazine-inspired framework for identifying biological functions of microbial redox-active metabolites. Curr Opin Chem Biol 2023; 75:102320. [PMID: 37201291 PMCID: PMC10524139 DOI: 10.1016/j.cbpa.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
While the list of small molecules known to be secreted by environmental microbes continues to grow, our understanding of their in situ biological functions remains minimal. The time has come to develop a framework to parse the meaning of these "secondary metabolites," which are ecologically ubiquitous and have direct applications in medicine and biotechnology. Here, we focus on a particular subset of molecules, redox active metabolites (RAMs), and review the well-studied phenazines as archetypes of this class. We argue that efforts to characterize the chemical, physical and biological makeup of the microenvironments, wherein these molecules are produced, coupled with measurements of the molecules' basic chemical properties, will enable significant progress in understanding the precise roles of novel RAMs.
Collapse
Affiliation(s)
- Korbinian O Thalhammer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Evans CR, Smiley MK, Thio SA, Wei M, Price-Whelan A, Min W, Dietrich LE. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528762. [PMID: 36824979 PMCID: PMC9949047 DOI: 10.1101/2023.02.15.528762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. Here, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that biofilms lacking Crc show increased sensitivity to an exogenously added methylated phenazine, indicating that the increased metabolic activity in this mutant comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Collapse
Affiliation(s)
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Sean Asahara Thio
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
8
|
Cyclic di-GMP Signaling Links Biofilm Formation and Mn(II) Oxidation in Pseudomonas resinovorans. mBio 2022; 13:e0273422. [PMID: 36374078 PMCID: PMC9765421 DOI: 10.1128/mbio.02734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioaugmentation of biological sand filters with Mn(II)-oxidizing bacteria (MOB) is used to increase the efficiency of Mn removal from groundwater. While the biofilm-forming ability of MOB is important to achieve optimal Mn filtration, the regulatory link between biofilm formation and Mn(II) oxidation remains unclear. Here, an environmental isolate of Pseudomonas resinovorans strain MOB-513 was used as a model to investigate the role of c-di-GMP, a second messenger crucially involved in the regulation of biofilm formation by Pseudomonas, in the oxidation of Mn(II). A novel role for c-di-GMP in the upregulation of Mn(II) oxidation through induction of the expression of manganese-oxidizing peroxidase enzymes was revealed. MOB-513 macrocolony biofilms showed a strikingly stratified pattern of biogenic Mn oxide (BMnOx) accumulation in a localized top layer. Remarkably, elevated cellular levels of c-di-GMP correlated not only with increased accumulation of BMnOx in the same top layer but also with the appearance of a second BMnOx stratum in the bottom region of macrocolony biofilms, and the expression of mop genes correlated with this pattern. Proteomic analysis under Mn(II) conditions revealed changes in the abundance of a PilZ domain protein. Subsequent analyses supported a model in which this protein sensed c-di-GMP and affected a regulatory cascade that ultimately inhibited mop gene expression, providing a molecular link between c-di-GMP signaling and Mn(II) oxidation. Finally, we observed that high c-di-GMP levels were correlated with higher lyophilization efficiencies and higher groundwater Mn(II) oxidation capacities of freeze-dried bacterial cells, named lyophiles, showing the biotechnological relevance of understanding the role of c-di-GMP in MOB-513. IMPORTANCE The presence of Mn(II) in groundwater, a common source of drinking water, is a cause of water quality impairment, interfering with its disinfection, causing operation problems, and affecting human health. Purification of groundwater containing Mn(II) plays an important role in environmental and social safety. The typical method for Mn(II) removal is based on bacterial oxidation of metals to form insoluble oxides that can be filtered out of the water. Evidence of reducing the start-up periods and enhancing Mn removal efficiencies through bioaugmentation with appropriate biofilm-forming and MOB has emerged. As preliminary data suggest a link between these two phenotypes in Pseudomonas strains, the need to investigate the underlying regulatory mechanisms is apparent. The significance of our research lies in determining the role of c-di-GMP for increased biofilm formation and Mn(II)-oxidizing capabilities in MOB, which will allow the generation of super-biofilm-elaborating and Mn-oxidizing strains, enabling their implementation in biotechnological applications.
Collapse
|
9
|
Chugh B, Sheetal, Singh M, Thakur S, Pani B, Singh AK, Saji VS. Extracellular Electron Transfer by Pseudomonas aeruginosa in Biocorrosion: A Review. ACS Biomater Sci Eng 2022; 8:1049-1059. [PMID: 35199512 DOI: 10.1021/acsbiomaterials.1c01645] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microorganisms with extracellular electron transfer (EET) capability have gained significant attention for their different biotechnological applications, like biosensors, bioremediation, and microbial fuel cells. Current research affirmed that microbial EET potentially promotes corrosion of iron structures, termed microbiologically influenced corrosion (MIC). The sulfate-reducing (SRB) and nitrate-reducing (NRB) bacteria are the most investigated among the different MIC-promoting bacteria. Unlike extensively studied SRB corrosion, NRB corrosion has received less attention from researchers. Hence, this review focuses on EET by Pseudomonas aeruginosa, a pervasive bacterium competent for developing biofilms in marine habitats and oil pipelines. A comprehensive discussion on the fundamentals of EET mechanisms in MIC is provided first. After that, the review offers state-of-the-art insights into the latest research on the EET-assisted MIC by Pseudomonas aeruginosa. The role of electron transfer mediators has also been discussed to understand the mechanisms involved in a better way. This review will be beneficial to open up new opportunities for developing strategies for combating biocorrosion.
Collapse
Affiliation(s)
- Bhawna Chugh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Sheetal
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Manjeet Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram-796004, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Sector -2, Dwarka, New Delhi-110075, India
| | - Ashish Kumar Singh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India.,Department of Applied Sciences, Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi-110063, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
10
|
Jo J, Price-Whelan A, Dietrich LEP. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol 2022; 20:593-607. [PMID: 35149841 DOI: 10.1038/s41579-022-00692-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism. In this Review, we discuss examples of gradient formation and physiological differentiation in microbial assemblages growing in diverse settings. We highlight consequences of physiological heterogeneity in microbial assemblages, including division of labour and increased resistance to stress. Our impressions of microbial behaviour in various ecosystems are not complete without complementary maps of the chemical and physical geographies that influence cellular activities. A holistic view, incorporating these geographies and the genetically encoded functions that operate within them, will be essential for understanding microbial assemblages in their many roles and potential applications.
Collapse
Affiliation(s)
- Jeanyoung Jo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Asamoto CK, Rempfert KR, Luu VH, Younkin AD, Kopf SH. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5537-5546. [PMID: 33687201 DOI: 10.1021/acs.est.0c07816] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.
Collapse
Affiliation(s)
- Ciara K Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Victoria H Luu
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Adam D Younkin
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Mobilization of Iron Stored in Bacterioferritin Is Required for Metabolic Homeostasis in Pseudomonas aeruginosa. Pathogens 2020; 9:pathogens9120980. [PMID: 33255203 PMCID: PMC7760384 DOI: 10.3390/pathogens9120980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Iron homeostasis offers a significant bacterial vulnerability because pathogens obtain essential iron from their mammalian hosts, but host-defenses maintain vanishingly low levels of free iron. Although pathogens have evolved mechanisms to procure host-iron, these depend on well-regulated iron homeostasis. To disrupt iron homeostasis, our work has targeted iron mobilization from the iron storage protein bacterioferritin (BfrB) by blocking a required interaction with its cognate ferredoxin partner (Bfd). The blockade of the BfrB–Bfd complex by deletion of the bfd gene (Δbfd) causes iron to irreversibly accumulate in BfrB. In this study we used mass spectrometry and NMR spectroscopy to compare the proteomic response and the levels of key intracellular metabolites between wild type (wt) and isogenic ΔbfdP. aeruginosa strains. We find that the irreversible accumulation of unusable iron in BfrB leads to acute intracellular iron limitation, even if the culture media is iron-sufficient. Importantly, the iron limitation and concomitant iron metabolism dysregulation trigger a cascade of events that lead to broader metabolic homeostasis disruption, which includes sulfur limitation, phenazine-mediated oxidative stress, suboptimal amino acid synthesis and altered carbon metabolism.
Collapse
|
13
|
Szeinbaum N, Nunn BL, Cavazos AR, Crowe SA, Stewart FJ, DiChristina TJ, Reinhard CT, Glass JB. Novel insights into the taxonomic diversity and molecular mechanisms of bacterial Mn(III) reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:583-593. [PMID: 32613749 PMCID: PMC7775658 DOI: 10.1111/1758-2229.12867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Soluble ligand-bound Mn(III) can support anaerobic microbial respiration in diverse aquatic environments. Thus far, Mn(III) reduction has only been associated with certain Gammaproteobacteria. Here, we characterized microbial communities enriched from Mn-replete sediments of Lake Matano, Indonesia. Our results provide the first evidence for the biological reduction of soluble Mn(III) outside the Gammaproteobacteria. Metagenome assembly and binning revealed a novel betaproteobacterium, which we designate 'Candidatus Dechloromonas occultata.' This organism dominated the enrichment and expressed a porin-cytochrome c complex typically associated with iron-oxidizing Betaproteobacteria and a novel cytochrome c-rich protein cluster (Occ), including an undecaheme putatively involved in extracellular electron transfer. This occ gene cluster was also detected in diverse aquatic bacteria, including uncultivated Betaproteobacteria from the deep subsurface. These observations provide new insight into the taxonomic and functional diversity of microbially driven Mn(III) reduction in natural environments.
Collapse
Affiliation(s)
- Nadia Szeinbaum
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Amanda R. Cavazos
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean A. Crowe
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Frank J. Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Mountain View, CA, USA
| |
Collapse
|
14
|
Bacteria Modify Candida albicans Hypha Formation, Microcolony Properties, and Survival within Macrophages. mSphere 2020; 5:5/4/e00689-20. [PMID: 32759336 PMCID: PMC7407070 DOI: 10.1128/msphere.00689-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections. Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Streptococcus gordonii and Pseudomonas aeruginosa often colonize mucosal sites, along with C. albicans, and yet interkingdom interactions that might alter the survival and escape of fungi from macrophages are not understood. Murine macrophages were coinfected with S. gordonii or P. aeruginosa, along with C. albicans to evaluate changes in fungal survival. S. gordonii increased C. albicans survival and filamentation within macrophage phagosomes, while P. aeruginosa reduced fungal survival and filamentation. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Microcolonies formed in the presence of P. aeruginosa cells outside macrophages also had significantly reduced size that was not found with P. aeruginosa phenazine deletion mutants. S. gordonii cells, as well as S. gordonii heat-fixed culture supernatants, increased C. albicans microcolony biomass but also resulted in microcolony detachment. A heat-resistant, trypsin-sensitive pheromone processed by S. gordonii Eep was needed for these effects. The majority of fungal microcolonies formed on human epithelial monolayers with S. gordonii supernatants developed as large floating structures with no detectable invasion of epithelium, along with reduced gene expression of C. albicansHYR1, EAP1, and HWP2 adhesins. However, a subset of C. albicans microcolonies was smaller and had greater epithelial invasiveness compared to microcolonies grown without S. gordonii. Thus, bacteria can alter the killing and escape of C. albicans from macrophages and contribute to changes in C. albicans pathogenicity. IMPORTANCECandida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections.
Collapse
|
15
|
Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00117-20. [PMID: 32366589 DOI: 10.1128/jb.00117-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Light is known to trigger regulatory responses in diverse organisms, including slime molds, animals, plants, and phototrophic bacteria. However, light-dependent processes in nonphototrophic bacteria, and those of pathogens in particular, have received comparatively little research attention. In this study, we examined the impact of light on multicellular development in Pseudomonas aeruginosa, a leading cause of biofilm-based bacterial infections. We grew P. aeruginosa strain PA14 in a colony morphology assay and found that growth under prolonged exposure to low-intensity blue light inhibited biofilm matrix production and thereby the formation of vertical biofilm structures (i.e., "wrinkles"). Light-dependent inhibition of biofilm wrinkling was correlated with low levels of cyclic di-GMP (c-di-GMP), consistent with the role of this signal in stimulating matrix production. A screen of enzymes with the potential to catalyze c-di-GMP synthesis or degradation identified c-di-GMP phosphodiesterases that contribute to light-dependent inhibition of biofilm wrinkling. One of these, RmcA, was previously characterized by our group for its role in mediating the effect of redox-active P. aeruginosa metabolites called phenazines on biofilm wrinkle formation. Our results suggest that an RmcA sensory domain that is predicted to bind a flavin cofactor is involved in light-dependent inhibition of wrinkling. Together, these findings indicate that P. aeruginosa integrates information about light exposure and redox state in its regulation of biofilm development.IMPORTANCE Light exposure tunes circadian rhythms, which modulate the immune response and affect susceptibility to infection in plants and animals. Though molecular responses to light are defined for model plant and animal hosts, analogous pathways that function in bacterial pathogens are understudied. We examined the response to light exposure in biofilms (matrix-encased multicellular assemblages) of the nonphotosynthetic bacterium Pseudomonas aeruginosa We found that light at intensities that are not harmful to human cells inhibited biofilm maturation via effects on cellular signals. Because biofilm formation is a critical factor in many types of P. aeruginosa infections, including burn wound infections that may be exposed to light, these effects could be relevant for pathogenicity.
Collapse
|
16
|
Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends Microbiol 2020; 28:732-743. [PMID: 32781027 DOI: 10.1016/j.tim.2020.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 01/19/2023]
Abstract
Cells in assemblages differentiate and perform distinct roles. Though many pathways of differentiation are understood at the molecular level in multicellular eukaryotes, the elucidation of similar processes in bacterial assemblages is recent and ongoing. Here, we discuss examples of bacterial differentiation, focusing on cases in which distinct metabolisms coexist and those that exhibit cross-feeding, with one subpopulation producing substrates that are metabolized by a second subpopulation. We describe several studies of single-species systems, then segue to studies of multispecies metabolic heterogeneity and cross-feeding in the clinical setting. Many of the studies described exemplify the application of new techniques and modeling approaches that provide insights into metabolic interactions relevant for bacterial growth outside the laboratory.
Collapse
|
17
|
Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. mBio 2020; 11:mBio.02684-19. [PMID: 32184246 PMCID: PMC7078475 DOI: 10.1128/mbio.02684-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer (“fluxomic”) analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed (“fluxed”) through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this “blueprint” is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents. Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized “EDEMP cycle” (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each.
Collapse
|
18
|
Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. J Bacteriol 2020; 202:JB.00700-19. [PMID: 31767778 DOI: 10.1128/jb.00700-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular electron transfer (EET), the reduction of compounds that shuttle electrons to distal oxidants, can support bacterial survival when preferred oxidants are not directly accessible. EET has been shown to contribute to virulence in some pathogenic organisms and is required for current generation in mediator-based fuel cells. In several species, components of the electron transport chain (ETC) have been implicated in electron shuttle reduction, raising the question of how shuttling-based metabolism is integrated with primary routes of metabolic electron flow. The clinically relevant bacterium Pseudomonas aeruginosa can utilize carbon sources (i.e., electron donors) covering a broad range of reducing potentials and possesses a branched ETC that can be modulated to optimize respiratory efficiency. It also produces electron shuttles called phenazines that facilitate intracellular redox balancing, increasing the complexity of its metabolic potential. In this study, we investigated the reciprocal influence of respiratory metabolism and phenazine-associated physiology in P. aeruginosa PA14. We found that phenazine production affects respiratory activity and terminal oxidase gene expression and that carbon source identity influences the mechanisms enabling phenazine reduction. Furthermore, we found that growth in biofilms, a condition for which phenazine metabolism is critical to normal development and redox balancing, affects the composition of the P. aeruginosa phenazine pool. Together, these findings can aid interpretation of P. aeruginosa behavior during host infection and provide inroads to understanding the cross talk between primary metabolism and shuttling-based physiology in the diverse bacteria that carry out EET.IMPORTANCE The clinically relevant pathogen Pseudomonas aeruginosa uses diverse organic compounds as electron donors and possesses multiple enzymes that transfer electrons from central metabolism to O2 These pathways support a balanced intracellular redox state and produce cellular energy. P. aeruginosa also reduces secondary metabolites called phenazines to promote redox homeostasis and virulence. In this study, we examined the reciprocal relationship between these primary and secondary routes of electron flow. We found that phenazines affect respiratory function and that the complement of phenazines produced is strongly affected by growth in assemblages called biofilms. These results provide a more nuanced understanding of P. aeruginosa redox metabolism and may inform strategies for treating persistent infections caused by this bacterium.
Collapse
|
19
|
Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, Hadjifrangiskou M. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli. mBio 2019; 10:e02400-18. [PMID: 30940709 PMCID: PMC6445943 DOI: 10.1128/mbio.02400-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization to the biofilm community such that biofilm residents can benefit from the production of common goods while being protected from exogenous insults. Spatial organization is driven by the presence of chemical gradients, such as oxygen. Here we show that two quinol oxidases found in Escherichia coli and other bacteria organize along the biofilm oxygen gradient and that this spatially coordinated expression controls architectural integrity. Cytochrome bd, a high-affinity quinol oxidase required for aerobic respiration under hypoxic conditions, is the most abundantly expressed respiratory complex in the biofilm community. Depletion of the cytochrome bd-expressing subpopulation compromises biofilm complexity by reducing the abundance of secreted extracellular matrix as well as increasing cellular sensitivity to exogenous stresses. Interrogation of the distribution of quinol oxidases in the planktonic state revealed that ∼15% of the population expresses cytochrome bd at atmospheric oxygen concentration, and this population dominates during acute urinary tract infection. These data point toward a bet-hedging mechanism in which heterogeneous expression of respiratory complexes ensures respiratory plasticity of E. coli across diverse host niches.IMPORTANCE Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization in the biofilm community. Here we demonstrate that oxygen gradients in uropathogenic Escherichia coli (UPEC) biofilms lead to spatially distinct expression programs for quinol oxidases-components of the terminal electron transport chain. Our studies reveal that the cytochrome bd-expressing subpopulation is critical for biofilm development and matrix production. In addition, we show that quinol oxidases are heterogeneously expressed in planktonic populations and that this respiratory heterogeneity provides a fitness advantage during infection. These studies define the contributions of quinol oxidases to biofilm physiology and suggest the presence of respiratory bet-hedging behavior in UPEC.
Collapse
Affiliation(s)
- Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sabrina H Werby
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Seth A Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shuvro De
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Douglass B Clayton
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 2019; 10:762. [PMID: 30770834 PMCID: PMC6377615 DOI: 10.1038/s41467-019-08733-w] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Antibiotic efficacy can be antagonized by bioactive metabolites and other drugs present at infection sites. Pseudomonas aeruginosa, a common cause of biofilm-based infections, releases metabolites called phenazines that accept electrons to support cellular redox balancing. Here, we find that phenazines promote tolerance to clinically relevant antibiotics, such as ciprofloxacin, in P. aeruginosa biofilms and that this effect depends on the carbon source provided for growth. We couple stable isotope labeling with stimulated Raman scattering microscopy to visualize biofilm metabolic activity in situ. This approach shows that phenazines promote metabolism in microaerobic biofilm regions and influence metabolic responses to ciprofloxacin treatment. Consistent with roles of specific respiratory complexes in supporting phenazine utilization in biofilms, phenazine-dependent survival on ciprofloxacin is diminished in mutants lacking these enzymes. Our work introduces a technique for the chemical imaging of biosynthetic activity in biofilms and highlights complex interactions between bacterial products, their effects on biofilm metabolism, and the antibiotics we use to treat infections. Pseudomonas aeruginosa releases redox-active metabolites called phenazines. Here, the authors use metabolic imaging by stimulated Raman scattering microscopy to show that phenazines antagonize the effects of antibiotics on P. aeruginosa biofilms by modulating bacterial metabolism.
Collapse
|
21
|
Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995-1010. [PMID: 30230061 DOI: 10.1111/mmi.14132] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, produces redox-active pigments called phenazines. Pyocyanin (PYO, the blue phenazine) plays an important role during biofilm development. Paradoxically, PYO auto-poisoning can stimulate cell death and release of extracellular DNA (eDNA), yet PYO can also promote survival within biofilms when cells are oxidant-limited. Here, we identify the environmental and physiological conditions in planktonic culture that promote PYO-mediated cell death. We demonstrate that PYO auto-poisoning is enhanced when cells are starved for carbon. In the presence of PYO, cells activate a set of genes involved in energy-dependent defenses, including: (i) the oxidative stress response, (ii) RND efflux systems and (iii) iron-sulfur cluster biogenesis factors. P. aeruginosa can avoid PYO poisoning when reduced carbon is available, but blockage of adenosine triphosphate (ATP) synthesis either through carbon limitation or direct inhibition of the F0 F1 -ATP synthase triggers death and eDNA release. Finally, even though PYO is toxic to the majority of the population when cells are nutrient limited, a subset of cells is intrinsically PYO resistant. The effect of PYO on the producer population thus appears to be dynamic, playing dramatically different yet predictable roles throughout distinct stages of growth, helping rationalize its multifaceted contributions to biofilm development.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
22
|
Klauck G, Serra DO, Possling A, Hengge R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol 2018; 8:180066. [PMID: 30135237 PMCID: PMC6119863 DOI: 10.1098/rsob.180066] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial biofilms are large aggregates of cells embedded in an extracellular matrix of self-produced polymers. In macrocolony biofilms of Escherichia coli, this matrix is generated in the upper biofilm layer only and shows a surprisingly complex supracellular architecture. Stratified matrix production follows the vertical nutrient gradient and requires the stationary phase σS (RpoS) subunit of RNA polymerase and the second messenger c-di-GMP. By visualizing global gene expression patterns with a newly designed fingerprint set of Gfp reporter fusions, our study reveals the spatial order of differential sigma factor activities, stringent control of ribosomal gene expression and c-di-GMP signalling in vertically cryosectioned macrocolony biofilms. Long-range physiological stratification shows a duplication of the growth-to-stationary phase pattern that integrates nutrient and oxygen gradients. In addition, distinct short-range heterogeneity occurs within specific biofilm strata and correlates with visually different zones of the refined matrix architecture. These results introduce a new conceptual framework for the control of biofilm formation and demonstrate that the intriguing extracellular matrix architecture, which determines the emergent physiological and biomechanical properties of biofilms, results from the spatial interplay of global gene regulation and microenvironmental conditions. Overall, mature bacterial macrocolony biofilms thus resemble the highly organized tissues of multicellular organisms.
Collapse
Affiliation(s)
- Gisela Klauck
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Diego O Serra
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Alexandra Possling
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| |
Collapse
|
23
|
Sporer AJ, Beierschmitt C, Bendebury A, Zink KE, Price-Whelan A, Buzzeo MC, Sanchez LM, Dietrich LEP. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. MICROBIOLOGY-SGM 2018; 164:790-800. [PMID: 29629858 DOI: 10.1099/mic.0.000657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activities of critical metabolic and regulatory proteins can be altered by exposure to natural or synthetic redox-cycling compounds. Many bacteria, therefore, possess mechanisms to transport or transform these small molecules. The opportunistic pathogen Pseudomonas aeruginosa PA14 synthesizes phenazines, redox-active antibiotics that are toxic to other organisms but have beneficial effects for their producer. Phenazines activate the redox-sensing transcription factor SoxR and thereby induce the transcription of a small regulon, including the operon mexGHI-opmD, which encodes an efflux pump that transports phenazines, and PA14_35160 (pumA), which encodes a putative monooxygenase. Here, we provide evidence that PumA contributes to phenazine resistance and normal biofilm development, particularly during exposure to or production of strongly oxidizing N-methylated phenazines. We show that phenazine resistance depends on the presence of residues that are conserved in the active sites of other putative and characterized monooxygenases found in the antibiotic producer Streptomyces coelicolor. We also show that during biofilm growth, PumA is required for the conversion of phenazine methosulfate to unique phenazine metabolites. Finally, we compare ∆mexGHI-opmD and ∆pumA strains in assays for colony biofilm morphogenesis and SoxR activation, and find that these deletions have opposing phenotypic effects. Our results suggest that, while MexGHI-OpmD-mediated efflux has the effect of making the cellular phenazine pool more reducing, PumA acts on cellular phenazines to make the pool more oxidizing. We present a model in which these two SoxR targets function simultaneously to control the biological activity of the P. aeruginosa phenazine pool.
Collapse
Affiliation(s)
- Abigail J Sporer
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | - Katherine E Zink
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marisa C Buzzeo
- Department of Chemistry, Barnard College, Columbia University, New York, NY, USA
| | - Laura M Sanchez
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, IL, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|