1
|
Mugni SL, Ambrosis N, O´Toole GA, Sisti F, Fernández J. Interplay of virulence factors and signaling molecules: albumin and calcium-mediated biofilm regulation in Bordetella bronchiseptica. J Bacteriol 2025; 207:e0044524. [PMID: 40135913 PMCID: PMC12004968 DOI: 10.1128/jb.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Bordetella bronchiseptica, a respiratory pathogen capable of infecting various mammals, including humans, is associated with chronic infections. B. bronchiseptica can form biofilm-like structures in vivo, providing tolerance against environmental stresses. Recent studies have highlighted the role of cyclic diguanylate monophosphate (c-di-GMP) in this process in vitro: elevated c-di-GMP levels stimulate biofilm formation, whereas phosphodiesterase (PDE) activation reduces biofilms. Respiratory secretions, which contain albumin and calcium at higher concentrations than standard growth media, promote an increase in the amount and extracellular localization of the adenylate cyclase toxin (ACT), an important virulence factor of Bordetella spp. Secreted ACT, present in the extracellular medium or attached to the outer membrane, inhibits biofilm formation. Based on these observations, we hypothesized that serum albumin and calcium together inhibit biofilm formation and explored the potential role of c-di-GMP in this process. Our findings suggest that serum albumin and calcium inhibit B. bronchiseptica biofilm formation through two potentially independent mechanisms: one involving ACT secretion and another promoting c-di-GMP degradation. In the presence of albumin and calcium, intracellular levels of c-di-GMP were reduced, and specific PDEs appear to be involved in this process. In addition, albumin and calcium stimulated the secretion of the adhesin BrtA. This study contributes to the understanding of the mechanisms governing B. bronchiseptica biofilm formation and its modulation by host factors.IMPORTANCEBordetella bronchiseptica, a respiratory pathogen capable of infecting various mammals, forms biofilms that enhance its ability to withstand environmental stresses. This study reveals that host-derived factors, specifically serum albumin and calcium, inhibit biofilm formation through two independent mechanisms: increasing adenylate cyclase toxin secretion and promoting the degradation of cyclic diguanylate monophosphate (c-di-GMP), a key biofilm regulator. These findings provide insights into how host conditions influence B. bronchiseptica biofilm dynamics, shedding light on the complex interactions between pathogen and host that contribute to infection persistence. Understanding these mechanisms may inform strategies to mitigate chronic infections caused by B. bronchiseptica.
Collapse
Affiliation(s)
- Sabrina Laura Mugni
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| | - Nicolás Ambrosis
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| | - George A. O´Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Federico Sisti
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| | - Julieta Fernández
- CCT La Plata. CONICET. Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Instituto de Biotecnología y Biología Molecular, La Plata, Buenos Aires Province, Argentina
| |
Collapse
|
2
|
Vega-Baray B, Hernández-Valle J, Poggio S, Camarena L. Repression of ctrA and chpT by a transcriptional regulator of the Xre family that is expressed by RpoN3 and its cognate activator protein in Cereibacter sphaeroides. PLoS One 2025; 20:e0321186. [PMID: 40233053 PMCID: PMC11999139 DOI: 10.1371/journal.pone.0321186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Cereibacter sphaeroides is an α-proteobacteria that has two flagellar systems. Fla1 directs the assembly of a single subpolar flagellum, and Fla2 directs the assembly of multiple polar flagella. The fla2 genes are controlled by the two-component system CckA/ChpT/CtrA. In the wild-type strain, the fla2 genes are not expressed under the growth conditions commonly used in the laboratory, and thus far, their expression has only been reported in strains carrying either a gain-of-function version of CckA or a null mutation in osp, a negative regulator of CckA. In this work, the differential swimming response of two Fla2 + strains in response to the inclusion of a divalent ion in the culture medium was investigated. This analysis led to identifying a new transcriptional regulator of the XRE family, XrpA. This protein severely reduces the expression of ctrA and, consequently, the expression of the genes activated by this transcription factor. We show that XrpA binds to the control region of ctrA and chpT, suggesting that XrpA directly represses their expression. Additionally, we determined that RpoN3, one of the four RpoN paralogues of RpoN present in C. sphaeroides, and its cognate activator protein AprX are required for the expression of xrpA. XrpA is conserved in several species of Rhodobacterales and a σ54 promoter consensus sequence is present in its control region and a homologue of AprX cooccurs with it. These results support the idea that these proteins form a novel regulatory module that controls the TCS CckA/ChpT/CtrA in C. sphaeroides and other related species.
Collapse
Affiliation(s)
- Benjamín Vega-Baray
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Hernández-Valle
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastián Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Camarena
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Isenberg RY, Holschbach CS, Gao J, Mandel MJ. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. mSystems 2024; 9:e0095624. [PMID: 39436151 PMCID: PMC11575326 DOI: 10.1128/msystems.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. Vibrio fischeri is the sole beneficial symbiont of the Hawaiian bobtail squid (Euprymna scolopes) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. c-di-GMP regulates swimming motility and cellulose exopolysaccharide production in V. fischeri. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 V. fischeri proteins. All 28 predicted DGCs and 10 of the 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.IMPORTANCECyclic diguanylate (c-di-GMP) is a critical second messenger that mediates bacterial behaviors, and Vibrio fischeri colonization of its Hawaiian bobtail squid host presents a tractable model in which to interrogate the role of c-di-GMP during animal colonization. This work provides systems-level characterization of the 50 proteins predicted to modulate c-di-GMP levels. By combining multiple assays, we generated a rich understanding of which proteins have the capacity to influence c-di-GMP levels and behaviors. Our functional approach yielded insights into how proteins with domains to both synthesize and degrade c-di-GMP may impact bacterial behaviors. Finally, we integrated published data to provide a broader picture of each of the 50 proteins analyzed. This study will inform future work to define specific pathways by which c-di-GMP regulates symbiotic behaviors and transitions.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chandler S Holschbach
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jing Gao
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Isenberg RY, Mandel MJ. Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization. Annu Rev Microbiol 2024; 78:533-551. [PMID: 39270684 PMCID: PMC11578789 DOI: 10.1146/annurev-micro-041522-101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP-biofilm formation and motility-are key determinants of host-bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host-bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Current affiliation: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
5
|
Isenberg RY, Holschbach CS, Gao J, Mandel MJ. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550417. [PMID: 37546929 PMCID: PMC10402110 DOI: 10.1101/2023.07.24.550417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well-studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. Vibrio fischeri is the sole beneficial symbiont of the Hawaiian bobtail squid (Euprymna scolopes) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. C-di-GMP regulates swimming motility and cellulose exopolysaccharide production in V. fischeri. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 V. fischeri proteins. All 28 predicted DGCs and 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.
Collapse
Affiliation(s)
- Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
- Current address: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Chandler S. Holschbach
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Jing Gao
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
6
|
Li X, Zhang X, Zhang M, Luo X, Zhang T, Liu X, Lu R, Zhang Y. Environmental magnesium ion affects global gene expression, motility, biofilm formation and virulence of Vibrio parahaemolyticus. Biofilm 2024; 7:100194. [PMID: 38577556 PMCID: PMC10990858 DOI: 10.1016/j.bioflm.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Vibrio parahaemolyticus is widely distributed in marine ecosystems. Magnesium ion (Mg2+) is the second most abundant metal cation in seawater, and plays important roles in the growth and gene expression of V. parahaemolyticus, but lacks the detailed mechanisms. In this study, the RNA sequencing data demonstrated that a total of 1494 genes was significantly regulated by Mg2+. The majority of the genes associated with lateral flagella, exopolysaccharide, type III secretion system 2, type VI secretion system (T6SS) 1, T6SS2, and thermostable direct hemolysin were downregulated. A total of 18 genes that may be involved in c-di-GMP metabolism and more than 80 genes encoding putative regulators were also significantly and differentially expressed in response to Mg2+, indicating that the adaptation process to Mg2+ stress may be strictly regulated by complex regulatory networks. In addition, Mg2+ promoted the proliferative speed, swimming motility and cell adhesion of V. parahaemolyticus, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg2+ had no effect on the production of capsular polysaccharide and cytoxicity against HeLa cells. Therefore, Mg2+ had a comprehensive impact on the physiology and gene expression of V. parahaemolyticus.
Collapse
Affiliation(s)
- Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xiaobai Zhang
- Department of Respiratory Medicine, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Xianjin Liu
- Department of Infection, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China
| |
Collapse
|
7
|
McCaughey C, Trebino MA, McAtamney A, Isenberg RY, Mandel MJ, Yildiz FH, Sanchez LM. A Label-Free Approach for Relative Spatial Quantitation of c-di-GMP in Microbial Biofilms. Anal Chem 2024; 96:8308-8316. [PMID: 38752543 PMCID: PMC11140670 DOI: 10.1021/acs.analchem.3c04687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Microbial biofilms represent an important lifestyle for bacteria and are dynamic three-dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable toward understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest from a single sample.
Collapse
Affiliation(s)
- Catherine
S. McCaughey
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Michael A. Trebino
- Department
of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Allyson McAtamney
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Ruth Y. Isenberg
- Department
of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology
Doctoral Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark J. Mandel
- Department
of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Microbiology
Doctoral Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Fitnat H. Yildiz
- Department
of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
8
|
Septer AN, Visick KL. Lighting the way: how the Vibrio fischeri model microbe reveals the complexity of Earth's "simplest" life forms. J Bacteriol 2024; 206:e0003524. [PMID: 38695522 PMCID: PMC11112999 DOI: 10.1128/jb.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
9
|
Vander Griend JA, Isenberg RY, Kotla KR, Mandel MJ. Transcriptional pathways across colony biofilm models in the symbiont Vibrio fischeri. mSystems 2024; 9:e0081523. [PMID: 38126773 PMCID: PMC10804989 DOI: 10.1128/msystems.00815-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Beneficial microbial symbionts that are horizontally acquired by their animal hosts undergo a lifestyle transition from free-living in the environment to associating with host tissues. In the model symbiosis between the Hawaiian bobtail squid and its microbial symbiont Vibrio fischeri, one mechanism used to make this transition during host colonization is the formation of biofilm-like aggregates in host mucosa. Previous work identified factors that are sufficient to induce V. fischeri biofilm formation, yet much remains unknown regarding the breadth of target genes induced by these factors. Here, we probed two widely used in vitro models of biofilm formation to identify novel regulatory pathways in the squid symbiont V. fischeri ES114. We discovered a shared set of 232 genes that demonstrated similar patterns in expression in both models. These genes comprise multiple exopolysaccharide loci that are upregulated and flagellar motility genes that are downregulated, with a consistent decrease in measured swimming motility. Furthermore, we identified genes regulated downstream of the key sensor kinase RscS that are induced independent of the response regulator SypG. Our data suggest that transcriptional regulator VpsR plays a strong role in expression of at least a subset of these genes. Overall, this study adds to our understanding of the genes involved in V. fischeri biofilm regulation while revealing new regulatory pathways branching from previously characterized signaling networks.IMPORTANCEThe V. fischeri-squid system provides an opportunity to study biofilm development both in the animal host and in culture-based biofilm models that capture key aspects of in vivo signaling. In this work, we report the results of the transcriptomic profiling of two V. fischeri biofilm models followed by phenotypic validation and examination of novel signaling pathway architecture. Remarkable consistency between the models provides a strong basis for future studies using either approach or both. A subset of the factors identified by the approaches were validated in the work, and the body of transcriptomic data provides a number of leads for future studies in culture and during animal colonization.
Collapse
Affiliation(s)
- Jacob A. Vander Griend
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ketan R. Kotla
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
McCaughey CS, Trebino MA, McAtamney A, Isenberg R, Mandel MJ, Yildiz FH, Sanchez LM. A label-free approach for relative spatial quantitation of c-di-GMP in microbial biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561783. [PMID: 37873360 PMCID: PMC10592747 DOI: 10.1101/2023.10.10.561783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Microbial biofilms represent an important lifestyle for bacteria and are dynamic three dimensional structures. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous signaling molecule that is known to be tightly regulated with biofilm processes. While measurements of global levels of c-di-GMP have proven valuable towards understanding the genetic control of c-di-GMP production, there is a need for tools to observe the local changes of c-di-GMP production in biofilm processes. We have developed a label-free method for the direct detection of c-di-GMP in microbial colony biofilms using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). We applied this method to the enteric pathogen Vibrio cholerae, the marine symbiont V. fischeri, and the opportunistic pathogen Pseudomonas aeruginosa PA14 and detected spatial and temporal changes in c-di-GMP signal that accompanied genetic alterations in factors that synthesize and degrade the compound. We further demonstrated how this method can be simultaneously applied to detect additional metabolites of interest in a single experiment.
Collapse
Affiliation(s)
- Catherine S McCaughey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Michael A Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Ruth Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Current Address: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
11
|
Gong XX, Zeng YH, Chen HM, Zhang N, Han Y, Long H, Xie ZY. Bioinformatic and functional characterization of cyclic-di-GMP metabolic proteins in Vibrio alginolyticus unveils key diguanylate cyclases controlling multiple biofilm-associated phenotypes. Front Microbiol 2023; 14:1258415. [PMID: 37808288 PMCID: PMC10552763 DOI: 10.3389/fmicb.2023.1258415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus.
Collapse
Affiliation(s)
- Xiao-Xiao Gong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yan-Hua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
| | - Hai-Min Chen
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Na Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yue Han
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
12
|
Griend JAV, Isenberg RY, Kotla KR, Mandel MJ. Transcriptional pathways across colony biofilm models in the symbiont Vibrio fischeri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552283. [PMID: 37609283 PMCID: PMC10441365 DOI: 10.1101/2023.08.07.552283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Beneficial microbial symbionts that are horizontally acquired by their animal hosts undergo a lifestyle transition from free-living in the environment to associated with host tissues. In the model symbiosis between the Hawaiian bobtail squid and its microbial symbiont Vibrio fischeri, one mechanism used to make this transition during host colonization is the formation of biofilm-like aggregates in host mucosa. Previous work identified factors that are sufficient to induce V. fischeri biofilm formation, yet much remains unknown regarding the breadth of target genes induced by these factors. Here, we probed two widely-used in vitro models of biofilm formation to identify novel regulatory pathways in the squid symbiont V. fischeri ES114. We discovered a shared set of 232 genes that demonstrated similar patterns in expression in both models. These genes comprise multiple exopolysaccharide loci that are upregulated and flagellar motility genes that are downregulated, with a consistent decrease in measured swimming motility. Furthermore, we identified genes regulated downstream of the key sensor kinase RscS that are induced independent of the response regulator SypG. Our data suggest that putative response regulator VpsR plays a strong role in expression of at least a subset of these genes. Overall, this study adds to our understanding of the genes involved in V. fischeri biofilm regulation, while revealing new regulatory pathways branching from previously characterized signaling networks.
Collapse
Affiliation(s)
- Jacob A. Vander Griend
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ketan R. Kotla
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
13
|
Abstract
During colonization of the Hawaiian bobtail squid (Euprymna scolopes), Vibrio fischeri bacteria undergo a lifestyle transition from a planktonic motile state in the environment to a biofilm state in host mucus. Cyclic diguanylate (c-di-GMP) is a cytoplasmic signaling molecule that is important for regulating motility-biofilm transitions in many bacterial species. V. fischeri encodes 50 proteins predicted to synthesize and/or degrade c-di-GMP, but a role for c-di-GMP regulation during host colonization has not been investigated. We examined strains exhibiting either low or high levels of c-di-GMP during squid colonization and found that while a low-c-di-GMP strain had no colonization defect, a high c-di-GMP strain was severely impaired. Expression of a heterologous c-di-GMP phosphodiesterase restored colonization, demonstrating that the effect is due to high c-di-GMP levels. In the constitutive high-c-di-GMP state, colonizing V. fischeri exhibited reduced motility, altered biofilm aggregate morphology, and a regulatory interaction where transcription of one polysaccharide locus is inhibited by the presence of the other polysaccharide. Our results highlight the importance of proper c-di-GMP regulation during beneficial animal colonization, illustrate multiple pathways regulated by c-di-GMP in the host, and uncover an interplay of multiple exopolysaccharide systems in host-associated aggregates.
Collapse
|