1
|
Clarke OE, Pelling H, Bennett V, Matsumoto T, Gregory GE, Nzakizwanayo J, Slate AJ, Preston A, Laabei M, Bock LJ, Wand ME, Ikebukuro K, Gebhard S, Sutton JM, Jones BV. Lipopolysaccharide structure modulates cationic biocide susceptibility and crystalline biofilm formation in Proteus mirabilis. Front Microbiol 2023; 14:1150625. [PMID: 37089543 PMCID: PMC10113676 DOI: 10.3389/fmicb.2023.1150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Chlorhexidine (CHD) is a cationic biocide used ubiquitously in healthcare settings. Proteus mirabilis, an important pathogen of the catheterized urinary tract, and isolates of this species are often described as "resistant" to CHD-containing products used for catheter infection control. To identify the mechanisms underlying reduced CHD susceptibility in P. mirabilis, we subjected the CHD tolerant clinical isolate RS47 to random transposon mutagenesis and screened for mutants with reduced CHD minimum inhibitory concentrations (MICs). One mutant recovered from these screens (designated RS47-2) exhibited ~ 8-fold reduction in CHD MIC. Complete genome sequencing of RS47-2 showed a single mini-Tn5 insert in the waaC gene involved in lipopolysaccharide (LPS) inner core biosynthesis. Phenotypic screening of RS47-2 revealed a significant increase in cell surface hydrophobicity and serum susceptibility compared to the wildtype, and confirmed defects in LPS production congruent with waaC inactivation. Disruption of waaC was also associated with increased susceptibility to a range of other cationic biocides but did not affect susceptibility to antibiotics tested. Complementation studies showed that repression of smvA efflux activity in RS47-2 further increased susceptibility to CHD and other cationic biocides, reducing CHD MICs to values comparable with the most CHD susceptible isolates characterized. The formation of crystalline biofilms and blockage of urethral catheters was also significantly attenuated in RS47-2. Taken together, these data show that aspects of LPS structure and upregulation of the smvA efflux system function in synergy to modulate susceptibility to CHD and other cationic biocides, and that LPS structure is also an important factor in P. mirabilis crystalline biofilm formation.
Collapse
Affiliation(s)
- O. E. Clarke
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - H. Pelling
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - V. Bennett
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - T. Matsumoto
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - G. E. Gregory
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. Nzakizwanayo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. J. Slate
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. Preston
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - M. Laabei
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - L. J. Bock
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - M. E. Wand
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - K. Ikebukuro
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - S. Gebhard
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. M. Sutton
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - B. V. Jones
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Interdependence of Shigella flexneri O Antigen and Enterobacterial Common Antigen Biosynthetic Pathways. J Bacteriol 2022; 204:e0054621. [PMID: 35293778 DOI: 10.1128/jb.00546-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Outer membrane (OM) polysaccharides allow bacteria to resist harsh environmental conditions and antimicrobial agents, traffic to and persist in pathogenic niches, and evade immune responses. Shigella flexneri has two OM polysaccharide populations, being enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) O antigen (Oag); both are polymerized into chains by separate homologs of the Wzy-dependent pathway. The two polysaccharide pathways, along with peptidoglycan (PG) biosynthesis, compete for the universal biosynthetic membrane anchor, undecaprenyl phosphate (Und-P), as the finite pool of available Und-P is critical in all three cell wall biosynthetic pathways. Interactions between the two OM polysaccharide pathways have been proposed in the past where, through the use of mutants in both pathways, various perturbations have been observed. Here, we show for the first time that mutations in one of the two OM polysaccharide pathways can affect each other, dependent on where the mutation lies along the pathway, while the second pathway remains genetically intact. We then expand on this and show that the mutations also affect PG biosynthesis pathways and provide data which supports that the classical mutant phenotypes of cell wall mutants are due to a lack of available Und-P. Our work here provides another layer in understanding the complex intricacies of the cell wall biosynthetic pathways and demonstrates their interdependence on Und-P, the universal biosynthetic membrane anchor. IMPORTANCE Bacterial outer membrane polysaccharides play key roles in a range of bacterial activities from homeostasis to virulence. Two such OM polysaccharide populations are ECA and LPS Oag, which are synthesized by separate homologs of the Wzy-dependent pathway. Both ECA and LPS Oag biosynthesis join with PG biosynthesis to form the cell wall biosynthetic pathways, which all are interdependent on the availability of Und-P for proper function. Our data show the direct effects of cell wall pathway mutations affecting all related pathways when they themselves remain genetically unchanged. This work furthers our understanding of the complexities and interdependence of the three cell wall pathways.
Collapse
|
3
|
Zhou X, Liu B, Liu Y, Shi C, Fratamico PM, Zhang L, Wang D, Zhang J, Cui Y, Xu P, Shi X. Two homologous Salmonella serogroup C1-specific genes are required for flagellar motility and cell invasion. BMC Genomics 2021; 22:507. [PMID: 34225670 PMCID: PMC8259012 DOI: 10.1186/s12864-021-07759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background Salmonella is a major bacterial pathogen associated with a large number of outbreaks of foodborne diseases. Many highly virulent serovars that cause human illness belong to Salmonella serogroup C1, and Salmonella ser. Choleraesuis is a prominent cause of invasive infections in Asia. Comparative genomic analysis in our previous study showed that two homologous genes, SC0368 and SC0595 in Salmonella ser. Choleraesuis were unique to serogroup C1. In this study, two single-deletion mutants (Δ0368 and Δ0595) and one double-deletion mutant (Δ0368Δ0595) were constructed based on the genome. All these mutants and the wild-type strain were subjected to RNA-Seq analysis to reveal functional relationships of the two serogroup C1-specific genes. Results Data from RNA-Seq indicated that deletion of SC0368 resulted in defects in motility through repression of σ28 in flagellar regulation Class 3. Consistent with RNA-Seq data, results from transmission electron microcopy (TEM) showed that flagella were not present in △0368 and △0368△0595 mutants resulting in both swimming and swarming defects. Interestingly, the growth rates of two non-motile mutants △0368 and △0368△0595 were significantly greater than the wild-type, which may be associated with up-regulation of genes encoding cytochromes, enhancing bacterial proliferation. Moreover, the △0595 mutant was significantly more invasive in Caco-2 cells as shown by bacterial enumeration assays, and the expression of lipopolysaccharide (LPS) core synthesis-related genes (rfaB, rfaI, rfaQ, rfaY, rfaK, rfaZ) was down-regulated only in the △0368△0595 mutant. In addition, this study also speculated that these two genes might be contributing to serotype conversion for Salmonella C1 serogroup based on their apparent roles in biosynthesis of LPS and the flagella. Conclusion A combination of biological and transcriptomic (RNA-Seq) analyses has shown that the SC0368 and SC0595 genes are involved in biosynthesis of flagella and complete LPS, as well as in bacterial growth and virulence. Such information will aid to revealing the role of these specific genes in bacterial physiology and evolution within the serogroup C1. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07759-z.
Collapse
Affiliation(s)
- Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pina M Fratamico
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhua Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019; 9:pathogens9010006. [PMID: 31861540 PMCID: PMC7168646 DOI: 10.3390/pathogens9010006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.
Collapse
|
5
|
Cell Shape and Population Migration Are Distinct Steps of Proteus mirabilis Swarming That Are Decoupled on High-Percentage Agar. J Bacteriol 2019; 201:JB.00726-18. [PMID: 30858303 DOI: 10.1128/jb.00726-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 01/10/2023] Open
Abstract
Swarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacterium Proteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address how P. mirabilis populations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions among P. mirabilis cells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCE How surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers like P. mirabilis is not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell's lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.
Collapse
|
6
|
Conley ZC, Carlson-Banning KM, Carter AG, de la Cova A, Song Y, Zechiedrich L. Sugar and iron: Toward understanding the antibacterial effect of ciclopirox in Escherichia coli. PLoS One 2019; 14:e0210547. [PMID: 30633761 PMCID: PMC6329577 DOI: 10.1371/journal.pone.0210547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.
Collapse
Affiliation(s)
- Zachary C. Conley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley G. Carter
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro de la Cova
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
7
|
Swarmer Cell Development of the Bacterium Proteus mirabilis Requires the Conserved Enterobacterial Common Antigen Biosynthesis Gene rffG. J Bacteriol 2018; 200:JB.00230-18. [PMID: 29967121 DOI: 10.1128/jb.00230-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Individual cells of the bacterium Proteus mirabilis can elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating that P. mirabilis requires the gene rffG for swarmer cell elongation and subsequent swarm motility. The rffG gene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein of Escherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize the rffG gene in P. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of the rffG gene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that in rffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilis swarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, the rffG-dependent moieties provide a novel attractive target for potential antimicrobials.
Collapse
|
8
|
Novel Role of VisP and the Wzz System during O-Antigen Assembly in Salmonella enterica Serovar Typhimurium Pathogenesis. Infect Immun 2018; 86:IAI.00319-18. [PMID: 29866904 DOI: 10.1128/iai.00319-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovars are associated with diarrhea and gastroenteritis and are a helpful model for understanding host-pathogen mechanisms. Salmonella enterica serovar Typhimurium regulates the distribution of O antigen (OAg) and presents a trimodal distribution based on Wzy polymerase and the WzzST (long-chain-length OAg [L-OAg]) and WzzfepE (very-long-chain-length OAg [VL-OAg]) copolymerases; however, several mechanisms regulating this process remain unclear. Here, we report that LPS modifications modulate the infectious process and that OAg chain length determination plays an essential role during infection. An increase in VL-OAg is dependent on Wzy polymerase, which is promoted by a growth condition resembling the environment of Salmonella-containing vacuoles (SCVs). The virulence- and stress-related periplasmic protein (VisP) participates in OAg synthesis, as a ΔvisP mutant presents a semirough OAg phenotype. The ΔvisP mutant has greatly decreased motility and J774 macrophage survival in a colitis model of infection. Interestingly, the phenotype is restored after mutation of the wzzST or wzzfepE gene in a ΔvisP background. Loss of both the visP and wzzST genes promotes an imbalance in flagellin secretion. L-OAg may function as a shield against host immune systems in the beginning of an infectious process, and VL-OAg protects bacteria during SCV maturation and facilitates intramacrophage replication. Taken together, these data highlight the roles of OAg length in generating phenotypes during S Typhimurium pathogenesis and show the periplasmic protein VisP as a novel protein in the OAg biosynthesis pathway.
Collapse
|
9
|
The Potential Virulence Factors of Providencia stuartii: Motility, Adherence, and Invasion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3589135. [PMID: 29682537 PMCID: PMC5841065 DOI: 10.1155/2018/3589135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 11/17/2022]
Abstract
Providencia stuartii is the most common Providencia species capable of causing human infections. Currently P. stuartii is involved in high incidence of urinary tract infections in catheterized patients. The ability of bacteria to swarm on semisolid (viscous) surfaces and adhere to and invade host cells determines the specificity of the disease pathogenesis and its therapy. In the present study we demonstrated morphological changes of P. stuartii NK cells during migration on the viscous medium and discussed adhesive and invasive properties utilizing the HeLa-M cell line as a host model. To visualize the interaction of P. stuartii NK bacterial cells with eukaryotic cells in vitro scanning electron and confocal microscopy were performed. We found that bacteria P. stuartii NK are able to adhere to and invade HeLa-M epithelial cells and these properties depend on the age of bacterial culture. Also, to invade the host cells the infectious dose of the bacteria is essential. The microphotographs indicate that after incubation of bacterial P. stuartii NK cells together with epithelial cells the bacterial cells both were adhered onto and invaded into the host cells.
Collapse
|
10
|
Li T, Noel KD. Synthesis of N-acetyl-d-quinovosamine in Rhizobium etli CE3 is completed after its 4-keto-precursor is linked to a carrier lipid. MICROBIOLOGY-SGM 2017; 163:1890-1901. [PMID: 29165235 DOI: 10.1099/mic.0.000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial O-antigens are synthesized on lipid carriers before being transferred to lipopolysaccharide core structures. Rhizobium etli CE3 lipopolysaccharide is a model for understanding O-antigen biological function. CE3 O-antigen structure and genetics are known. However, proposed enzymology for CE3 O-antigen synthesis has been examined very little in vitro, and even the sugar added to begin the synthesis is uncertain. A model based on mutagenesis studies predicts that 2-acetamido-2,6-dideoxy-d-glucose (QuiNAc) is the first O-antigen sugar and that genes wreV, wreQ and wreU direct QuiNAc synthesis and O-antigen initiation. Previously, synthesis of UDP-QuiNAc was shown to occur in vitro with a WreV orthologue (4,6-hexose dehydratase) and WreQ (4-reductase), but the WreQ catalysis in this conventional deoxyhexose-synthesis pathway was very slow. This seeming deficiency was explained in the present study after WreU transferase activity was examined in vitro. Results fit the prediction that WreU transfers sugar-1-phosphate to bactoprenyl phosphate (BpP) to initiate O-antigen synthesis. Interestingly, WreU demonstrated much higher activity using the product of the WreV catalysis [UDP-4-keto-6-deoxy-GlcNAc (UDP-KdgNAc)] as the sugar-phosphate donor than using UDP-QuiNAc. Furthermore, the WreQ catalysis with WreU-generated BpPP-KdgNAc as the substrate was orders of magnitude faster than with UDP-KdgNAc. The inferred product BpPP-QuiNAc reacted as an acceptor substrate in an in vitro assay for addition of the second O-antigen sugar, mannose. These results imply a novel pathway for 6-deoxyhexose synthesis that may be commonly utilized by bacteria when QuiNAc is the first sugar of a polysaccharide or oligosaccharide repeat unit: UDP-GlcNAc → UDP-KdgNAc → BpPP-KdgNAc → BpPP-QuiNAc.
Collapse
Affiliation(s)
- Tiezheng Li
- Present address: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - K Dale Noel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
11
|
Surface Sensing for Paenibacillus sp. NAIST15-1 Flagellar Gene Expression on Solid Medium. Appl Environ Microbiol 2017; 83:AEM.00585-17. [PMID: 28550060 DOI: 10.1128/aem.00585-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
A rhizosphere Gram-positive bacterial isolate, Paenibacillus sp. NAIST15-1, exhibits intriguing motility behavior on hard agar medium. Paenibacillus sp. shows increased transcription of flagellar genes and hyperflagellation when transferred from liquid to solid medium. Hyperflagellated cells form wandering colonies that are capable of moving around on the surface of medium containing ≥1.5% agar. Transposon mutagenesis was used to identify genes critical for motility. In addition to flagellar genes, this mutagenesis identified five nonflagellar structural genes that were important for motility. Of these, the disruption of degSU, wsfP, or PBN151_4312 resulted in a complete loss of flagellin synthesis. Analysis of flagellar gene promoter activity showed that each mutation severely reduced flagellar gene transcription in a different manner. Flagellar gene transcription was induced in liquid medium by the addition of a viscous agent, Ficoll, or by disruption of flagellar stator genes, indicating that flagellar gene transcription was induced in response to restriction of flagellar rotation. Overexpression of DegSU bypassed the requirement of flagellar rotation restriction for induction of flagellar genes. These results indicate that physical restriction of flagellar rotation by physical contact with the surface of solid medium induces flagellar gene transcription through the activation of DegSU. Further analysis revealed that the same mechanism was conserved in Bacillus subtilis These results demonstrate that flagella act as mechanosensors to control flagellar transcription in Gram-positive bacteria.IMPORTANCE Many bacteria exist on living or nonliving surfaces in nature. Bacteria express distinct behaviors, such as surface motility and biofilm formation, to adapt to surfaces. However, it remains largely unknown how bacteria sense the surfaces on which they sit and how they induce the genes needed for growth on a surface. Swarming motility is flagellum-dependent motility on a surface. The Gram-positive bacterium Paenibacillus sp. exhibits strong swarming motility ability and is capable of moving on 1.5% agar medium. In this study, we showed that the two-component system DegSU was responsible for inducing flagellar genes in response to heavy loads on flagellar rotation in Paenibacillus sp. The same mechanism was conserved in a related species, B. subtilis, even though these two bacteria exhibit very different motility behaviors. This study shows that flagellum serves as a sensor for surface contact to induce flagellar gene transcription in these bacteria.
Collapse
|
12
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
13
|
Mutations in Novel Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elongatus. Appl Environ Microbiol 2016; 82:2738-50. [PMID: 26921432 DOI: 10.1128/aem.00135-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
In natural and artificial aquatic environments, population structures and dynamics of photosynthetic microbes are heavily influenced by the grazing activity of protistan predators. Understanding the molecular factors that affect predation is critical for controlling toxic cyanobacterial blooms and maintaining cyanobacterial biomass production ponds for generating biofuels and other bioproducts. We previously demonstrated that impairment of the synthesis or transport of the O-antigen component of lipopolysaccharide (LPS) enables resistance to amoebal grazing in the model predator-prey system consisting of the heterolobosean amoeba HGG1 and the cyanobacterium Synechococcus elongates PCC 7942 (R. S. Simkovsky et al., Proc Natl Acad Sci U S A 109:16678-16683, 2012,http://dx.doi.org/10.1073/pnas.1214904109). In this study, we used this model system to identify additional gene products involved in the synthesis of O antigen, the ligation of O antigen to the lipid A-core conjugated molecule (including a novel ligase gene), the generation of GDP-fucose, and the incorporation of sugars into the lipid A core oligosaccharide ofS. elongatus Knockout of any of these genes enables resistance to HGG1, and of these, only disruption of the genes involved in synthesis or incorporation of GDP-fucose into the lipid A-core molecule impairs growth. Because these LPS synthesis genes are well conserved across the diverse range of cyanobacteria, they enable a broader understanding of the structure and synthesis of cyanobacterial LPS and represent mutational targets for generating resistance to amoebal grazers in novel biomass production strains.
Collapse
|
14
|
The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet 2016; 62:775-789. [DOI: 10.1007/s00294-016-0579-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
15
|
Shevchenko JI, Shilina JV, Pozur VK, Skurnik M. Effect of waaL ligase gene deletion on motility and stress adaptation reactions of Y. enterocolitica 6471/76. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715060092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Noh JG, Jeon HE, So JS, Chang WS. Effects of the Bradyrhizobium japonicum waaL (rfaL) Gene on Hydrophobicity, Motility, Stress Tolerance, and Symbiotic Relationship with Soybeans. Int J Mol Sci 2015; 16:16778-91. [PMID: 26213919 PMCID: PMC4581169 DOI: 10.3390/ijms160816778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 11/16/2022] Open
Abstract
We cloned and sequenced the waaL (rfaL) gene from Bradyrhizobium japonicum, which infects soybean and forms nitrogen-fixing nodules on soybean roots. waaL has been extensively studied in the lipopolysaccharide (LPS) biosynthesis of enteric bacteria, but little is known about its function in (brady)rhizobial LPS architecture. To characterize its role as O-antigen ligase in the LPS biosynthesis pathway, we constructed a waaL knock-out mutant and its complemented strain named JS015 and CS015, respectively. LPS analysis showed that an LPS structure of JS015 is deficient in O-antigen as compared to that of the wild type and complemented strain CS015, suggesting that WaaL ligates the O-antigen to lipid A-core oligosaccharide to form a complete LPS. JS015 also revealed increased cell surface hydrophobicity, but it showed decreased motility in soft agar plates. In addition to the alteration in cell surface properties, disruption of the waaL gene caused increased sensitivity of JS015 to hydrogen peroxide, osmotic pressure, and novobiocin. Specifically, plant tests revealed that JS015 failed to nodulate the host plant soybean, indicating that the rhizobial waaL gene is responsible for the establishment of a symbiotic relationship between soybean and B. japonicum.
Collapse
Affiliation(s)
- Jun-Gu Noh
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea.
| | - Han-Eul Jeon
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea.
| | - Jae-Seong So
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea.
| | - Woo-Suk Chang
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Korea.
| |
Collapse
|
17
|
Chen R, Barphagha IK, Ham JH. Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach. Front Cell Infect Microbiol 2015; 5:22. [PMID: 25806356 PMCID: PMC4354385 DOI: 10.3389/fcimb.2015.00022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/22/2015] [Indexed: 12/21/2022] Open
Abstract
Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL)-mediated quorum-sensing (QS) system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320) divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wzyB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria.
Collapse
Affiliation(s)
- Ruoxi Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center Baton Rouge, LA, USA
| | - Inderjit K Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center Baton Rouge, LA, USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center Baton Rouge, LA, USA
| |
Collapse
|
18
|
Siwińska M, Levina EA, Ovchinnikova OG, Drzewiecka D, Shashkov AS, Różalski A, Knirel YA. Classification of a Proteus penneri clinical isolate with a unique O-antigen structure to a new Proteus serogroup, O80. Carbohydr Res 2015; 407:131-6. [PMID: 25771295 DOI: 10.1016/j.carres.2015.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022]
Abstract
Proteus penneri is an opportunistic pathogen, which may cause severe diseases, most frequently urinary tract infections in immunocompromised patients. P. penneri Br 114 exhibiting a good swarming growth ability as an S-form strain was isolated from a wound of a patient in Łódź, Poland. Serological studies using ELISA and Western blotting and chemical analyses along with (1)H and (13)C NMR spectroscopy showed that the O-antigen (O-polysaccharide) of this strain is unique among the known Proteus serotypes O1-O79. It possesses a linear pentasaccharide repeating unit containing a partially O-acetylated amide of D-glucuronic acid (GlcA) with L-serine having the following structure: [structure: see text]. These data are a basis for creating a new Proteus serogroup, O80, so far represented by the single Br 114 isolate. The O80 is the 21st O-serogroup containing P. penneri strains and the fourth serogroup based on Proteus spp. clinical isolates from Łódź, Poland.
Collapse
Affiliation(s)
- Małgorzata Siwińska
- Department of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237 Łódź, Poland
| | - Evgeniya A Levina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, 125047 Moscow, Russia
| | - Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dominika Drzewiecka
- Department of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237 Łódź, Poland.
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Antoni Różalski
- Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237 Łódź, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
19
|
Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014. [PMID: 25369209 DOI: 10.1371/journal.pone.0111513.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as 'hypothetical genes' in the Typhimurium genome.
Collapse
|
20
|
Bogomolnaya LM, Aldrich L, Ragoza Y, Talamantes M, Andrews KD, McClelland M, Andrews-Polymenis HL. Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014; 9:e111513. [PMID: 25369209 PMCID: PMC4219756 DOI: 10.1371/journal.pone.0111513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/28/2014] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as ‘hypothetical genes’ in the Typhimurium genome.
Collapse
Affiliation(s)
- Lydia M. Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lindsay Aldrich
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Yuri Ragoza
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Marissa Talamantes
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Katharine D. Andrews
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zhou X, Liu B, Shi C, Shi X. Mutation of a Salmonella serogroup-C1-specific gene abrogates O7-antigen biosynthesis and triggers NaCl-dependent motility deficiency. PLoS One 2014; 9:e106708. [PMID: 25211341 PMCID: PMC4161368 DOI: 10.1371/journal.pone.0106708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
Several molecular detection marker genes specific for a number of individual Salmonella serogroups have been recently identified in our lab by comparative genomics for the genotyping of diverse serogroups. To further understand the correlation between serotype and genotype, the function of a Salmonella serogroup-C1-specific gene (SC_2092) was analyzed in this study. It was indicated from the topological prediction using the deduced amino acid sequence of SC_2092 that this putative protein was highly similar to the confirmed Wzx flippases. Furthermore, SDS-PAGE revealed that lipopolysaccharide (LPS) biosynthesis, specifically O-antigen synthesis, was incomplete in an SC_2092 in-frame deletion mutant, and no agglutination reaction with the O7 antibody was exhibited in this mutant. Therefore, it was revealed that this Salmonella serogroup-C1-specific gene SC_2092 encoded a putative flippase, which was required for O7-polysaccharide biosynthesis, and was designated here as wzxC1. Subsequently, the effects of the deletion of wzxC1 on bacterial motility and sodium chloride (NaCl) tolerance were evaluated. The wzxC1 mutant lacked swarming motility on solid surfaces and was impaired in swimming motility in soft agar. Moreover, microscopic examination and RT-qPCR exhibited that an increased auto-aggregation and a strong defect in flagella expression, respectively, were responsible for the reduced motility in this mutant. In addition, the wzxC1 mutant was more sensitive than the wild-type strain to NaCl, and auto-aggregation of mutant cells was observed immediately up on the addition of 1% NaCl to the medium. Interestingly, the motility deficiency of the mutant strain, as well as the cell agglomeration and the decrease in flagellar expression, were relieved in a NaCl-free medium. This is the first study to experimentally demonstrate a connection between a Salmonella serogroup specific gene identified by comparative genomics with the synthesis of a specific O-antigen biosynthesis. Also, our results show that the mutation of wzxC1 triggers a NaCl-dependent motility deficiency.
Collapse
Affiliation(s)
- Xiujuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Shaanxi, Yangling, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (CS); (XS)
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (CS); (XS)
| |
Collapse
|
22
|
Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 2014; 22:517-27. [DOI: 10.1016/j.tim.2014.05.002] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
|
23
|
Bowden SD, Hale N, Chung JCS, Hodgkinson JT, Spring DR, Welch M. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing. Microbiology (Reading) 2013; 159:2375-2385. [DOI: 10.1099/mic.0.070748-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steven D. Bowden
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Hale
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jade C. S. Chung
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
24
|
Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 2013; 195:1305-19. [PMID: 23316040 DOI: 10.1128/jb.02136-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. L-Arginine, L-glutamine, DL-histidine, malate, and DL-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.
Collapse
|
25
|
Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis. mBio 2012; 3:mBio.00365-12. [PMID: 23111869 PMCID: PMC3487771 DOI: 10.1128/mbio.00365-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. Bacterial locomotion and the existence of microbes were the first scientific observations that followed the invention of the microscope. A bacterium can swim through a fluid environment or coordinate motion with a group of bacteria and swarm across a surface. The flagellar motor, which propels the bacterium, is fueled by proton motive force. In contrast to the physiology that governs swimming motility, much less is known about the energy sources required for multicellular swarming on surfaces. In this study, we used Proteus mirabilis as a model organism to study vigorous swarming behavior and genetic and biochemical approaches to define energy pathways and central metabolism that contribute to multicellular motility. We found that swarming bacteria use a complete aerobic tricarboxylic acid (TCA) cycle but do not respire oxygen as the terminal electron acceptor, suggesting that multicellular cooperation during swarming reduces the amount of energy required by individual bacteria to achieve rapid motility.
Collapse
|
26
|
Ishii K, Adachi T, Imamura K, Takano S, Usui K, Suzuki K, Hamamoto H, Watanabe T, Sekimizu K. Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism. J Biol Chem 2012; 287:36582-92. [PMID: 22859304 DOI: 10.1074/jbc.m112.399667] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH(2)-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity.
Collapse
Affiliation(s)
- Kenichi Ishii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Post DMB, Yu L, Krasity BC, Choudhury B, Mandel MJ, Brennan CA, Ruby EG, McFall-Ngai MJ, Gibson BW, Apicella MA. O-antigen and core carbohydrate of Vibrio fischeri lipopolysaccharide: composition and analysis of their role in Euprymna scolopes light organ colonization. J Biol Chem 2012; 287:8515-30. [PMID: 22247546 DOI: 10.1074/jbc.m111.324012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.
Collapse
Affiliation(s)
- Deborah M B Post
- Buck Institute for Research on Aging, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.
Collapse
|
29
|
Role of the Umo proteins and the Rcs phosphorelay in the swarming motility of the wild type and an O-antigen (waaL) mutant of Proteus mirabilis. J Bacteriol 2011; 194:669-76. [PMID: 22139504 DOI: 10.1128/jb.06047-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium that exists as a short rod when grown in liquid medium, but during growth on surfaces it undergoes a distinct physical and biochemical change that culminates in the formation of a swarmer cell. How P. mirabilis senses a surface is not fully understood; however, the inhibition of flagellar rotation and accumulation of putrescine have been proposed to be sensory mechanisms. Our lab recently isolated a transposon insertion in waaL, encoding O-antigen ligase, that resulted in a loss of swarming but not swimming motility. The waaL mutant failed to activate flhDC, the class 1 activator of the flagellar gene cascade, when grown on solid surfaces. Swarming in the waaL mutant was restored by overexpression of flhDC in trans or by a mutation in the response regulator rcsB. To further investigate the role of the Rcs signal transduction pathway and its possible relationship with O-antigen surface sensing, mutations were made in the rcsC, rcsB, rcsF, umoB (igaA), and umoD genes in wild-type and waaL backgrounds. Comparison of the swarming phenotypes of the single and double mutants and of strains overexpressing combinations of the UmoB, UmoD, and RcsF proteins demonstrated the following: (i) there is a differential effect of RcsF and UmoB on swarming in wild-type and waaL backgrounds, (ii) RcsF inhibits UmoB activity but not UmoD activity in a wild-type background, and (iii) UmoD is able to modulate activity of the Rcs system.
Collapse
|
30
|
Patrick JE, Kearns DB. Swarming motility and the control of master regulators of flagellar biosynthesis. Mol Microbiol 2011; 83:14-23. [PMID: 22092493 DOI: 10.1111/j.1365-2958.2011.07917.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Swarming motility is the movement of bacteria over a solid surface powered by rotating flagella. The expression of flagellar biosynthesis genes is governed by species-specific master regulator transcription factors. Mutations that reduce or enhance master regulator activity have a commensurate effect on swarming motility. Here we review what is known about the proteins that modulate swarming motility and appear to act upstream of the master flagellar regulators in diverse swarming bacteria. We hypothesize that environmental control of the master regulators is important to the swarming phenotype perhaps at the level of controlling flagellar number.
Collapse
Affiliation(s)
- Joyce E Patrick
- Indiana University, Department of Biology, 1001 East Third Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
31
|
The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens. J Bacteriol 2010; 193:63-74. [PMID: 20971912 DOI: 10.1128/jb.00839-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade. In addition, a detailed analysis of wec cluster mutant strains, which provoke the disruption of the ECA biosynthesis at different levels of the pathway, suggests that the absence of the periplasmic ECA cyclic structure could constitute a potential signal detected by the RcsF-RcsCDB phosphorelay. We also identify SMA1167 as a member of the S. marcescens Rcs regulon and show that high osmolarity induces Rcs activity in this bacterium. These results provide a new perspective from which to understand the phylogenetic conservation of ECA among enterobacteria and the basis for the virulence attenuation detected in wec mutant strains in other pathogenic bacteria.
Collapse
|
32
|
Abstract
How bacteria regulate, assemble and rotate flagella to swim in liquid media is reasonably well understood. Much less is known about how some bacteria use flagella to move over the tops of solid surfaces in a form of movement called swarming. The focus of bacteriology is changing from planktonic to surface environments, and so interest in swarming motility is on the rise. Here, I review the requirements that define swarming motility in diverse bacterial model systems, including an increase in the number of flagella per cell, the secretion of a surfactant to reduce surface tension and allow spreading, and movement in multicellular groups rather than as individuals.
Collapse
|
33
|
Morgenstein RM, Szostek B, Rather PN. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 2010; 34:753-63. [PMID: 20497230 DOI: 10.1111/j.1574-6976.2010.00229.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gram-negative bacterium Proteus mirabilis can exist in either of two cell types, a vegetative cell characterized as a short rod and a highly elongated and hyperflagellated swarmer cell. This differentiation is triggered by growth on solid surfaces and multiple inputs are sensed by the cell to initiate the differentiation process. These include the inhibition of flagellar rotation, the accumulation of extracellular putrescine and O-antigen interactions with a surface. A key event in the differentiation process is the upregulation of FlhD(2)C(2), which activates the flagellar regulon and additional genes required for differentiation. There are a number of genes that influence FlhD(2)C(2) expression and the function of these genes, if known, will be discussed in this review. Additional genes that have been shown to regulate gene expression during swarming will also be reviewed. Although P. mirabilis represents an excellent system to study microbial differentiation, it is largely understudied relative to other systems. Therefore, this review will also discuss some of the unanswered questions that are central to understanding this process in P. mirabilis.
Collapse
Affiliation(s)
- Randy M Morgenstein
- Department of Microbiology and Immunology, 3001 Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|