1
|
Yu F, Wang Z, Zhang Z, Zhou J, Li J, Chen J, Du G, Zhao X. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Crit Rev Biotechnol 2024; 44:1422-1438. [PMID: 38228501 DOI: 10.1080/07388551.2023.2291339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.
Collapse
Affiliation(s)
- Fei Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Ziwei Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Zihan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Rudzite M, O’Toole GA. An energy coupling factor transporter of Streptococcus sanguinis impacts antibiotic susceptibility as well as metal and membrane homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603315. [PMID: 39026867 PMCID: PMC11257530 DOI: 10.1101/2024.07.12.603315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Streptococcus sanguinis is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. S. sanguinis competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to S. sanguinis antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Marta Rudzite
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
4
|
Brunson DN, Colomer-Winter C, Lam LN, Lemos JA. Identification of Multiple Iron Uptake Mechanisms in Enterococcus faecalis and Their Relationship to Virulence. Infect Immun 2023; 91:e0049622. [PMID: 36912636 PMCID: PMC10112239 DOI: 10.1128/iai.00496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Among the unfavorable conditions bacteria encounter within the host is restricted access to essential trace metals such as iron. To overcome iron deficiency, bacteria deploy multiple strategies to scavenge iron from host tissues, with abundant examples of iron acquisition systems being implicated in bacterial pathogenesis. Yet the mechanisms utilized by the major nosocomial pathogen Enterococcus faecalis to maintain intracellular iron balance are poorly understood. In this study, we conducted a systematic investigation to identify and characterize the iron acquisition mechanisms of E. faecalis and to determine their contribution to virulence. Bioinformatic analysis and literature surveys revealed that E. faecalis possesses three conserved iron uptake systems. Through transcriptomics, we discovered two novel ABC-type transporters that mediate iron uptake. While inactivation of a single transporter had minimal impact on the ability of E. faecalis to maintain iron homeostasis, inactivation of all five systems (Δ5Fe strain) disrupted intracellular iron homeostasis and considerably impaired cell growth under iron deficiency. Virulence of the Δ5Fe strain was generally impaired in different animal models but showed niche-specific variations in mouse models, leading us to suspect that heme can serve as an iron source to E. faecalis during mammalian infections. Indeed, heme supplementation restored growth of Δ5Fe under iron depletion and virulence in an invertebrate infection model. This study revealed that the collective contribution of five iron transporters promotes E. faecalis virulence and that the ability to acquire and utilize heme as an iron source is critical to the systemic dissemination of E. faecalis.
Collapse
Affiliation(s)
- Debra N. Brunson
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ling Ning Lam
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
5
|
Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a Unique Heme-Binding Protein, Enhances Group A Streptococcus Fitness During Mucosal Colonization. Front Cell Infect Microbiol 2022; 12:867963. [PMID: 35774404 PMCID: PMC9237417 DOI: 10.3389/fcimb.2022.867963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.
Collapse
Affiliation(s)
- Kristin V. Lyles
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lamar S. Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Corbett Ouellette
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Laura C. C. Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, United States
- *Correspondence: Zehava Eichenbaum,
| |
Collapse
|
6
|
de Lima VM, Batista BB, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence. Front Cell Infect Microbiol 2022; 12:873536. [PMID: 35646721 PMCID: PMC9131926 DOI: 10.3389/fcimb.2022.873536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.
Collapse
|
7
|
16SrDNA-Based Detection Technology in Patients with Chronic Pharyngitis to Analyze the Distribution Characteristics of Pharyngeal Bacteria. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5186991. [PMID: 35310189 PMCID: PMC8933068 DOI: 10.1155/2022/5186991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
In order to analyze the distribution characteristics of pharyngeal bacteria in patients with chronic pharyngitis (CP) by 16SrDNA-based detection technology, a prospective study is conducted to collect pharyngeal secretion samples from patients diagnosed with CP who are admitted to the Otorhinolaryngology Department of The Third People's Hospital of Shenzhen from May 2021 to September 2021. Among them, 11 cases are chronic simple pharyngitis (CSP), 11 cases are chronic hypertrophic pharyngitis (CHP), and 8 cases are healthy subjects. All samples are detected by the 16SrDNA technique and analyzed by bioinformatics. 55724.64 ± 1772.80, 53697.73 ± 2252.19, and 55177.5 ± 1661.80 optimized sequences are obtained by 16SrDNA sequencing. The α diversity analysis of pharyngeal microflora showed that the abundance index SOBS of pharyngeal microflora is upregulated in patients with CHP compared with normal controls (NC), but the diversity index of pharyngeal bacteria in the three groups is not significantly changed, indicating that the abundance of pharyngeal bacteria in the CHP group is increased. The β diversity analysis of pharyngeal microflora showed that the three groups are similar in structure and composition, and there is no significant statistical difference. The structural difference analysis of pharyngeal flora combined with LEfSe difference analysis showed that at the phylum level, the relative abundance of Spirochaetes and Synergistetes in the CHP group is significantly higher than that in the CSP group. At the genus level, the relative abundance of opportunistic pathogens such as Selenomonas and Campylobacter increased significantly in the CSP group. The relative abundance of Escherichia, Mycoplasma, and Porphyromonas are significantly increased in the CHP group. The abundance of beneficial symbiotic bacteria decreased significantly in patients with CP. The pharyngitis of patients with CP is characterized by an increase in the abundance of pharyngitis, changes in the structure of pharyngitis, a decline in the symbiotic beneficial bacteria, and an increase in the content of opportunistic pathogens, which may be closely related to the onset and development of CP.
Collapse
|
9
|
Zhu B, Green SP, Ge X, Puccio T, Nadhem H, Ge H, Bao L, Kitten T, Xu P. Genome-wide identification of Streptococcus sanguinis fitness genes in human serum and discovery of potential selective drug targets. Mol Microbiol 2021; 115:658-671. [PMID: 33084151 PMCID: PMC8055731 DOI: 10.1111/mmi.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/20/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is associated with oral health. When it enters the bloodstream, however, this bacterium may cause the serious illness infective endocarditis. The genes required for survival and proliferation in blood have not been identified. The products of these genes could provide a rich source of targets for endocarditis-specific antibiotics possessing greater efficacy for endocarditis, and also little or no activity against those bacteria that remain in the mouth. We previously created a comprehensive library of S. sanguinis mutants lacking every nonessential gene. We have now screened each member of this library for growth in human serum and discovered 178 mutants with significant abundance changes. The main biological functions disrupted in these mutants, including purine metabolism, were highlighted via network analysis. The components of an ECF-family transporter were required for growth in serum and were shown for the first time in any bacterium to be essential for endocarditis virulence. We also identified two mutants whose growth was reduced in serum but not in saliva. This strategy promises to enable selective targeting of bacteria based on their location in the body, in this instance, treating or preventing endocarditis while leaving the oral microbiome intact.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Shannon P. Green
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Xiuchun Ge
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Tanya Puccio
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Haider Nadhem
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Henry Ge
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Liang Bao
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
| | - Todd Kitten
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Ping Xu
- Philips Institute for Oral Health ResearchVirginia Commonwealth UniversityRichmondVAUSA
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
10
|
Jochim A, Adolf L, Belikova D, Schilling NA, Setyawati I, Chin D, Meyers S, Verhamme P, Heinrichs DE, Slotboom DJ, Heilbronner S. An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis. eLife 2020; 9:e57322. [PMID: 32515736 PMCID: PMC7299338 DOI: 10.7554/elife.57322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023] Open
Abstract
Energy-coupling factor type transporters (ECF) represent trace nutrient acquisition systems. Substrate binding components of ECF-transporters are membrane proteins with extraordinary affinity, allowing them to scavenge trace amounts of ligand. A number of molecules have been described as substrates of ECF-transporters, but an involvement in iron-acquisition is unknown. Host-induced iron limitation during infection represents an effective mechanism to limit bacterial proliferation. We identified the iron-regulated ECF-transporter Lha in the opportunistic bacterial pathogen Staphylococcus lugdunensis and show that the transporter is specific for heme. The recombinant substrate-specific subunit LhaS accepted heme from diverse host-derived hemoproteins. Using isogenic mutants and recombinant expression of Lha, we demonstrate that its function is independent of the canonical heme acquisition system Isd and allows proliferation on human cells as sources of nutrient iron. Our findings reveal a unique strategy of nutritional heme acquisition and provide the first example of an ECF-transporter involved in overcoming host-induced nutritional limitation.
Collapse
Affiliation(s)
- Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Lea Adolf
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | - Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
| | | | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | | | | | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western OntarioLondonCanada
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of TübingenTübingenGermany
- German Centre for Infection Research (DZIF), Partner Site TübingenTübingenGermany
- (DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight InfectionsTübingenGermany
| |
Collapse
|