1
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
2
|
Pitta JLDLP, Bezerra MF, Fernandes DLRDS, de Block T, Novaes ADS, de Almeida AMP, Rezende AM. Genomic Analysis of Yersinia pestis Strains from Brazil: Search for Virulence Factors and Association with Epidemiological Data. Pathogens 2023; 12:991. [PMID: 37623951 PMCID: PMC10459997 DOI: 10.3390/pathogens12080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Yersinia pestis, the etiological agent of the plague, is considered a genetically homogeneous species. Brazil is currently in a period of epidemiological silence but plague antibodies are still detected in sentinel animals, suggesting disease activity in the sylvatic cycle. The present study deployed an in silico approach to analyze virulence factors among 407 Brazilian genomes of Y. pestis belonging to the Fiocruz Collection (1966-1997). The pangenome analysis associated several known virulence factors of Y. pestis in clades according to the presence or absence of genes. Four main strain clades (C, E, G, and H) exhibited the absence of various virulence genes. Notably, clade G displayed the highest number of absent genes, while clade E showed a significant absence of genes related to the T6SS secretion system and clade H predominantly demonstrated the absence of plasmid-related genes. These results suggest attenuation of virulence in these strains over time. The cgMLST analysis associated genomic and epidemiological data highlighting evolutionary patterns related to the isolation years and outbreaks of Y. pestis in Brazil. Thus, the results contribute to the understanding of the genetic diversity and virulence within Y. pestis and the potential for utilizing genomic data in epidemiological investigations.
Collapse
Affiliation(s)
- João Luiz de Lemos Padilha Pitta
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
- Bioinformatics Platform of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil
| | - Matheus Filgueira Bezerra
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
| | | | - Tessa de Block
- Department of Clinical Sciences—Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Ane de Souza Novaes
- Department of Biological Sciences—Federal University of Vale do São Francisco—UNIVASF, Petrolina 56300-000, PE, Brazil;
| | - Alzira Maria Paiva de Almeida
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
| | - Antonio Mauro Rezende
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
- Bioinformatics Platform of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil
| |
Collapse
|
3
|
Demey LM, Gumerov VM, Xing J, Zhulin IB, DiRita VJ. Transmembrane Transcription Regulators Are Widespread in Bacteria and Archaea. Microbiol Spectr 2023; 11:e0026623. [PMID: 37154724 PMCID: PMC10269533 DOI: 10.1128/spectrum.00266-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
To adapt and proliferate, bacteria must sense and respond to the ever-changing environment. Transmembrane transcription regulators (TTRs) are a family of one-component transcription regulators that respond to extracellular information and influence gene expression from the cytoplasmic membrane. How TTRs function to modulate expression of their target genes while localized to the cytoplasmic membrane remains poorly understood. In part, this is due to a lack of knowledge regarding the prevalence of TTRs among prokaryotes. Here, we show that TTRs are highly diverse and prevalent throughout bacteria and archaea. Our work demonstrates that TTRs are more common than previously appreciated and are enriched within specific bacterial and archaeal phyla and that many TTRs have unique transmembrane region properties that can facilitate association with detergent-resistant membranes. IMPORTANCE One-component signal transduction systems are the major class of signal transduction systems among bacteria and are commonly cytoplasmic. TTRs are a group of unique one-component signal transduction systems that influence transcription from the cytoplasmic membrane. TTRs have been implicated in a wide array of biological pathways critical for both pathogens and human commensal organisms but were considered to be rare. Here, we demonstrate that TTRs are in fact highly diverse and broadly distributed in bacteria and archaea. Our findings suggest that transcription factors can access the chromosome and influence transcription from the membrane in both archaea and bacteria. This study challenges thus the commonly held notion that signal transduction systems require a cytoplasmic transcription factor and highlights the importance of the cytoplasmic membrane in directly influencing signal transduction.
Collapse
Affiliation(s)
- Lucas M. Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jiawei Xing
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victor J. DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Gahlot DK, Taheri N, MacIntyre S. Diversity in Genetic Regulation of Bacterial Fimbriae Assembled by the Chaperone Usher Pathway. Int J Mol Sci 2022; 24:ijms24010161. [PMID: 36613605 PMCID: PMC9820224 DOI: 10.3390/ijms24010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria express different types of hair-like proteinaceous appendages on their cell surface known as pili or fimbriae. These filamentous structures are primarily involved in the adherence of bacteria to both abiotic and biotic surfaces for biofilm formation and/or virulence of non-pathogenic and pathogenic bacteria. In pathogenic bacteria, especially Gram-negative bacteria, fimbriae play a key role in bacteria-host interactions which are critical for bacterial invasion and infection. Fimbriae assembled by the Chaperone Usher pathway (CUP) are widespread within the Enterobacteriaceae, and their expression is tightly regulated by specific environmental stimuli. Genes essential for expression of CUP fimbriae are organised in small blocks/clusters, which are often located in proximity to other virulence genes on a pathogenicity island. Since these surface appendages play a crucial role in bacterial virulence, they have potential to be harnessed in vaccine development. This review covers the regulation of expression of CUP-assembled fimbriae in Gram-negative bacteria and uses selected examples to demonstrate both dedicated and global regulatory mechanisms.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.K.G.); (S.M.)
| | - Nayyer Taheri
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland
| | - Sheila MacIntyre
- School of Biological Sciences, University of Reading, Reading RG6 6EX, UK
- Correspondence: (D.K.G.); (S.M.)
| |
Collapse
|
5
|
Tang D, Duan R, Chen Y, Liang J, Zheng X, Qin S, Bukai A, Lu X, Xi J, Lv D, He Z, Wu W, Xiao M, Jing H, Wang X. Plague Outbreak of a Marmota himalayana Family Emerging from Hibernation. Vector Borne Zoonotic Dis 2022; 22:410-418. [PMID: 35787155 PMCID: PMC9419979 DOI: 10.1089/vbz.2022.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April 2021, a plague outbreak was identified within one Marmota himalayana family shortly after emerging from hibernation, during plague surveillance in the M. himalayana plague foci of the Qinghai-Tibet Plateau. A total of five marmots were found dead of Yersinia pestis near the same burrow; one live marmot was positive of Y. pestis fraction 1 (F1) antibody. Comparative genome analysis shows that few single nucleotide polymorphisms were detected among the nine strains, indicating the same origin of the outbreak. The survived marmot shows a high titer of F1 antibody, higher than the mean titer of all marmots during the 2021 monitoring period (W = 391.00, Z = 2.81, p < 0.01). Marmots live with Y. pestis during hibernation when the pathogen is inhibited by hypothermia. But they wake up during or just after hibernation with body temperature rising to 37°C, when Y. pestis goes through optimal growth temperature, increases virulence, and causes death in marmots. A previous report has shown human plague cases caused by excavating marmots during winter; combined, this study shows the high risk of hibernation marmot carrying Y. pestis. This analysis provides new insights into the transmission of the highly virulent Y. pestis in M. himalayana plague foci and drives further effort upon plague control during hibernation.
Collapse
Affiliation(s)
- Deming Tang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhuang Chen
- Child Healthcare Department, Shenzhen Nanshan Maternity and Child Health Care Hospital, Shenzhen, China
| | - Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Plague Prevention and Control Department, Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Shuai Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Asaiti Bukai
- Plague Prevention and Control Department, Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Xinmin Lu
- Plague Prevention and Control Department, Akesai Kazak Autonomous County Center for Disease Control and Prevention, Jiuquan, China
| | - Jinxiao Xi
- Institute for Plague and Brucellosis Prevention and Control, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Dongyue Lv
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weiwei Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Li P, Wang X, Smith C, Shi Y, Wade JT, Sun W. Dissecting psa Locus Regulation in Yersinia pestis. J Bacteriol 2021; 203:e0023721. [PMID: 34280001 PMCID: PMC8425409 DOI: 10.1128/jb.00237-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
The pH 6 antigen (PsaA) of Yersinia pestis is a virulence factor that is expressed in response to high temperature (37°C) and low pH (6.0). Previous studies have implicated the PsaE and PsaF regulators in the temperature- and pH-dependent regulation of psaA. Here, we show that PsaE levels are themselves controlled by pH and temperature, explaining the regulation of psaA. We identify hundreds of binding sites for PsaE across the Y. pestis genome, with the majority of binding sites located in intergenic regions bound by the nucleoid-associated protein H-NS. However, we detect direct regulation of only two transcripts by PsaE, likely due to displacement of H-NS from the corresponding promoter regions; our data suggest that most PsaE binding sites are nonregulatory or that they require additional environmental cues. We also identify the precise binding sites for PsaE that are required for temperature- and pH-dependent regulation of psaA and psaE. Thus, our data reveal the critical role that PsaE plays in the regulation of psaA and suggest that PsaE may have many additional regulatory targets. IMPORTANCE Y. pestis, the etiologic agent of plague, has been responsible for high mortality in several epidemics throughout human history. The plague bacillus has been used as a biological weapon during human history and is currently one of the most likely biological threats. PsaA and PsaE appear to play important roles during Y. pestis infection. Understanding their regulation by environmental cues would facilitate a solution to impede Y. pestis infection.
Collapse
Affiliation(s)
- Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Xiuran Wang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Yixin Shi
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health University at Albany, Rensselaer, New York, USA
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
7
|
Quinn JD, Weening EH, Miller VL. PsaF Is a Membrane-Localized pH Sensor That Regulates psaA Expression in Yersinia pestis. J Bacteriol 2021; 203:e0016521. [PMID: 34060904 PMCID: PMC8407435 DOI: 10.1128/jb.00165-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
The Yersinia pestis pH 6 antigen (PsaA) forms fimbria-like structures and is required for full virulence during bubonic plague. High temperature and low pH regulate PsaA production, and while recent work has uncovered the molecular aspects of temperature control, the mechanisms underlying this unusual regulation by pH are poorly understood. Using defined growth conditions, we recently showed that high levels of PsaE and PsaF (two regulatory proteins required for expression of psaA) are present at mildly acidic pH, but these levels are greatly reduced at neutral pH, resulting in low psaA expression. In prior work, the use of translational reporters suggested that pH had no impact on translation of psaE and psaF, but rather affected protein stability of PsaE and/or PsaF. Here, we investigated the pH-dependent posttranslational mechanisms predicted to regulate PsaE and PsaF stability. Using antibodies that recognize the endogenous proteins, we showed that the amount of PsaE and PsaF is defined by a distinct pH threshold. Analysis of histidine residues in the periplasmic domain of PsaF suggested that it functions as a pH sensor and indicated that the presence of PsaF is important for PsaE stability. At neutral pH, when PsaF is absent, PsaE appears to be targeted for proteolytic degradation by regulated intramembrane proteolysis. Together, our work shows that Y. pestis utilizes PsaF as a pH sensor to control psaA expression by enhancing the stability of PsaE, an essential psaA regulatory protein. IMPORTANCE Yersinia pestis is a bacterial pathogen that causes bubonic plague in humans. As Y. pestis cycles between fleas and mammals, it senses the environment within each host to appropriately control gene expression. PsaA is a protein that forms fimbria-like structures and is required for virulence. High temperature and low pH together stimulate psaA transcription by increasing the levels of two essential integral membrane regulators, PsaE and PsaF. Histidine residues in the PsaF periplasmic domain enable it to function as a pH sensor. In the absence of PsaF, PsaE (a DNA-binding protein) appears to be targeted for proteolytic degradation, thus preventing expression of psaA. This work offers insight into the mechanisms that bacteria use to sense pH and control virulence gene expression.
Collapse
Affiliation(s)
- Joshua D. Quinn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric H. Weening
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague. mSphere 2020; 5:5/4/e00715-20. [PMID: 32759339 PMCID: PMC7407073 DOI: 10.1128/msphere.00715-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Colonization of the lung by Yersinia pestis is a critical first step in establishing infection during primary pneumonic plague, a disease characterized by high lethality. However, the mechanisms by which Y. pestis adheres in the lung after inhalation remain elusive. Here, we used Tn-seq to identify Y. pestis genes important for adherence early during primary pneumonic plague. Our mutant enrichment strategy resulted in the identification of genes important for regulation and assembly of genes and proteins rather than adhesin genes themselves. These results reveal that there may be multiple Y. pestis adhesins or redundancy among adhesins. Identifying the adhesins regulated by the genes identified in our enrichment screen may reveal novel therapeutic targets for preventing Y. pestis adherence and the subsequent development of pneumonic plague. Following inhalation, Yersinia pestis rapidly colonizes the lung to establish infection during primary pneumonic plague. Although several adhesins have been identified in Yersinia spp., the factors mediating early Y. pestis adherence in the lung remain unknown. To identify genes important for Y. pestis adherence during primary pneumonic plague, we used transposon insertion sequencing (Tn-seq). Wild-type and capsule mutant (Δcaf1) Y. pestis transposon mutant libraries were serially passaged in vivo to enrich for nonadherent mutants in the lung using a mouse model of primary pneumonic plague. Sequencing of the passaged libraries revealed six mutants that were significantly enriched in both the wild-type and Δcaf1Y. pestis backgrounds. The enriched mutants had insertions in genes that encode transcriptional regulators, chaperones, an endoribonuclease, and YPO3903, a hypothetical protein. Using single-strain infections and a transcriptional analysis, we identified a significant role for YPO3903 in Y. pestis adherence in the lung and showed that YPO3903 regulated transcript levels of psaA, which encodes a fimbria previously implicated in Y. pestis adherence in vitro. Deletion of psaA had a minor effect on Y. pestis adherence in the lung, suggesting that YPO3903 regulates other adhesins in addition to psaA. By enriching for mutations in genes that regulate the expression or assembly of multiple genes or proteins, we obtained screen results indicating that there may be not just one dominant adhesin but rather several factors that contribute to early Y. pestis adherence during primary pneumonic plague. IMPORTANCE Colonization of the lung by Yersinia pestis is a critical first step in establishing infection during primary pneumonic plague, a disease characterized by high lethality. However, the mechanisms by which Y. pestis adheres in the lung after inhalation remain elusive. Here, we used Tn-seq to identify Y. pestis genes important for adherence early during primary pneumonic plague. Our mutant enrichment strategy resulted in the identification of genes important for regulation and assembly of genes and proteins rather than adhesin genes themselves. These results reveal that there may be multiple Y. pestis adhesins or redundancy among adhesins. Identifying the adhesins regulated by the genes identified in our enrichment screen may reveal novel therapeutic targets for preventing Y. pestis adherence and the subsequent development of pneumonic plague.
Collapse
|