1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Wang Q, Wei Y, Huang Y, Qin J, Liu B, Liu R, Chen X, Li D, Wang Q, Li X, Yang X, Li Y, Sun H. Z3495, a LysR-Type Transcriptional Regulator Encoded in O Island 97, Regulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli O157:H7. Microorganisms 2024; 12:140. [PMID: 38257967 PMCID: PMC10819331 DOI: 10.3390/microorganisms12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. The genome of EHEC O157:H7 contains 177 unique O islands (OIs). Certain OIs significantly contribute to the heightened virulence and pathogenicity exhibited by EHEC O157:H7. However, the function of most OI genes remains unknown. We demonstrated here that EHEC O157:H7 adherence to and colonization of the mouse large intestine are both dependent on OI-97. Z3495, which is annotated as a LysR-type transcriptional regulator and encoded in OI-97, contributes to this phenotype. Z3495 activated the locus of enterocyte effacement (LEE) gene expression, promoting bacterial adherence. Deletion of z3495 significantly decreased the transcription of ler and other LEE genes, the ability to adhere to the host cells, and colonization in the mouse large intestine. Furthermore, the ChIP-seq results confirmed that Z3495 can directly bind to the promoter region of rcsF, which is a well-known activator of Ler, and increase LEE gene expression. Finally, phylogenetic analysis revealed that Z3495 is a widespread transcriptional regulator in enterohemorrhagic and enteropathogenic Escherichia coli. As a result of this study, we have gained a deeper understanding of how bacteria control their virulence and provide another example of a laterally acquired regulator that regulates LEE gene expression in bacteria.
Collapse
Affiliation(s)
- Qian Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yi Wei
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yu Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jingliang Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Nankai International Advanced Research Institute, Shenzhen 518045, China
| | - Ruiying Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xintong Chen
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Dan Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Qiushi Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xiaoya Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xinyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Q.W.); (Y.H.); (X.L.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
4
|
Zhao L, Ge T, Cheng T, Wang Q, Cui M, Yuan H, Zhao L. Fine-tuning gene expression of regulator AdmX for improved biosynthesis of andrimid in Erwinia persicina BST187. Appl Microbiol Biotechnol 2023; 107:6775-6788. [PMID: 37715803 DOI: 10.1007/s00253-023-12770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Andrimid is a potent antibiotic that inhibits acetyl-CoA carboxylase. However, its low biological yield and complex chemical synthesis have hindered its large-scale application. In this study, we found that the LysR-type transcriptional activator AdmX controls andrimid yield by adjusting its expression level in the andrimid-producing bacterium Erwinia persicina strain BST187. Our results showed that gradually increasing of admX transcriptional levels significantly improved andrimid yield, while the yield declined when admX was overexpressed excessively. To further estimate the effect of AdmX on andrimid promotion, we fitted and developed a model which was y = -0.5576x2 + 61.945x + 800.63 (R2 = 0.9591), where x represents the admX transcriptional level and y represents andrimid yield. Andrimid yield of admX overexpression strain BST187ΔadmX/pET28a-Pgap-1::admX was greatly improved by 260%, which was reported for the first time that andrimid yield could be promoted by genetic engineering. Thus, this study provides important insights that the biosynthesis of andrimid would be improved by bioengineering and sheds lights on the potential application of andrimid in both biomedicine and bioagricultural manipulation with its large-scale production in the future. KEY POINTS: • Andrimid production can be greatly promoted by genetic engineering on non-model chassis. • The relationship between AdmX abundance and andrimid yield in Erwinia persicina strain BST187 might be parabolic. • Erwinia persicina BST187 combined with chassis modification enable the promising applications in andrimid industrialization.
Collapse
Affiliation(s)
- Lunqiang Zhao
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongling Ge
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tingfeng Cheng
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Qing Wang
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Meijie Cui
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Hongli Yuan
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
5
|
Tyagi E, Singhvi N, Keshavam CC, Sangwan N, Gupta V, Bhimwal T, Seth R, Seth RK, Singh Y. Phylogenetic analysis and interactomics study unveil gene co-optive evolution of LysR-type transcription regulators across non-pathogenic, opportunistic, and pathogenic mycobacteria. 3 Biotech 2023; 13:168. [PMID: 37188288 PMCID: PMC10167064 DOI: 10.1007/s13205-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Mycobacterial species is known for inhabiting various niches ranging from soil to harsh intracellular environment of animal hosts and their survival through constant changes. For survival and persistence, these organisms must quickly adapt by bringing shift in their metabolism. Metabolic shifts are brought by sensing the environmental cues usually by membrane localized sensor molecules. These signals are transmitted to regulators of various metabolic pathways leading to post-translational modifications of regulators ultimately resulting in altered metabolic state of the cell. Multiple regulatory mechanisms have been unearthed so far that play crucial role in adapting to these situations, and among them, the signal-dependent transcriptional regulators mediated responses are integral for the microbes to perceive environmental signals and generate appropriate adaptive responses. LysR-type transcriptional regulators (LTTRs) form the largest family of transcriptional regulators, which are present in all kingdoms of life. Their numbers vary among bacterial genera and even in different mycobacterial species. To understand the evolutionary aspect of pathogenicity based on LTTRs, we performed phylogenetic analysis of LTTRs encoded by several mycobacterial species representing non-pathogenic (NP), opportunistic (OP), and totally pathogenic (TP) mycobacteria. Our results showed that LTTRs of TP clustered separately from LTTRs of NP and OP mycobacteria. In addition, LTTRs frequency per Mb of genome was reduced in TP when compared with NP and OP. Further, the protein-protein interactions and degree-based network analysis showed concomitant increased interactions per LTTRs with increase in pathogenicity. These results suggested the increase in regulon of LTTRs during evolution of TP mycobacteria.
Collapse
Affiliation(s)
- Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248001 India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- Ministry of Environment Forest & Climate Change, Integrated Regional Office, Dehradun, 248001 India
| | - Tanisha Bhimwal
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ranjana Seth
- Deshbandhu College, University of Delhi South Campus, New Delhi, 110019 India
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
- Present Address: Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007 India
| |
Collapse
|
6
|
PBP1A Directly Interacts with the Divisome Complex to Promote Septal Peptidoglycan Synthesis in Acinetobacter baumannii. J Bacteriol 2022; 204:e0023922. [PMID: 36317921 PMCID: PMC9765026 DOI: 10.1128/jb.00239-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The class A penicillin-binding proteins (aPBPs), PBP1A and PBP1B, are major peptidoglycan synthases that synthesize more than half of the peptidoglycan per generation in Escherichia coli. Whereas aPBPs have distinct roles in peptidoglycan biosynthesis during growth (i.e., elongation and division), they are semiredundant; disruption of either is rescued by the other to maintain envelope homeostasis and promote proper growth. Acinetobacter baumannii is a nosocomial pathogen that has a high propensity to overcome antimicrobial treatment. A. baumannii contains both PBP1A and PBP1B (encoded by mrcA and mrcB, respectively), but only mrcA deletion decreased fitness and contributed to colistin resistance through inactivation of lipooligosaccharide biosynthesis, indicating that PBP1B was not functionally redundant with the PBP1A activity. While previous studies suggested a distinct role for PBP1A in division, it was unknown whether its role in septal peptidoglycan biosynthesis was direct. Here, we show that A. baumannii PBP1A has a direct role in division through interactions with divisome components. PBP1A localizes to septal sites during growth, where it interacts with the transpeptidase PBP3, an essential division component that regulates daughter cell formation. PBP3 overexpression was sufficient to rescue the division defect in ΔmrcA A. baumannii; however, PBP1A overexpression was not sufficient to rescue the septal defect when PBP3 was inhibited, suggesting that their activity is not redundant. Overexpression of a major dd-carboxypeptidase, PBP5, also restored the canonical A. baumannii coccobacilli morphology in ΔmrcA cells. Together, these data support a direct role for PBP1A in A. baumannii division and highlights its role as a septal peptidoglycan synthase. IMPORTANCE Peptidoglycan biosynthesis is a validated target of β-lactam antibiotics, and it is critical that we understand essential processes in multidrug-resistant pathogens such as Acinetobacter baumannii. While model systems such as Escherichia coli have shown that PBP1A is associated with side wall peptidoglycan synthesis, we show herein that A. baumannii PBP1A directly interacts with the divisome component PBP3 to promote division, suggesting a unique role for the enzyme in this highly drug-resistant nosocomial pathogen. A. baumannii demonstrated unanticipated resistance and tolerance to envelope-targeting antibiotics, which may be driven by rewired peptidoglycan machinery and may underlie therapeutic failure during antibiotic treatment.
Collapse
|
7
|
Islam MM, Kim K, Lee JC, Shin M. LeuO, a LysR-Type Transcriptional Regulator, Is Involved in Biofilm Formation and Virulence of Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:738706. [PMID: 34708004 PMCID: PMC8543017 DOI: 10.3389/fcimb.2021.738706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that can survive in different environmental conditions and poses a severe threat to public health due to its multidrug resistance properties. Research on transcriptional regulators, which play an essential role in adjusting to new environments, could provide new insights into A. baumannii pathogenesis. LysR-type transcriptional regulators (LTTRs) are structurally conserved among bacterial species and regulate virulence in many pathogens. We identified a novel LTTR, designated as LeuO encoded in the A. baumannii genome. After construction of LeuO mutant strain, transcriptome analysis showed that LeuO regulates the expression of 194 upregulated genes and 108 downregulated genes responsible for various functions and our qPCR validation of several differentially expressed genes support transcriptome data. Our results demonstrated that disruption of LeuO led to increased biofilm formation and increased pathogenicity in an animal model. However, the adherence and surface motility of the LeuO mutant were reduced compared with those of the wild-type strain. We observed some mutations on amino acids sequence of LeuO in clinical isolates. These mutations in the A. baumannii biofilm regulator LeuO may cause hyper-biofilm in the tested clinical isolates. This study is the first to demonstrate the association between the LTTR member LeuO and virulence traits of A. baumannii.
Collapse
Affiliation(s)
- Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Zhang G, Chen Y, Li Q, Zhou J, Li J, Du G. Growth-coupled evolution and high-throughput screening assisted rapid enhancement for amylase-producing Bacillus licheniformis. BIORESOURCE TECHNOLOGY 2021; 337:125467. [PMID: 34320747 DOI: 10.1016/j.biortech.2021.125467] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bacillus licheniformis α-amylase is a thermostable enzyme used in industrial starch hydrolysis. However, difficulties in the genetic manipulation of B. licheniformis hamper further enhancement of α-amylase production. In this regard, adaptive evolution is a useful strategy for promoting the productivity of microbial hosts, although the success of this approach requires the application of suitable evolutionary stress. In this study, we designed a growth-coupled adaptive evolution model to enrich B. licheniformis strains with enhanced amylase productivity and utilization capacity of starch substrates. Single cells of high α-amylase-producing B. licheniformis were isolated using a droplet-based microfluidic platform. Clones with 67% higher α-amylase yield were obtained and analyzed by genome resequencing. Our findings confirmed that growth-coupled evolution combined with high-throughput screening is an efficient strategy for enhanced α-amylase production. In addition, we identified several potential target genes to guide further modification of the B. licheniformis host for efficient protein expression.
Collapse
Affiliation(s)
- Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yukun Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qinghua Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection. mBio 2020; 11:mBio.01646-20. [PMID: 32843554 PMCID: PMC7448277 DOI: 10.1128/mbio.01646-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites. Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment.
Collapse
|
10
|
Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila. World J Microbiol Biotechnol 2019; 35:127. [DOI: 10.1007/s11274-019-2700-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/22/2019] [Indexed: 01/21/2023]
|
11
|
Tang R, Luo G, Zhao L, Huang L, Qin Y, Xu X, Su Y, Yan Q. The effect of a LysR-type transcriptional regulator gene of Pseudomonas plecoglossicida on the immune responses of Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2019; 89:420-427. [PMID: 30974221 DOI: 10.1016/j.fsi.2019.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 05/27/2023]
Abstract
As an important pathogen in aquaculture, Pseudomonas plecoglossicida has caused heavy losses. It was determined with RNA-seq that the expression of a LysR-type transcriptional regulator gene (L321_20267) of P. plecoglossicida at 18 °C was significantly higher than that at 28 °C, which was verified by quantitative real-time PCR (qRT-PCR). RNAi significantly reduced the content of L321_20267 mRNA in P. plecoglossicida, with a maximal decrease of 90.63%. Compared with the wild-type strain, infection with the L321_20267-RNAi strain resulted in a 50% reduction in mortality and an onset time delay of Epinephelus coioides, as well as alleviation of the symptoms in E. coioides spleens. Compared with the wild-type strain of P. plecoglossicida, the L321_20267-RNAi strain resulted in a significant change in the spleen transcriptome of infected E. coioides. The results of GO and KEGG analysis showed that genes of serine hydrolase activity, the antigen processing and presentation pathway, the B cell receptor signalling pathway and the chemokine signalling pathway were most affected by the L321_20267 gene of P. plecoglossicida. Meanwhile, the immune genes were related to different numbers of miRNAs and lncRNAs, and some miRNAs were related to more than one gene. The results indicated that 1. L321_20267 is a virulence gene of P. plecoglossicida; 2. the upregulation of the immune pathways facilitated E. coioides to remove the L321_20267-RNAi strain compared with the wild-type strain of P. plecoglossicida; and 3. the immune genes were regulated by miRNA and lncRNA in a complex manner.
Collapse
Affiliation(s)
- Ruiqiang Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China.
| |
Collapse
|
12
|
FinR Regulates Expression of nicC and nicX Operons, Involved in Nicotinic Acid Degradation in Pseudomonas putida KT2440. Appl Environ Microbiol 2018; 84:AEM.01210-18. [PMID: 30097438 DOI: 10.1128/aem.01210-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Many proteobacteria harbor FinR homologues in their genomes as putative LysR-type proteins; however, the function of FinR is poorly studied except in the induction of fpr-1 under superoxide stress conditions in Pseudomonas putida and Pseudomonas aeruginosa Here, by analyzing the influence of finR deletion on the transcriptomic profile of P. putida KT2440 through RNA sequencing and real-time quantitative PCR (RT-qPCR), we found 11 operons that are potentially regulated by FinR. Among them, the expression of nicC and nicX operons, which were reported to be responsible for the aerobic degradation of nicotinic acid (NA), was significantly decreased in the finR mutant, and complementation with intact finR restored the expression of the two operons. The results of bacterial NA utilization demonstrated that the deletion of finR impaired bacterial growth in minimal medium supplemented with NA/6HNA (6-hydroxynicotinic acid) as the sole carbon source and that complementation with intact finR restored the growth of the mutant strain. The expression of nicC and nicX operons was previously revealed to be repressed by the NicR repressor and induced by NA/6HNA. Our transcriptional assay revealed that the deletion of finR weakened the induction of nicC and nicX by NA/6HNA. Meanwhile, the deletion of finR largely decreased the effect of nicR deletion on the expression of nicC and nicX operons. These results suggest that finR plays a positive role and cooperates with NicR in the regulation of nicC and nicX operons. In vitro experiments showed that both FinR and NicR bound to nicX and nicC promoter regions directly. The results of this study deepened our knowledge of FinR function and nicotinic acid degradation in P. putida IMPORTANCE This study analyzed the influence of finR deletion on the transcriptomic profile of Pseudomonas putida KT2440. The FinR regulator is widely distributed but poorly studied in diverse proteobacteria. Here, we found 11 operons that potentially are regulated by FinR in KT2440. We further demonstrated that FinR played a positive role and cooperated with the NicR repressor in bacterial nicotinic acid (NA) degradation via regulating the expression of nicC and nicX operons. Furthermore, a transcriptomic analysis also indicated a potentially negative role of FinR in the expression of the hut cluster involved in bacterial histidine utilization. The work deepened our knowledge of FinR function and nicotinic acid degradation in P. putida.
Collapse
|
13
|
Westbrook AW, Ren X, Moo‐Young M, Chou CP. Metabolic engineering ofBacillus subtilisforl‐valine overproduction. Biotechnol Bioeng 2018; 115:2778-2792. [DOI: 10.1002/bit.26789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Murray Moo‐Young
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| |
Collapse
|
14
|
Koentjoro MP, Ogawa N. STRUCTURAL STUDIES OF TRANSCRIPTIONAL REGULATION BY LysR-TYPE TRANSCRIPTIONAL REGULATORS IN BACTERIA. ACTA ACUST UNITED AC 2018. [DOI: 10.7831/ras.6.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University
- Faculty of Agriculture, Shizuoka University
| |
Collapse
|
15
|
Abstract
Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.
Collapse
|
16
|
Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. Appl Microbiol Biotechnol 2017; 101:4581-4592. [DOI: 10.1007/s00253-017-8242-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 01/07/2023]
|
17
|
Zhang Y, Wen T, Guo F, Geng Y, Liu J, Peng T, Guan G, Tian J, Li Y, Li J, Ju J, Jiang W. The Disruption of an OxyR-Like Protein Impairs Intracellular Magnetite Biomineralization in Magnetospirillum gryphiswaldense MSR-1. Front Microbiol 2017; 8:208. [PMID: 28261169 PMCID: PMC5308003 DOI: 10.3389/fmicb.2017.00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria synthesize intracellular membrane-enveloped magnetite bodies known as magnetosomes which have been applied in biotechnology and medicine. A series of proteins involved in ferric ion transport and redox required for magnetite formation have been identified but the knowledge of magnetosome biomineralization remains very limited. Here, we identify a novel OxyR homolog (named OxyR-Like), the disruption of which resulted in low ferromagnetism and disfigured nano-sized iron oxide crystals. High resolution-transmission electron microscopy showed that these nanoparticles are mainly composed of magnetite accompanied with ferric oxide including α-Fe2O3 and 𝜀-Fe2O3. Electrophoretic mobility shift assay and DNase I footprinting showed that OxyR-Like binds the conserved 5'-GATA-N{9}-TATC-3' region within the promoter of pyruvate dehydrogenase (pdh) complex operon. Quantitative real-time reverse transcriptase PCR indicated that not only the expression of pdh operon but also genes related to magnetosomes biosynthesis and tricarboxylic acid cycle decreased dramatically, suggesting a link between carbon metabolism and magnetosome formation. Taken together, our results show that OxyR-Like plays a key role in magnetosomes formation.
Collapse
Affiliation(s)
- Yunpeng Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tong Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Fangfang Guo
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Junquan Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Tao Peng
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University Beijing, China
| | - Guohua Guan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jiesheng Tian
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Ying Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jilun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Peking University Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural UniversityBeijing, China; France-China Bio-Mineralization and Nano-Structures LaboratoryBeijing, China
| |
Collapse
|
18
|
Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 2017; 12:e0172071. [PMID: 28187184 PMCID: PMC5302815 DOI: 10.1371/journal.pone.0172071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.
Collapse
Affiliation(s)
- Siriwan Boonma
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Biochemical and Genetic Bases of Indole-3-Acetic Acid (Auxin Phytohormone) Degradation by the Plant-Growth-Promoting Rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol 2016; 83:AEM.01991-16. [PMID: 27795307 DOI: 10.1128/aem.01991-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.
Collapse
|
20
|
Santiago AS, Santos CA, Mendes JS, Toledo MAS, Beloti LL, Souza AA, Souza AP. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:72-8. [PMID: 25979465 DOI: 10.1016/j.pep.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022]
Abstract
The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress.
Collapse
Affiliation(s)
- André S Santiago
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Clelton A Santos
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo A S Toledo
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alessandra A Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis, SP, Brazil
| | - Anete P Souza
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia (IB), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor. J Bacteriol 2013; 195:2072-8. [PMID: 23457252 DOI: 10.1128/jb.00040-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs) compose a large family and are responsible for various physiological functions in bacteria, while little is understood about their regulatory mechanism on secondary metabolism in Streptomyces. Here we reported that StgR, a typical LTTR in Streptomyces coelicolor, was a negative regulator of undecylprodigiosin (Red) and γ-actinorhodin (Act) production in the early developmental phase of secondary metabolism by suppressing the expression of two pathway-specific regulator genes, redD and actII-orf4, respectively. Meanwhile, stgR expression was downregulated during secondary metabolism to remove its repressive effects on antibiotic production. Moreover, stgR expression was positively autoregulated by direct binding of StgR to its own promoter (stgRp), and the binding site adjacent to translation start codon was determined by a DNase I footprinting assay. Furthermore, the StgR-stgRp interaction could be destroyed by the antibiotic γ-actinorhodin produced from S. coelicolor. Thus, our results suggested a positive feedback regulatory mechanism of stgR expression and antibiotic production for the rapid and irreversible development of secondary metabolism in Streptomyces.
Collapse
|
22
|
Toledo M, Santos C, Mendes J, Pelloso A, Beloti L, Crucello A, Favaro M, Santiago A, Schneider D, Saraiva A, Stach-Machado D, Souza A, Trivella D, Aparicio R, Tasic L, Azzoni A, Souza A. Small-angle X-ray scattering and in silico modeling approaches for the accurate functional annotation of an LysR-type transcriptional regulator. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:697-707. [DOI: 10.1016/j.bbapap.2012.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023]
|
23
|
Sallabhan R, Kerdwong J, Dubbs JM, Somsongkul K, Whangsuk W, Piewtongon P, Mongkolsuk S, Loprasert S. The hdhA Gene Encodes a Haloacid Dehalogenase that is Regulated by the LysR-Type Regulator, HdhR, in Sinorhizobium meliloti. Mol Biotechnol 2012; 54:148-57. [DOI: 10.1007/s12033-012-9556-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Maddocks SE, Oyston PCF. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. MICROBIOLOGY-SGM 2009; 154:3609-3623. [PMID: 19047729 DOI: 10.1099/mic.0.2008/022772-0] [Citation(s) in RCA: 658] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | |
Collapse
|