1
|
Brand C, Newton-Foot M, Grobbelaar M, Whitelaw A. Antibiotic-induced stress responses in Gram-negative bacteria and their role in antibiotic resistance. J Antimicrob Chemother 2025; 80:1165-1184. [PMID: 40053699 PMCID: PMC12046405 DOI: 10.1093/jac/dkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Bacteria adapt to changes in their natural environment through a network of stress responses that enable them to alter their gene expression to survive in the presence of stressors, including antibiotics. These stress responses can be specific to the type of stress and the general stress response can be induced in parallel as a backup mechanism. In Gram-negative bacteria, various envelope stress responses are induced upon exposure to antibiotics that cause damage to the cell envelope or result in accumulation of toxic metabolic by-products, while the heat shock response is induced by antibiotics that cause misfolding or accumulation of protein aggregates. Antibiotics that result in the production of reactive oxygen species (ROS) induce the oxidative stress response and those that cause DNA damage, directly and through ROS production, induce the SOS response. These responses regulate the expression of various proteins that work to repair the damage that has been caused by antibiotic exposure. They can contribute to antibiotic resistance by refolding, degrading or removing misfolded proteins and other toxic metabolic by-products, including removal of the antibiotics themselves, or by mutagenic DNA repair. This review summarizes the stress responses induced by exposure to various antibiotics, highlighting their interconnected nature, as well the roles they play in antibiotic resistance, most commonly through the upregulation of efflux pumps. This can be useful for future investigations targeting these responses to combat antibiotic-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Chanté Brand
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
3
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Li Q, Sun M, Lv L, Zuo Y, Zhang S, Zhang Y, Yang S. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism. ACS Synth Biol 2023; 12:672-680. [PMID: 36867054 DOI: 10.1021/acssynbio.2c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Due to the high specificity in targeting DNA and highly convenient programmability, CRISPR-Cas-based antimicrobials applied for eliminating specific strains such as antibiotic-resistant bacteria in the microbiome were gradually developed. However, the generation of escapers makes the elimination efficiency far lower than the acceptable rate (10-8) recommended by the National Institutes of Health. Here, a systematic study was carried out providing insight into the escaping mechanisms in Escherichia coli, and strategies for reducing the escapers were devised accordingly. We first showed an escape rate of 10-5-10-3 in E. coli MG1655 under the editing of pEcCas/pEcgRNA established previously. Detailed analysis of the escapers obtained at ligA site in E. coli MG1655 uncovered that the disruption of cas9 was the main cause of the generation of survivors, notably the frequent insertion of IS5. Hence, the sgRNA was next designed to target the "perpetrator" IS5, and subsequently the killing efficiency was improved 4-fold. Additionally, the escape rate in IS-free E. coli MDS42 was also tested at the ligA site, ∼10-fold decrease compared with MG1655, but the disruption of cas9 was still observed in all survivors manifested in the form of frameshifts or point mutations. Thus, we optimized the tool itself by increasing the copy number of cas9 to retain some cas9 that still has the correct DNA sequence. Fortunately, the escape rates dropped below 10-8 at 9 of the 16 tested genes. Furthermore, the λ-Red recombination system was added to generate the pEcCas-2.0, and a 100% gene deletion efficiency was achieved at genes cadA, maeB, and gntT in MG1655, whereas those genes were edited with low efficiency previously. Last, the application of pEcCas-2.0 was then expanded to the E. coli B strain BL21(DE3) and W strain ATCC9637. This study reveals the mechanism of E. coli surviving Cas9-mediated death, and a highly efficient editing tool is established based on the mechanism, which will accelerate the further application of CRISPR-Cas.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lu Lv
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yong Zuo
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan China
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| |
Collapse
|
5
|
Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Zhou Y, Cheng G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021; 26:molecules26144277. [PMID: 34299552 PMCID: PMC8303546 DOI: 10.3390/molecules26144277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.
Collapse
Affiliation(s)
- Lulu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Junhong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Boyu An
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Cuirong Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Yujie Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
- Correspondence:
| |
Collapse
|
6
|
Antibiotic-induced DNA damage results in a controlled loss of pH homeostasis and genome instability. Sci Rep 2020; 10:19422. [PMID: 33173044 PMCID: PMC7655802 DOI: 10.1038/s41598-020-76426-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Extracellular pH has been assumed to play little if any role in how bacteria respond to antibiotics and antibiotic resistance development. Here, we show that the intracellular pH of Escherichia coli equilibrates to the environmental pH following treatment with the DNA damaging antibiotic nalidixic acid. We demonstrate that this allows the environmental pH to influence the transcription of various DNA damage response genes and physiological processes such as filamentation. Using purified RecA and a known pH-sensitive mutant variant RecA K250R we show how pH can affect the biochemical activity of a protein central to control of the bacterial DNA damage response system. Finally, two different mutagenesis assays indicate that environmental pH affects antibiotic resistance development. Specifically, at environmental pH's greater than six we find that mutagenesis plays a significant role in producing antibiotic resistant mutants. At pH's less than or equal to 6 the genome appears more stable but extensive filamentation is observed, a phenomenon that has previously been linked to increased survival in the presence of macrophages.
Collapse
|
7
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
8
|
Henrikus SS, Henry C, McGrath AE, Jergic S, McDonald J, Hellmich Y, Bruckbauer ST, Ritger ML, Cherry M, Wood EA, Pham PT, Goodman MF, Woodgate R, Cox MM, van Oijen AM, Ghodke H, Robinson A. Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic Acids Res 2020; 48:8490-8508. [PMID: 32687193 PMCID: PMC7470938 DOI: 10.1093/nar/gkaa597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023] Open
Abstract
Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Amy E McGrath
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe Universität, Frankfurt 3MR4+W2, Germany
| | | | - Matthew L Ritger
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Phuong T Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
9
|
Blázquez J, Rodríguez-Beltrán J, Matic I. Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented. Annu Rev Microbiol 2019; 72:209-230. [PMID: 30200850 DOI: 10.1146/annurev-micro-090817-062139] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.
Collapse
Affiliation(s)
- Jesús Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain; .,Unidad de Enfermedades Infecciosas, Microbiologia y Medicina Preventiva, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain.,Red Española de Investigacion en Patologia Infecciosa, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ivan Matic
- Faculté de Médecine Paris Descartes, INSERM 1001, CNRS, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France;
| |
Collapse
|
10
|
Fitzgerald DM, Rosenberg SM. What is mutation? A chapter in the series: How microbes "jeopardize" the modern synthesis. PLoS Genet 2019; 15:e1007995. [PMID: 30933985 PMCID: PMC6443146 DOI: 10.1371/journal.pgen.1007995] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations drive evolution and were assumed to occur by chance: constantly, gradually, roughly uniformly in genomes, and without regard to environmental inputs, but this view is being revised by discoveries of molecular mechanisms of mutation in bacteria, now translated across the tree of life. These mechanisms reveal a picture of highly regulated mutagenesis, up-regulated temporally by stress responses and activated when cells/organisms are maladapted to their environments-when stressed-potentially accelerating adaptation. Mutation is also nonrandom in genomic space, with multiple simultaneous mutations falling in local clusters, which may allow concerted evolution-the multiple changes needed to adapt protein functions and protein machines encoded by linked genes. Molecular mechanisms of stress-inducible mutation change ideas about evolution and suggest different ways to model and address cancer development, infectious disease, and evolution generally.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
11
|
Xia J, Chiu LY, Nehring RB, Bravo Núñez MA, Mei Q, Perez M, Zhai Y, Fitzgerald DM, Pribis JP, Wang Y, Hu CW, Powell RT, LaBonte SA, Jalali A, Matadamas Guzmán ML, Lentzsch AM, Szafran AT, Joshi MC, Richters M, Gibson JL, Frisch RL, Hastings PJ, Bates D, Queitsch C, Hilsenbeck SG, Coarfa C, Hu JC, Siegele DA, Scott KL, Liang H, Mancini MA, Herman C, Miller KM, Rosenberg SM. Bacteria-to-Human Protein Networks Reveal Origins of Endogenous DNA Damage. Cell 2019; 176:127-143.e24. [PMID: 30633903 PMCID: PMC6344048 DOI: 10.1016/j.cell.2018.12.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.
Collapse
Affiliation(s)
- Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li-Ya Chiu
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - María Angélica Bravo Núñez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Mercedes Perez
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumeng Wang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenyue W Hu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Reid T Powell
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Sandra A LaBonte
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, TX 77843, USA
| | - Ali Jalali
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meztli L Matadamas Guzmán
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alfred M Lentzsch
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Adam T Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohan C Joshi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Richters
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Janet L Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James C Hu
- Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, TX 77843, USA
| | - Deborah A Siegele
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A Mancini
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kyle M Miller
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA.
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Deatherage DE, Leon D, Rodriguez ÁE, Omar SK, Barrick JE. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res 2018; 46:9236-9250. [PMID: 30137492 PMCID: PMC6158703 DOI: 10.1093/nar/gky751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022] Open
Abstract
Unwanted evolution of designed DNA sequences limits metabolic and genome engineering efforts. Engineered functions that are burdensome to host cells and slow their replication are rapidly inactivated by mutations, and unplanned mutations with unpredictable effects often accumulate alongside designed changes in large-scale genome editing projects. We developed a directed evolution strategy, Periodic Reselection for Evolutionarily Reliable Variants (PResERV), to discover mutations that prolong the function of a burdensome DNA sequence in an engineered organism. Here, we used PResERV to isolate Escherichia coli cells that replicate ColE1-type plasmids with higher fidelity. We found mutations in DNA polymerase I and in RNase E that reduce plasmid mutation rates by 6- to 30-fold. The PResERV method implicitly selects to maintain the growth rate of host cells, and high plasmid copy numbers and gene expression levels are maintained in some of the evolved E. coli strains, indicating that it is possible to improve the genetic stability of cellular chassis without encountering trade-offs in other desirable performance characteristics. Utilizing these new antimutator E. coli and applying PResERV to other organisms in the future promises to prevent evolutionary failures and unpredictability to provide a more stable genetic foundation for synthetic biology.
Collapse
Affiliation(s)
- Daniel E Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dacia Leon
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Álvaro E Rodriguez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Salma K Omar
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Moore JM, Correa R, Rosenberg SM, Hastings PJ. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli. PLoS Genet 2017; 13:e1006733. [PMID: 28727736 PMCID: PMC5542668 DOI: 10.1371/journal.pgen.1006733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 08/03/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS oxidation of DNA potentially regulated by ROS regulators.
Collapse
Affiliation(s)
- Jessica M. Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Genomewide Mutational Diversity in Escherichia coli Population Evolving in Prolonged Stationary Phase. mSphere 2017; 2:mSphere00059-17. [PMID: 28567442 PMCID: PMC5444009 DOI: 10.1128/msphere.00059-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection. Prolonged stationary phase is an approximation of natural environments presenting a range of stresses. Survival in prolonged stationary phase requires alternative metabolic pathways for survival. This study describes the repertoire of mutations accumulating in starving Escherichia coli populations in lysogeny broth. A wide range of mutations accumulates over the course of 1 month in stationary phase. Single nucleotide polymorphisms (SNPs) constitute 64% of all mutations. A majority of these mutations are nonsynonymous and are located at conserved loci. There is an increase in genetic diversity in the evolving populations over time. Computer simulations of evolution in stationary phase suggest that the maximum frequency of mutations observed in our experimental populations cannot be explained by neutral drift. Moreover, there is frequent genetic parallelism across populations, suggesting that these mutations are under positive selection. Finally, functional analysis of mutations suggests that regulatory mutations are frequent targets of selection. IMPORTANCE Prolonged stationary phase in bacteria, contrary to its name, is highly dynamic, with extreme nutrient limitation as a predominant stress. Stationary-phase cultures adapt by rapidly selecting a mutation(s) that confers a growth advantage in stationary phase (GASP). The phenotypic diversity of starving E. coli populations has been studied in detail; however, only a few mutations that accumulate in prolonged stationary phase have been described. This study documented the spectrum of mutations appearing in Escherichia coli during 28 days of prolonged starvation. The genetic diversity of the population increases over time in stationary phase to an extent that cannot be explained by random, neutral drift. This suggests that prolonged stationary phase offers a great model system to study adaptive evolution by natural selection.
Collapse
|
15
|
The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II. Genetics 2017; 206:1349-1360. [PMID: 28468910 PMCID: PMC5500135 DOI: 10.1534/genetics.116.199471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability.
Collapse
|
16
|
Sidorenko J, Jatsenko T, Kivisaar M. Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutat Res 2017; 797-799:26-37. [PMID: 28340408 DOI: 10.1016/j.mrfmmm.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Sublines of the major P. aeruginosa reference strain PAO1 are derivatives of the original PAO1 isolate, which are maintained in laboratories worldwide. These sublines display substantial genomic and phenotypic variation due to ongoing microevolution. Here, we examined four sublines, MPAO1, PAO1-L, PAO1-DSM and PAO1-UT, originated from different laboratories, and six DNA polymerase-deficient mutants from the P. aeruginosa MPAO1 transposon library for their employment in elucidation of DNA damage repair and tolerance mechanisms in P. aeruginosa. We found that PAO1 subline PAO1-UT carries a large deletion encompassing the DNA damage inducible imuA-imuB-imuC cassette (PA0669-PA0671), which is implied in mutagenesis in several species. Furthermore, the genetic changes leading to variation in the functionality of the MexEF-OprN efflux system contributed largely to the phenotypic discordance between P. aeruginosa PAO1 sublines. Specifically, we identified multiple mutations in the mexT gene, which encodes a transcriptional regulator of the mexEF-oprN genes, mutations in the mexF, and complete absence of these genes. Of the four tested sublines, MPAO1 was the only subline with the functional MexEF-OprN multidrug efflux system. Active efflux through MexEF-OprN rendered MPAO1 highly resistant to chloramphenicol and ciprofloxacin. Moreover, the functions of specialized DNA polymerase IV and nucleotide excision repair (NER) in 4-NQO-induced DNA damage tolerance appeared to be masked in MPAO1, while were easily detectable in other sublines. Finally, the frequencies of spontaneous and MMS-induced Rifr mutations were also significantly lower in MPAO1 in comparison to the PAO1 sublines with impaired MexEF-OprN efflux system. The MexEF-OprN-attributed differences were also observed between MPAO1 and MPAO1-derived transposon mutants from the two-allele transposon mutant collection. Thus, the accumulating mutations and discordant phenotypes of the PAO1 derivatives challenge the reproducibility and comparability of the results obtained with different PAO1 sublines and also limit the usage of the MPAO1 transposon library in DNA damage tolerance and mutagenesis studies.
Collapse
Affiliation(s)
- Julia Sidorenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia.
| | - Tatjana Jatsenko
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010, Tartu, Estonia.
| |
Collapse
|
17
|
Fitzgerald DM, Hastings PJ, Rosenberg SM. Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance. ANNUAL REVIEW OF CANCER BIOLOGY 2017; 1:119-140. [PMID: 29399660 PMCID: PMC5794033 DOI: 10.1146/annurev-cancerbio-050216-121919] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genomic instability underlies many cancers and generates genetic variation that drives cancer initiation, progression, and therapy resistance. In contrast with classical assumptions that mutations occur purely stochastically at constant, gradual rates, microbes, plants, flies, and human cancer cells possess mechanisms of mutagenesis that are upregulated by stress responses. These generate transient, genetic-diversity bursts that can propel evolution, specifically when cells are poorly adapted to their environments-that is, when stressed. We review molecular mechanisms of stress-response-dependent (stress-induced) mutagenesis that occur from bacteria to cancer, and are activated by starvation, drugs, hypoxia, and other stressors. We discuss mutagenic DNA break repair in Escherichia coli as a model for mechanisms in cancers. The temporal regulation of mutagenesis by stress responses and spatial restriction in genomes are common themes across the tree of life. Both can accelerate evolution, including the evolution of cancers. We discuss possible anti-evolvability drugs, aimed at targeting mutagenesis and other variation generators, that could be used to delay the evolution of cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston Texas 77030
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston Texas 77030
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
18
|
The Small RNA GcvB Promotes Mutagenic Break Repair by Opposing the Membrane Stress Response. J Bacteriol 2016; 198:3296-3308. [PMID: 27698081 PMCID: PMC5116933 DOI: 10.1128/jb.00555-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Microbes and human cells possess mechanisms of mutagenesis activated by stress responses. Stress-inducible mutagenesis mechanisms may provide important models for mutagenesis that drives host-pathogen interactions, antibiotic resistance, and possibly much of evolution generally. In Escherichia coli, repair of DNA double-strand breaks is switched to a mutagenic mode, using error-prone DNA polymerases, via the SOS DNA damage and general (σS) stress responses. We investigated small RNA (sRNA) clients of Hfq, an RNA chaperone that promotes mutagenic break repair (MBR), and found that GcvB promotes MBR by allowing a robust σS response, achieved via opposing the membrane stress (σE) response. Cells that lack gcvB were MBR deficient and displayed reduced σS-dependent transcription but not reduced σS protein levels. The defects in MBR and σS-dependent transcription in ΔgcvB cells were alleviated by artificially increasing σS levels, implying that GcvB promotes mutagenesis by allowing a normal σS response. ΔgcvB cells were highly induced for the σE response, and blocking σE response induction restored both mutagenesis and σS-promoted transcription. We suggest that GcvB may promote the σS response and mutagenesis indirectly, by promoting membrane integrity, which keeps σE levels lower. At high levels, σE might outcompete σS for binding RNA polymerase and so reduce the σS response and mutagenesis. The data show the delicate balance of stress response modulation of mutagenesis. IMPORTANCE Mutagenesis mechanisms upregulated by stress responses promote de novo antibiotic resistance and cross-resistance in bacteria, antifungal drug resistance in yeasts, and genome instability in cancer cells under hypoxic stress. This paper describes the role of a small RNA (sRNA) in promoting a stress-inducible-mutagenesis mechanism, mutagenic DNA break repair in Escherichia coli The roles of many sRNAs in E. coli remain unknown. This study shows that ΔgcvB cells, which lack the GcvB sRNA, display a hyperactivated membrane stress response and reduced general stress response, possibly because of sigma factor competition for RNA polymerase. This results in a mutagenic break repair defect. The data illuminate a function of GcvB sRNA in opposing the membrane stress response, and thus indirectly upregulating mutagenesis.
Collapse
|
19
|
Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis. Curr Genet 2016; 62:771-773. [PMID: 27126384 DOI: 10.1007/s00294-016-0606-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 01/30/2023]
Abstract
Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.
Collapse
|
20
|
Dohrmann PR, Correa R, Frisch RL, Rosenberg SM, McHenry CS. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase. Nucleic Acids Res 2016; 44:1285-97. [PMID: 26786318 PMCID: PMC4756838 DOI: 10.1093/nar/gkv1510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Raul Correa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
21
|
Moore JM, Magnan D, Mojica AK, Núñez MAB, Bates D, Rosenberg SM, Hastings PJ. Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli. Genetics 2015; 201:1349-62. [PMID: 26500258 PMCID: PMC4676537 DOI: 10.1534/genetics.115.178970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
The mutagenicity of DNA double-strand break repair in Escherichia coli is controlled by DNA-damage (SOS) and general (RpoS) stress responses, which let error-prone DNA polymerases participate, potentially accelerating evolution during stress. Either base substitutions and indels or genome rearrangements result. Here we discovered that most small basic proteins that compact the genome, nucleoid-associated proteins (NAPs), promote or inhibit mutagenic break repair (MBR) via different routes. Of 15 NAPs, H-NS, Fis, CspE, and CbpA were required for MBR; Dps inhibited MBR; StpA and Hha did neither; and five others were characterized previously. Three essential genes were not tested. Using multiple tests, we found the following: First, Dps, which reduces reactive oxygen species (ROS), inhibited MBR, implicating ROS in MBR. Second, CbpA promoted F' plasmid maintenance, allowing MBR to be measured in an F'-based assay. Third, Fis was required for activation of the SOS DNA-damage response and could be substituted in MBR by SOS-induced levels of DinB error-prone DNA polymerase. Thus, Fis promoted MBR by allowing SOS activation. Fourth, H-NS represses ROS detoxifier sodB and was substituted in MBR by deletion of sodB, which was not otherwise mutagenic. We conclude that normal ROS levels promote MBR and that H-NS promotes MBR by maintaining ROS. CspE positively regulates RpoS, which is required for MBR. Four of five previously characterized NAPs promoted stress responses that enhance MBR. Hence, most NAPs affect MBR, the majority via regulatory functions. The data show that a total of six NAPs promote MBR by regulating stress responses, indicating the importance of nucleoid structure and function to the regulation of MBR and of coupling mutagenesis to stress, creating genetic diversity responsively.
Collapse
Affiliation(s)
- Jessica M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030
| | - David Magnan
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Ana K Mojica
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, 62210, Morelos, Mexico
| | - María Angélica Bravo Núñez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - David Bates
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - P J Hastings
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
22
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
23
|
Gundlach J, Winter J. Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Microbiology (Reading) 2014; 160:1690-1704. [DOI: 10.1099/mic.0.074815-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.
Collapse
Affiliation(s)
- Jasmin Gundlach
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
24
|
Abstract
ABSTRACT: Bacterial adaptation to suboptimal nutrient environments, including host and/or extreme environments, is subject to complex, coordinated control involving many proteins and RNAs. Among the γ-proteobacteria, which includes many pathogens, the RpoS regulon has been a key focus for many years. Although the RpoS regulator was first identified as a growth phase-dependent regulator, our current understanding of RpoS is now more nuanced as this central regulator also has roles in exponential phase, biofilm development, bacterial virulence and bacterial persistence, as well as in stress adaptation. Induction of RpoS can also exert substantial metabolic effects by negatively regulating key systems including flagella biosynthesis, cryptic phage gene expression and the tricarboxylic acid cycle. Although core RpoS-controlled metabolic functions are conserved, there are substantial differences in RpoS regulation even among closely related bacteria, indicating that regulatory plasticity may be an important aspect of RpoS regulation, which is important in evolutionary adaptation to specialized environments.
Collapse
Affiliation(s)
- Herb E Schellhorn
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
25
|
Abstract
Living cells are continually exposed to DNA-damaging agents that threaten their genomic integrity. Although DNA repair processes rapidly target the damaged DNA for repair, some lesions nevertheless persist and block genome duplication by the cell's replicase. To avoid the deleterious consequence of a stalled replication fork, cells use specialized polymerases to traverse the damage. This process, termed "translesion DNA synthesis" (TLS), affords the cell additional time to repair the damage before the replicase returns to complete genome duplication. In many cases, this damage-tolerance mechanism is error-prone, and cell survival is often associated with an increased risk of mutagenesis and carcinogenesis. Despite being tightly regulated by a variety of transcriptional and posttranslational controls, the low-fidelity TLS polymerases also gain access to undamaged DNA where their inaccurate synthesis may actually be beneficial for genetic diversity and evolutionary fitness.
Collapse
Affiliation(s)
- Myron F Goodman
- Department of Biological Sciences and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-2910
| | | |
Collapse
|
26
|
Pomerantz RT, Goodman MF, O'Donnell ME. DNA polymerases are error-prone at RecA-mediated recombination intermediates. Cell Cycle 2013; 12:2558-63. [PMID: 23907132 DOI: 10.4161/cc.25691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genetic studies have suggested that Y-family translesion DNA polymerase IV (DinB) performs error-prone recombination-directed replication (RDR) under conditions of stress due to its ability to promote mutations during double-strand break (DSB) repair in growth-limited E. coli cells. In recent studies we have demonstrated that pol IV is preferentially recruited to D-loop recombination intermediates at stress-induced concentrations and is highly mutagenic during RDR in vitro. These findings verify longstanding genetic data that have implicated pol IV in promoting stress-induced mutagenesis at D-loops. In this Extra View, we demonstrate the surprising finding that A-family pol I, which normally exhibits high-fidelity DNA synthesis, is highly error-prone at D-loops like pol IV. These findings indicate that DNA polymerases are intrinsically error-prone at RecA-mediated D-loops and suggest that auxiliary factors are necessary for suppressing mutations during RDR in non-stressed proliferating cells.
Collapse
Affiliation(s)
- Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
27
|
Pomerantz RT, Kurth I, Goodman MF, O'Donnell ME. Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination. Nat Struct Mol Biol 2013; 20:748-55. [PMID: 23686288 PMCID: PMC3685420 DOI: 10.1038/nsmb.2573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/27/2013] [Indexed: 12/14/2022]
Abstract
Although homologous recombination (HR) is considered an accurate form of DNA repair, genetics suggest that Escherichia coli (E. coli) translesion DNA polymerase (pol) IV (DinB) promotes error-prone recombination during stress which allows cells to overcome adverse conditions. How pol IV functions and is regulated during recombination under stress, however, is unknown. We show that pol IV is highly proficient in error-prone recombination, and is preferentially recruited to D-loops at stress-induced concentrations in vitro. Unexpectedly, we find that high-fidelity pol II switches to exonuclease mode at D-loops which is stimulated by topological stress and reduced deoxy-ribonucleotide pools observed during stationary-phase. The exonuclease activity of pol II enables it to compete with pol IV which likely suppresses error-prone recombination. These findings indicate that preferential D-loop extension by pol IV facilitates error-prone recombination and explain how pol II reduces such errors in vivo.
Collapse
Affiliation(s)
- Richard T Pomerantz
- The Rockefeller University, Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Mutations stimulate evolutionary change and lead to birth defects and cancer in humans as well as to antibiotic resistance in bacteria. According to the classic view, most mutations arise in dividing cells and result from uncorrected errors of S-phase DNA replication, which is highly accurate because of the involvement of selective DNA polymerases and efficient error-correcting mechanisms. In contrast, studies in bacteria and yeast reveal that DNA synthesis associated with repair of double-strand chromosomal breaks (DSBs) by homologous recombination is highly inaccurate, thus making DSBs and their repair an important source of mutations. Different error-prone mechanisms appear to operate in different repair scenarios. In the filling in of single-stranded DNA regions, error-prone translesion DNA polymerases appear to produce most errors. In contrast, in gene conversion gap repair and in break-induced replication, errors are independent of translesion polymerases, and many mutations have the signatures of template switching during DNA repair synthesis. DNA repair also appears to create complex copy-number variants. Overall, homologous recombination, which is traditionally considered a safe pathway of DSB repair, is an important source of mutagenesis that may contribute to human disease and evolution.
Collapse
Affiliation(s)
- Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana 46202-5132, USA.
| | | |
Collapse
|
29
|
Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J. Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol 2013; 303:293-7. [PMID: 23517688 DOI: 10.1016/j.ijmm.2013.02.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.
Collapse
Affiliation(s)
- Alexandro Rodríguez-Rojas
- Centro Nacional de Biotecnología CNB, Consejo Superior de Investigaciones Científicas CSIC, Darwin 3, Campus de la Universidad Autónoma, Cantoblanco-Madrid 28049, Spain
| | | | | | | |
Collapse
|
30
|
Al Mamun AAM, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 2012; 338:1344-8. [PMID: 23224554 PMCID: PMC3782309 DOI: 10.1126/science.1226683] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanisms of DNA repair and mutagenesis are defined on the basis of relatively few proteins acting on DNA, yet the identities and functions of all proteins required are unknown. Here, we identify the network that underlies mutagenic repair of DNA breaks in stressed Escherichia coli and define functions for much of it. Using a comprehensive screen, we identified a network of ≥93 genes that function in mutation. Most operate upstream of activation of three required stress responses (RpoS, RpoE, and SOS, key network hubs), apparently sensing stress. The results reveal how a network integrates mutagenic repair into the biology of the cell, show specific pathways of environmental sensing, demonstrate the centrality of stress responses, and imply that these responses are attractive as potential drug targets for blocking the evolution of pathogens.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Andreas M. Lisewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Claude Saint-Ruf
- U1001 INSERM, Université Paris, Descartes, Sorbonne Paris cité, site Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ryan L. Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
31
|
Moore JM, Wimberly H, Thornton PC, Rosenberg SM, Hastings PJ. Gross chromosomal rearrangement mediated by DNA replication in stressed cells: evidence from Escherichia coli. Ann N Y Acad Sci 2012; 1267:103-9. [PMID: 22954223 DOI: 10.1111/j.1749-6632.2012.06587.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gross chromosomal rearrangements (GCRs), or changes in chromosome structure, play central roles in evolution and are central to cancer formation and progression. GCRs underlie copy number variation (CNV), and therefore genomic disorders that stem from CNV. We study amplification in Escherichia coli as a model system to understand mechanisms and circumstances of GCR formation. Here, we summarize observations that led us to postulate that GCR occurs by a replicative mechanism as part of activated stress responses. We report that we do not find RecA to be downregulated by stress on a population basis and that constitutive expression of RecA does not inhibit amplification, as would be expected if downregulation of RecA made cells permissive for nonhomologous recombination. Strains deleted for the genes for three proteins that inhibit RecA activity, psiB, dinI, and recX, all show unaltered amplification, suggesting that if they do downregulate RecA indirectly, this activity does not promote amplification.
Collapse
Affiliation(s)
- J M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
32
|
Rosenberg SM, Shee C, Frisch RL, Hastings PJ. Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays 2012; 34:885-92. [PMID: 22911060 PMCID: PMC3533179 DOI: 10.1002/bies.201200050] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer.
Collapse
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | |
Collapse
|
33
|
Blázquez J, Couce A, Rodríguez-Beltrán J, Rodríguez-Rojas A. Antimicrobials as promoters of genetic variation. Curr Opin Microbiol 2012; 15:561-9. [PMID: 22890188 DOI: 10.1016/j.mib.2012.07.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/25/2022]
Abstract
The main causes of antibiotic resistance are the selection of naturally occurring resistant variants and horizontal gene transfer processes. In recent years, the implications of antibiotic contact or treatment in drug resistance acquisition by bacteria have been gradually more evident. The ultimate source of bacterial genetic alterations to face antibiotic toxicity is mutation. All evidence points to antibiotics, especially when present at sublethal concentrations, as responsible for increasing genetic variation and therefore participating in the emergence of antibiotic resistance. Antibiotics may cause genetic changes by means of different pathways involving an increase of free radicals inside the cell or oxidative stress, by inducing error-prone polymerases mediated by SOS response, misbalancing nucleotide metabolism or acting directly on DNA. In addition, the concerted action of certain environmental conditions with subinhibitory concentrations of antimicrobials may contribute to increasing the mutagenic effect of antibiotics even more. Here we review and discuss in detail the recent advances concerning these issues and their relevance in the field of antibiotic resistance.
Collapse
|
34
|
Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 2012; 67:2069-89. [PMID: 22618862 DOI: 10.1093/jac/dks196] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria encounter a myriad of stresses in their natural environments, including, for pathogens, their hosts. These stresses elicit a variety of specific and highly regulated adaptive responses that not only protect bacteria from the offending stress, but also manifest changes in the cell that impact innate antimicrobial susceptibility. Thus exposure to nutrient starvation/limitation (nutrient stress), reactive oxygen and nitrogen species (oxidative/nitrosative stress), membrane damage (envelope stress), elevated temperature (heat stress) and ribosome disruption (ribosomal stress) all impact bacterial susceptibility to a variety of antimicrobials through their initiation of stress responses that positively impact recruitment of resistance determinants or promote physiological changes that compromise antimicrobial activity. As de facto determinants of antimicrobial, even multidrug, resistance, stress responses may be worthy of consideration as therapeutic targets.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
35
|
Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 2012; 20:227-34. [PMID: 22424589 DOI: 10.1016/j.tim.2012.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/25/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
36
|
Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 2012; 11:11. [PMID: 22264280 PMCID: PMC3280934 DOI: 10.1186/1475-2859-11-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/20/2012] [Indexed: 01/24/2023] Open
Abstract
Background Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. Results By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. Conclusions By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.
Collapse
Affiliation(s)
- Bálint Csörgo
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 62 Temesvári krt, H6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
37
|
Shee C, Ponder R, Gibson JL, Rosenberg SM. What limits the efficiency of double-strand break-dependent stress-induced mutation in Escherichia coli? J Mol Microbiol Biotechnol 2012; 21:8-19. [PMID: 22248539 DOI: 10.1159/000335354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stress-induced mutation is a collection of molecular mechanisms in bacterial, yeast and human cells that promote mutagenesis specifically when cells are maladapted to their environment, i.e. when they are stressed. Here, we review one molecular mechanism: double-strand break (DSB)-dependent stress-induced mutagenesis described in starving Escherichia coli. In it, the otherwise high-fidelity process of DSB repair by homologous recombination is switched to an error-prone mode under the control of the RpoS general stress response, which licenses the use of error-prone DNA polymerase, DinB, in DSB repair. This mechanism requires DSB repair proteins, RpoS, the SOS response and DinB. This pathway underlies half of spontaneous chromosomal frameshift and base substitution mutations in starving E. coli [Proc Natl Acad Sci USA 2011;108:13659-13664], yet appeared less efficient in chromosomal than F' plasmid-borne genes. Here, we demonstrate and quantify DSB-dependent stress-induced reversion of a chromosomal lac allele with DSBs supplied by I-SceI double-strand endonuclease. I-SceI-induced reversion of this allele was previously studied in an F'. We compare the efficiencies of mutagenesis in the two locations. When we account for contributions of an F'-borne extra dinB gene, strain background differences, and bypass considerations of rates of spontaneous DNA breakage by providing I-SceI cuts, the chromosome is still ∼100 times less active than F. We suggest that availability of a homologous partner molecule for recombinational break repair may be limiting. That partner could be a duplicated chromosomal segment or sister chromosome.
Collapse
Affiliation(s)
- Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
38
|
Fonville NC, Ward RM, Mittelman D. Stress-induced modulators of repeat instability and genome evolution. J Mol Microbiol Biotechnol 2012; 21:36-44. [PMID: 22248541 DOI: 10.1159/000332748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Evolution hinges on the ability of organisms to adapt to their environment. A key regulator of adaptability is mutation rate, which must be balanced to maintain genome fidelity while permitting sufficient plasticity to cope with environmental changes. Multiple mechanisms govern an organism's mutation rate. Constitutive mechanisms include mutator alleles that drive global, permanent increases in mutation rates, but these changes are confined to the subpopulation that carries the mutator allele. Other mechanisms focus mutagenesis in time and space to improve the chances that adaptive mutations can spread through the population. For example, environmental stress can induce mechanisms that transiently relax the fidelity of DNA repair to bring about a temporary increase in mutation rates during times when an organism experiences a reduced fitness for its surroundings, as has been demonstrated for double-strand break repair in Escherichia coli. Still, other mechanisms control the spatial distribution of mutations by directing changes to especially mutable sequences in the genome. In eukaryotic cells, for example, the stress-sensitive chaperone Hsp90 can regulate the length of trinucleotide repeats to fine-tune gene function and can regulate the mobility of transposable elements to enable larger functional changes. Here, we review the regulation of mutation rate, with special emphasis on the roles of tandem repeats and environmental stress in genome evolution.
Collapse
|
39
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
40
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
41
|
Stress-induced loss of heterozygosity in Candida: a possible missing link in the ability to evolve. mBio 2011; 2:mBio.00200-11. [PMID: 21933916 PMCID: PMC3175628 DOI: 10.1128/mbio.00200-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diploid organisms are buffered against the effects of mutations by carrying two sets of each gene, which allows compensation if one is mutated. But recombination between "mom" and "dad" chromosomes causes loss of heterozygosity (LOH), stretches of "mom-only" or "dad-only" DNA sequence, suddenly revealing effects of mutations accumulated in entire chromosome arms. LOH creates new phenotypes from old mutations, drives cancer development and evolution, and, in a new study by Forche et al., is shown to be induced by stress in Candida albicans [Forche A, et al, mBio 2(4):e00129-11, 2011]. Stress-induced LOH could speed evolution of Candida specifically when it is poorly adapted to its environment. Moreover, the findings may provide a missing link between recombination-dependent mutagenesis in bacteria and yeast, suggesting that both might be stress induced, both maximizing genetic variation when populations could benefit most from diversity.
Collapse
|
42
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|