1
|
Akbari MS, Joyce LR, Spencer BL, Brady A, McIver KS, Doran KS. Identification of glyoxalase A in group B Streptococcus and its contribution to methylglyoxal tolerance and virulence. Infect Immun 2025; 93:e0054024. [PMID: 40008888 PMCID: PMC11977320 DOI: 10.1128/iai.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for bloodstream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 623 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirmed that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.IMPORTANCEA transposon-mutant screen of group B Streptococcus (GBS) in a bacteremia mouse model of infection revealed virulence factors known to be important for GBS survival such as the capsule, β-hemolysin/cytolysin, and genes involved in metal homeostasis. Many uncharacterized factors were also identified including genes that are part of the metabolic pathway that breaks down methylglyoxal (MG). The glyoxalase pathway is the most ubiquitous metabolic pathway for MG breakdown and is only a two-step process using glyoxalase A (gloA) and B (gloB) enzymes. MG is a highly reactive byproduct of glycolysis and is made by most cells. Here, we show that in GBS, the first enzyme in the glyoxalase pathway, encoded by gloA, contributes to MG resistance and blood survival. We further demonstrate that GloA contributes to GBS survival against neutrophils in vitro and in vivo and, therefore, is an important virulence factor required for invasive infection.
Collapse
Affiliation(s)
- Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Brady
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin S. McIver
- Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2025; 38:e0015422. [PMID: 39584819 PMCID: PMC11905376 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M. Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Akbari MS, Joyce LR, Spencer BL, Brady A, McIver KS, Doran KS. Identification of Glyoxalase A in Group B Streptococcus and its contribution to methylglyoxal tolerance and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605887. [PMID: 39131367 PMCID: PMC11312555 DOI: 10.1101/2024.07.30.605887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for blood stream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 623 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirm that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.
Collapse
Affiliation(s)
- Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Amanda Brady
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Kevin S. McIver
- Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|
4
|
Melet M, Blanchet S, Barbarin P, Maunders EA, Neville SL, Rong V, Mereghetti L, McDevitt CA, Hiron A. Adaptation to zinc restriction in Streptococcus agalactiae: role of the ribosomal protein and zinc-importers regulated by AdcR. mSphere 2024; 9:e0061424. [PMID: 39480081 PMCID: PMC11580457 DOI: 10.1128/msphere.00614-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Zinc (Zn) is an essential cofactor for numerous bacterial proteins and altering Zn availability is an important component of host innate immunity. During infection, adaptation to both Zn deprivation and excess is critical for pathogenic bacteria development. To understand the adaptive responses to Zn availability of Streptococcus agalactiae, a pathogen causing invasive infections of neonates, global transcriptional profiling was conducted. Results highlight that in response to Zn limitation, genes belonging to the AdcR regulon, the master regulator of Zn homeostasis in streptococci, were overexpressed. Through a combination of in silico analysis and experimental validation, new AdcR-regulated targets were identified. Among them, we identified a duplicated ribosomal protein, RpsNb, and an ABC transporter, and examined the role of these genes in bacterial growth under Zn-restricted conditions. Our results indicated that, during Zn restriction, both the RpsNb protein and a potential secondary Zn transporter are important for S. agalactiae adaptation to Zn deficiency. IMPORTANCE Streptococcus agalactiae is a bacterial human pathobiont causing invasive diseases in neonates. Upon infection, S. agalactiae is presented with Zn limitation and excess but the genetic systems that allow bacterial adaptation to these conditions remain largely undefined. A comprehensive analysis of S. agalactiae global transcriptional response to Zn availability shows that this pathogen manages Zn limitation mainly through upregulation of the AdcR regulon. We demonstrate that several AdcR-regulated genes are important for bacterial growth during Zn deficiency, including human biological fluids. Taken together, these findings reveal new mechanisms of S. agalactiae adaptation under conditions of metal deprivation.
Collapse
Affiliation(s)
- M. Melet
- ISP, Université de Tours, Tours, France
| | | | | | - E. A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - S. L. Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - V. Rong
- ISP, Université de Tours, Tours, France
| | - L. Mereghetti
- ISP, Université de Tours, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie Hygiène, Tours, France
| | - C. A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - A. Hiron
- ISP, Université de Tours, Tours, France
| |
Collapse
|
5
|
Hiron A, Melet M, Guerry C, Dubois I, Rong V, Gilot P. Characterization of galactose catabolic pathways in Streptococcus agalactiae and identification of a major galactose: phosphotransferase importer. J Bacteriol 2024; 206:e0015524. [PMID: 39297619 PMCID: PMC11500514 DOI: 10.1128/jb.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.
Collapse
Affiliation(s)
- Aurelia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Morgane Melet
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Capucine Guerry
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Ilona Dubois
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Vanessa Rong
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| |
Collapse
|
6
|
Li H, Cao J, Han Q, Li Z, Zhuang J, Wang C, Wang H, Luo Z, Wang B, Li A. Protease SfpB plays an important role in cell membrane stability and immune system evasion in Streptococcus agalactiae. Microb Pathog 2024; 192:106683. [PMID: 38735447 DOI: 10.1016/j.micpath.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
8
|
Wang Y, Wu Z, Wang Z, Du H, Xiao S, Lu L, Wang Z. Analyses of the Antibiofilm Activity of o-Phenanthroline Monohydrate against Enterococcus faecalis and Staphylococcus aureus and the Mechanisms Underlying These Effects. ACS Infect Dis 2024; 10:638-649. [PMID: 38258383 DOI: 10.1021/acsinfecdis.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enterococcus faecalis and Staphylococcus aureus exhibit robust biofilm formation capabilities, the formation of which is closely linked to pathogenicity and drug resistance, thereby resulting in host infection and treatment failure. o-Phenanthroline monohydrate (o-Phen) and its derivatives demonstrate a wide range of antibacterial and antifungal activities. In this study, we aimed to explore the antibiofilm activity of o-Phen to E. faecalis and S. aureus and provide insights into the molecular mechanisms for combating biofilm resistance. We demonstrated that o-Phen possesses significant antibacterial and antibiofilm properties against E. faecalis and S. aureus, inducing alterations in bacterial morphology, compromising cell membrane integrity, and exhibiting synergistic effects with β-lactam antibiotics at sub-MIC concentrations. The adhesion ability and automatic condensation capacity of, and synthesis of, extracellular polymers by E. faecalis cells were reduced by o-Phen, resulting in the inhibition of biofilm formation. Importantly, transcriptome analysis revealed 354 upregulated and 456 downregulated genes in o-Phen-treated E. faecalis. Differentially expressed genes were enriched in 11 metabolism-related pathways, including amino acid metabolism, pyrimidine metabolism, and glycolysis/gluconeogenesis. Moreover, the oppA, CeuA, and ZnuB genes involved in the ABC transport system, and the PBP1A penicillin-binding protein-coding genes sarA and mrcA were significantly downregulated. The multidrug efflux pump system and membrane permeability genes mdtG and hlyD, and bacterial adhesion-related genes, including adcA and fss2 were also downregulated, while mraZ and ASP23 were upregulated. Thus, o-Phen is anticipated to be an effective alternative drug for the treatment of E. faecalis and S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhouhui Wu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhiwen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Heng Du
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Xiao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lin Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
9
|
Moore R, Spicer SK, Lu J, Chambers SA, Noble KN, Lochner J, Christofferson RC, Vasco KA, Manning SD, Townsend SD, Gaddy JA. The Utility of Human Milk Oligosaccharides against Group B Streptococcus Infections of Reproductive Tissues and Cognate Adverse Pregnancy Outcomes. ACS CENTRAL SCIENCE 2023; 9:1737-1749. [PMID: 37780357 PMCID: PMC10540283 DOI: 10.1021/acscentsci.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 10/03/2023]
Abstract
Preterm birth affects nearly 10% of all pregnancies in the United States, with 40% of those due, in part, to infections. Streptococcus agalactiae (Group B Streptococcus, GBS) is one of the most common perinatal pathogens responsible for these infections. Current therapeutic techniques aimed to ameliorate invasive GBS infections are less than desirable and can result in complications in both the neonate and the mother. To this end, the need for novel therapeutic options is urgent. Human milk oligosaccharides (HMOs), an integral component of human breast milk, have been previously shown to possess antiadhesive and antimicrobial properties. To interrogate these characteristics, we examined HMO-mediated outcomes in both in vivo and ex vivo models of GBS infection utilizing a murine model of ascending GBS infection, an EpiVaginal human organoid tissue model, and ex vivo human gestational membranes. Supplementation of HMOs resulted in diminished adverse pregnancy outcomes, decreased GBS adherence to gestational tissues, decreased colonization within the reproductive tract, and reduced proinflammatory immune responses to GBS infection. Taken together, these results highlight the potential of HMOs as promising therapeutic interventions in perinatal health.
Collapse
Affiliation(s)
- Rebecca
E. Moore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee
Valley Healthcare Systems, Nashville, Tennessee 37212, United States
| | - Sabrina K. Spicer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Schuyler A. Chambers
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kristen N. Noble
- Department
of Pediatrics, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Jonathan Lochner
- Department
of Pediatrics, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Rebecca C. Christofferson
- Department of Pathobiological
Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Karla A. Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee
Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
10
|
Akbari MS, Keogh RA, Radin JN, Sanchez-Rosario Y, Johnson MDL, Horswill AR, Kehl-Fie TE, Burcham LR, Doran KS. The impact of nutritional immunity on Group B streptococcal pathogenesis during wound infection. mBio 2023; 14:e0030423. [PMID: 37358277 PMCID: PMC10470527 DOI: 10.1128/mbio.00304-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive pathobiont that can cause adverse health outcomes in neonates and vulnerable adult populations. GBS is one of the most frequently isolated bacteria from diabetic (Db) wound infections but is rarely found in the non-diabetic (nDb) wound environment. Previously, RNA sequencing of wound tissue from Db wound infections in leprdb diabetic mice showed increased expression of neutrophil factors, and genes involved in GBS metal transport such as the zinc (Zn), manganese (Mn), and putative nickel (Ni) import systems. Here, we develop a Streptozotocin-induced diabetic wound model to evaluate the pathogenesis of two invasive strains of GBS, serotypes Ia and V. We observe an increase in metal chelators such as calprotectin (CP) and lipocalin-2 during diabetic wound infections compared to nDb. We find that CP limits GBS survival in wounds of non-diabetic mice but does not impact survival in diabetic wounds. Additionally, we utilize GBS metal transporter mutants and determine that the Zn, Mn, and putative Ni transporters in GBS are dispensable in diabetic wound infection but contributed to bacterial persistence in non-diabetic animals. Collectively, these data suggest that in non-diabetic mice, functional nutritional immunity mediated by CP is effective at mitigating GBS infection, whereas in diabetic mice, the presence of CP is not sufficient to control GBS wound persistence. IMPORTANCE Diabetic wound infections are difficult to treat and often become chronic due to an impaired immune response as well as the presence of bacterial species that establish persistent infections. Group B Streptococcus (GBS) is one of the most frequently isolated bacterial species in diabetic wound infections and, as a result, is one of the leading causes of death from skin and subcutaneous infection. However, GBS is notoriously absent in non-diabetic wounds, and little is known about why this species thrives in diabetic infection. The work herein investigates how alterations in diabetic host immunity may contribute to GBS success during diabetic wound infection.
Collapse
Affiliation(s)
- Madeline S. Akbari
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rebecca A. Keogh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jana N. Radin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yamil Sanchez-Rosario
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of Immunobiology, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine—Tucson, Tucson, Arizona, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Veterans Affairs, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lindsey R. Burcham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
Briaud P, Gautier T, Rong V, Mereghetti L, Lanotte P, Hiron A. The Streptococcus agalactiae Exonuclease ExoVII Is Required for Resistance to Exogenous DNA-Damaging Agents. J Bacteriol 2023; 205:e0002423. [PMID: 37162366 PMCID: PMC10294681 DOI: 10.1128/jb.00024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Streptococcus agalactiae is a human pathogen responsible for severe invasive infections in newborns. In this bacterium, XseB, a part of the ExoVII exonuclease, was shown to be specifically more abundant in the hypervirulent ST-17 strains. In Escherichia coli, ExoVII is associated either with mismatch repair or with recombinational DNA repair and is redundant with other exonucleases. In this study, the biological role of S. agalactiae ExoVII was examined. The ΔexoVII mutant strain was subjected to different DNA-damaging agents, as well as a large set of mutants impaired either in the mismatch repair pathway or in processes of recombinational DNA repair. Our results clarified the role of this protein in Gram-positive bacteria as we showed that ExoVII is not significantly involved in mismatch repair but is involved in bacterial recovery after exposure to exogenous DNA-damaging agents such as ciprofloxacin, UV irradiation, or hydrogen peroxide. We found that ExoVII is more particularly important for resistance to ciprofloxacin, likely as part of the RecF DNA repair pathway. Depending on the tested agent, ExoVII appeared to be fully redundant or nonredundant with another exonuclease, RecJ. The importance of each exonuclease, ExoVII or RecJ, in the process of DNA repair is thus dependent on the considered DNA lesion. IMPORTANCE This study examined the role of the ExoVII exonuclease of Streptococcus agalactiae within the different DNA repair processes. Our results concluded that ExoVII is involved in bacterial recovery after exposure to different exogenous DNA-damaging agents but not in the mismatch repair pathway. We found that ExoVII is particularly important for resistance to ciprofloxacin, likely as part of the RecF DNA repair pathway.
Collapse
Affiliation(s)
- P. Briaud
- Université de Tours, INRAE, ISP, Tours, France
| | - T. Gautier
- Université de Tours, INRAE, ISP, Tours, France
| | - V. Rong
- Université de Tours, INRAE, ISP, Tours, France
| | - L. Mereghetti
- Université de Tours, INRAE, ISP, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - P. Lanotte
- Université de Tours, INRAE, ISP, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - A. Hiron
- Université de Tours, INRAE, ISP, Tours, France
| |
Collapse
|
12
|
Peng M, Xu Y, Dou B, Yang F, He Q, Liu Z, Gao T, Liu W, Yang K, Guo R, Li C, Tian Y, Zhou D, Bei W, Yuan F. The adcA and lmb Genes Play an Important Role in Drug Resistance and Full Virulence of Streptococcus suis. Microbiol Spectr 2023; 11:e0433722. [PMID: 37212676 PMCID: PMC10269787 DOI: 10.1128/spectrum.04337-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/25/2023] [Indexed: 05/23/2023] Open
Abstract
Streptococcus suis is an recognized zoonotic pathogen of swine and severely threatens human health. Zinc is the second most abundant transition metal in biological systems. Here, we investigated the contribution of zinc to the drug resistance and pathogenesis of S. suis. We knocked out the genes of AdcACB and Lmb, two Zn-binding lipoproteins. Compared to the wild-type strain, we found that the survival rate of this double-mutant strain (ΔadcAΔlmb) was reduced in Zinc-limited medium, but not in Zinc-supplemented medium. Additionally, phenotypic experiments showed that the ΔadcAΔlmb strain displayed impaired adhesion to and invasion of cells, biofilm formation, and tolerance of cell envelope-targeting antibiotics. In a murine infection model, deletion of the adcA and lmb genes in S. suis resulted in a significant decrease in strain virulence, including survival rate, tissue bacterial load, inflammatory cytokine levels, and histopathological damage. These findings show that AdcA and Lmb are important for biofilm formation, drug resistance, and virulence in S. suis. IMPORTANCE Transition metals are important micronutrients for bacterial growth. Zn is necessary for the catalytic activity and structural integrity of various metalloproteins involved in bacterial pathogenic processes. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. Thus, pathogenic bacteria must acquire Zn during infection in order to successfully survive and multiply. The host uses nutritional immunity to limit the uptake of Zn by the invading bacteria. The bacterium uses a set of high-affinity Zn uptake systems to overcome this host metal restriction. Here, we identified two Zn uptake transporters in S. suis, AdcA and Lmb, by bioinformatics analysis and found that an adcA and lmb double-mutant strain could not grow in Zn-deficient medium and was more sensitive to cell envelope-targeting antibiotics. It is worth noting that the Zn uptake system is essential for biofilm formation, drug resistance, and virulence in S. suis. The Zn uptake system is expected to be a target for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Mingzheng Peng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fengming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiyun He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Guangxi Yangxiang Co. Ltd., Guangxi, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
13
|
Varghese BR, Goh KGK, Desai D, Acharya D, Chee C, Sullivan MJ, Ulett GC. Variable resistance to zinc intoxication among Streptococcus agalactiae reveals a novel IS1381 insertion element within the zinc efflux transporter gene czcD. Front Immunol 2023; 14:1174695. [PMID: 37304277 PMCID: PMC10251203 DOI: 10.3389/fimmu.2023.1174695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus, is an important human and animal pathogen. Zinc (Zn) is an essential trace element for normal bacterial physiology but intoxicates bacteria at high concentrations. Molecular systems for Zn detoxification exist in S. agalactiae, however the degree to which Zn detoxification may vary among different S. agalactiae isolates is not clear. We measured resistance to Zn intoxication in a diverse collection of clinical isolates of S. agalactiae by comparing the growth of the bacteria in defined conditions of Zn stress. We found significant differences in the ability of different S. agalactiae isolates to resist Zn intoxication; some strains such as S. agalactiae 18RS21 were able to survive and grow at 3.8-fold higher levels of Zn stress compared to other reference strains such as BM110 (6.4mM vs 1.68mM Zn as inhibitory, respectively). We performed in silico analysis of the available genomes of the S. agalactiae isolates used in this study to examine the sequence of czcD, which encodes an efflux protein for Zn that supports resistance in S. agalactiae. Interestingly, this revealed the presence of a mobile insertion sequence (IS) element, termed IS1381, in the 5' region of czcD in S. agalactiae strain 834, which was hyper-resistant to Zn intoxication. Interrogating a wider collection of S. agalactiae genomes revealed identical placement of IS1381 in czcD in other isolates from the clonal-complex-19 (CC19) 19 lineage. Collectively, these results show a resistance spectrum among S. agalactiae isolates enables survival in varying degrees of Zn stress, and this phenotypic variability has implications for understanding bacterial survival in metal stress.
Collapse
Affiliation(s)
- Brian R. Varghese
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Kelvin G. K. Goh
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Collin Chee
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Dual RNA sequencing of group B Streptococcus-infected human monocytes reveals new insights into host-pathogen interactions and bacterial evasion of phagocytosis. Sci Rep 2023; 13:2137. [PMID: 36747074 PMCID: PMC9902490 DOI: 10.1038/s41598-023-28117-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS) is a frequent cause of infections, including bacteraemia and other acute diseases in adults and immunocompromised individuals. We developed a novel system to study GBS within human monocytes to define the co-transcriptome of intracellular GBS (iGBS) and host cells simultaneously using dual RNA-sequencing (RNA-seq) to better define how this pathogen responds to host cells. Using human U937 monocytes and genome-sequenced GBS reference strain 874,391 in antibiotic protection assays we validated a system for dual-RNA seq based on measures of GBS and monocyte viability to ensure that the bacterial and host cell co-transcriptome reflected mainly intracellular (iGBS) rather than extracellular GBS. Elucidation of the co-transcriptome revealed 1119 dysregulated transcripts in iGBS with most genes, including several that encode virulence factors (e.g., scpB, hvgA, ribD, pil2b) exhibiting activation by upregulated expression. Infection with iGBS resulted in significant remodelling of the monocyte transcriptome, with 7587 transcripts differentially expressed including 7040 up-regulated and 547 down-regulated. qPCR confirmed that the most strongly activated genes included sht, encoding Streptococcal Histidine Triad Protein. An isogenic GBS mutant strain deficient in sht revealed a significant effect of this gene on phagocytosis of GBS and survival of the bacteria during systemic infection in mice. Identification of a novel contribution of sht to GBS virulence shows the co-transcriptome responses elucidated in GBS-infected monocytes help to shape the host-pathogen interaction and establish a role for sht in the response of the bacteria to phagocytic uptake. This study provides comprehension of concurrent transcriptional responses that occur in GBS and human monocytes that shape the host-pathogen interaction.
Collapse
|
15
|
Comparative genome analysis of Streptococcus strains to identify virulent genes causing neonatal meningitis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105398. [PMID: 36572056 DOI: 10.1016/j.meegid.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
AIM To determine Streptococcus agalactiae genes responsible for causing neonatal meningitis. BACKGROUND Streptococcus agalactiae strain 2603 V/R is causative agent of neonatal meningitis, maternal infection and sepsis in young children. World health organisation reported high burden of new born death caused by this bacterium. Streptococcus agalactiae colonizing epithelial cells of vagina and endothelial cells have high resistance to available antibiotic drugs which makes it essential to determine new drug targets. OBJECTIVES To compare the genome of selected strain with the non-pathogenic strains of streptococcus and identify the virulent and antibiotic resistant genes for adaptation in host environment. METHOD The whole genome of human pathogen Streptococcus agalactiae strain 2603 V/R was analysed and compared with Streptococcus dysgalactiae strains using visualization and annotation tools. Genomic islands, mobile genetic elements, virulent and resistant genes were studied. RESULTS Genetically pathogenic strain is most similar to Streptococcus dysgalactiae subsp. equisimilis strain NCTC 7136. Comparative analysis revealed the importance of capsular polysaccharides and surface proteins responsible for avoiding immune system attachment to host epithelial cells and virulent behaviour. High number of genes coding for antibiotics resistance may provide a competitive advantage for survival of pathogenic Streptococcus agalactiae strain 2603 V/R in its niche. CONCLUSIONS The comparative analysis of pathogenic strain Streptococcus agalactiae with non-pathogenic strains of Streptococcus dysgalactiae provided new insights in pathogenicity that could aid in recognization for new regions and genes for development of new drug development strategies considering presence of high number of resistance genes.
Collapse
|
16
|
Roux AE, Robert S, Bastat M, Rosinski-Chupin I, Rong V, Holbert S, Mereghetti L, Camiade E. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response. Microbiol Spectr 2022; 10:e0208022. [PMID: 36264242 PMCID: PMC9784791 DOI: 10.1128/spectrum.02080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus agalactiae is a leading cause of infections in neonates. This opportunistic pathogen colonizes the vagina, where it has to cope with acidic pH and hydrogen peroxide produced by lactobacilli. Thus, in the host, this bacterium possesses numerous adaptation mechanisms in which the pleiotropic regulators play a major role. The transcriptional regulator CcpA (catabolite control protein A) has previously been shown to be the major regulator involved in carbon catabolite repression in Gram-positive bacteria but is also involved in other functions. By transcriptomic analysis, we characterized the CcpA-dependent gene regulation in S. agalactiae. Approximately 13.5% of the genome of S. agalactiae depends on CcpA for regulation and comprises genes involved in sugar uptake and fermentation, confirming the role of CcpA in carbon metabolism. We confirmed by electrophoretic mobility shift assays (EMSAs) that the DNA binding site called cis-acting catabolite responsive element (cre) determined for other streptococci was effective in S. agalactiae. We also showed that CcpA is of capital importance for survival under acidic and oxidative stresses and is implicated in macrophage survival by regulating several genes putatively or already described as involved in stress response. Among them, we focused our study on SAK_1689, which codes a putative UspA protein. We demonstrated that SAK_1689, highly downregulated by CcpA, is overexpressed under oxidative stress conditions, this overexpression being harmful for the bacterium in a ΔccpA mutant. IMPORTANCE Streptococcus agalactiae is a major cause of disease burden leading to morbidity and mortality in neonates worldwide. Deciphering its adaptation mechanisms is essential to understand how this bacterium manages to colonize its host. Here, we determined the regulon of the pleiotropic regulator CcpA in S. agalactiae. Our findings reveal that CcpA is not only involved in carbon catabolite repression, but is also important for acidic and oxidative stress resistance and survival in macrophages.
Collapse
Affiliation(s)
| | | | | | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | | | | | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France
- CHRU Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | | |
Collapse
|
17
|
A Novel Conserved Protein in Streptococcus agalactiae, BvaP, Is Important for Vaginal Colonization and Biofilm Formation. mSphere 2022; 7:e0042122. [PMID: 36218343 PMCID: PMC9769775 DOI: 10.1128/msphere.00421-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) infections in neonates are often fatal and strongly associated with maternal GBS vaginal colonization. Here, we investigated the role of an uncharacterized protein, BvaP, in GBS vaginal colonization. bvaP was previously identified as the most highly upregulated gene in the GBS A909 transcriptome when comparing vaginal colonization to growth in liquid culture. We found that the absence of BvaP affects the ability of GBS to adhere to extracellular matrix components and human vaginal epithelial cells, and the ability of a ΔbvaP mutant to colonize the murine vaginal tract was significantly decreased. Cellular morphological alterations such as changes in cell shape, chain length, and clumping were also observed in a knockout mutant strain. Given its high expression level in vivo, high degree of conservation among GBS strains, and role in vaginal colonization, BvaP may be an eligible target for GBS vaccination and/or drug therapy. IMPORTANCE Neonatal GBS disease is a major cause of morbidity and mortality, and maternal vaginal colonization is the leading risk factor for the disease. Colonization prevention would greatly impact the rates of disease transmission, but vaccine development has stalled as capsular polysaccharide vaccines have low immunogenicity in vivo. While these vaccines are still in development, the addition of a protein conjugate may prove fruitful in increasing immunogenicity and strain coverage across GBS serotypes. Previous research identified sak_1753 as a highly upregulated gene during murine vaginal colonization. This study reveals that Sak_1753 is required to maintain proper GBS cellular morphology and colonization phenotypes and is required for full in vivo vaginal colonization in a murine model. We have renamed Sak_1753 group B streptococcus vaginal adherence protein (BvaP). The findings of this study indicate that BvaP is important for GBS colonization of the vaginal tract and, given its high expression level in vivo and strain conservation, may be a candidate for vaccine development.
Collapse
|
18
|
Biofilm Formation in Streptococcus agalactiae Is Inhibited by a Small Regulatory RNA Regulated by the Two-Component System CiaRH. Microbiol Spectr 2022; 10:e0063522. [PMID: 35980045 PMCID: PMC9603419 DOI: 10.1128/spectrum.00635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Regulatory small RNAs (sRNAs) are involved in the adaptation of bacteria to their environment. CiaR-dependent sRNAs (csRNAs) are controlled by the regulatory two-component system (TCS) CiaRH, which is widely conserved in streptococci. Except for Streptococcus pneumoniae and Streptococcus sanguinis, the targets of these csRNAs have not yet been investigated. Streptococcus agalactiae, the leading cause of neonatal infections, has four conserved csRNA genes, namely, srn015, srn024, srn070, and srn085. Here, we demonstrate the importance of the direct repeat TTTAAG-N5-TTTAAG in the regulation of these csRNAs by CiaRH. A 24-nucleotide Srn024-sap RNA base-pairing region is predicted in silico. The sap gene encodes a LPXTG-cell wall-anchored pullulanase. This protein cleaves α-glucan polysaccharides such as pullulan and glycogen present in the environment to release glucose and is involved in adhesion to human cervical epithelial cells. Inactivation of S. agalactiae pullulanase (SAP) leads to no bacterial growth in a medium with only pullulan as a carbon source and reduced biofilm formation, while deletion of ciaRH and srn024 genes significantly increases bacterial growth and biofilm formation. Using a new translational fusion vector, we demonstrated that Srn024 is involved in the posttranscriptional regulation of sap expression. Complementary base pair exchanges in S. agalactiae suggest that Srn024 interacts directly with sap mRNA and that disruption of this RNA pairing is sufficient to yield the biofilm phenotype of Srn024 deletion. These results suggest the involvement of Srn024 in the adaptation of S. agalactiae to environmental changes and biofilm formation, likely through the regulation of the sap gene. IMPORTANCE Although Streptococcus agalactiae is a commensal bacterium of the human digestive and genitourinary tracts, it is also an opportunistic pathogen for humans and other animals. As the main cause of neonatal infections, it is responsible for pneumonia, bacteremia, and meningitis. However, its adaptation to these different ecological niches is not fully understood. Bacterial regulatory networks are involved in this adaptation, and the regulatory TCSs (e.g., CiaRH), as well as the regulatory sRNAs, are part of it. This study is the first step to understand the role of csRNAs in the adaptation of S. agalactiae. This bacterium does not currently exhibit extensive antibiotic resistance. However, it is crucial to find alternatives before multidrug resistance emerges. Therefore, we propose that drugs targeting regulatory RNAs with Srn024-like activities would affect pathogens by reducing their abilities to form biofilm and to adapt to host niches.
Collapse
|
19
|
Abstract
Group B Streptococcus (GBS) in the vaginal tract is a risk factor for preterm birth and adverse pregnancy outcomes. GBS colonization is also transient in nature, which likely reflects the contributions of pathogen determinants, interactions with commensal flora, and host factors, making this environment particularly challenging to understand. Additionally, dietary zinc deficiency is a health concern on the global scale that is known to be associated with recurrent bacterial infection and increased rate of preterm birth or stillbirth. However, the impact of zinc deficiency on vaginal health has not yet been studied. Here we use a murine model to assess the role of dietary zinc on GBS burden and the impact of GBS colonization on the vaginal microbiome. We show that GBS vaginal colonization is increased in a zinc-deficient host and that the presence of GBS significantly alters the microbial community structure of the vagina. Using machine learning approaches, we show that vaginal community turnover during GBS colonization is driven by computationally predictable changes in key taxa, including several organisms not previously described in the context of the vaginal microbiota, such as Akkermansia muciniphila. We observed that A. muciniphila increases GBS vaginal persistence and, in a cohort of human vaginal microbiome samples collected throughout pregnancy, we observed an increased prevalence of codetection of GBS and A. muciniphila in patients who delivered preterm compared to those who delivered at full term. These findings reveal the importance and complexity of both host zinc availability and native microbiome to GBS vaginal persistence. IMPORTANCE The presence of group B Streptococcus (GBS) in the vaginal tract, perturbations in the vaginal microbiota, and dietary zinc deficiency are three factors that are independently known to be associated with increased risk of adverse pregnancy outcomes. Here, we developed an experimental mouse model to assess the impact of dietary zinc deficiency on GBS vaginal burden and persistence and to determine how changes in GBS colonization impact vaginal microbial structure. We have employed unique animal, in silica metabolic, and machine learning models, paired with analyses of human cohort data, to identify taxonomic biomarkers that contribute to host susceptibility to GBS vaginal persistence. Collectively, the data reported here identify that both dietary zinc deficiency and the presence of A. muciniphila could perpetuate an increased GBS burden and prolonged exposure in the vaginal tract, which potentiate the risk of invasive infection in utero and in the newborn.
Collapse
|
20
|
Akbari MS, Doran KS, Burcham LR. Metal Homeostasis in Pathogenic Streptococci. Microorganisms 2022; 10:1501. [PMID: 35893559 PMCID: PMC9331361 DOI: 10.3390/microorganisms10081501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are opportunistic pathogens that are capable of causing invasive disease in a wide range of populations. Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to survive across dynamic host environments, Streptococci have evolved complex systems to withstand metal stress and maintain metal homeostasis, especially during colonization and infection. There are many different types of transport systems that are used by bacteria to import or export metals that can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc, manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal homeostasis in pathogenic Streptococci, and their role in virulence.
Collapse
Affiliation(s)
| | - Kelly S. Doran
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | |
Collapse
|
21
|
Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. PLoS Pathog 2022; 18:e1010607. [PMID: 35862444 PMCID: PMC9345489 DOI: 10.1371/journal.ppat.1010607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/02/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival. Metals, such as Cu and Zn, can be used by the mammalian immune system to target bacterial pathogens for destruction, and consequently, bacteria have evolved discrete genetic systems to enable subversion of this host antimicrobial response. Systems for Cu and Zn homeostasis are well characterized, including transcriptional control elements that sense and respond to metal stress. Here, we discover novel features of metal response systems in Streptococcus, which have broad implications for bacterial pathogenesis and virulence. We show that Streptococcus resists Zn intoxication by utilizing a bona fide Cu regulator, CopY, to manage cellular metal homeostasis, and enable the bacteria to survive stressful conditions. We identify several new genes that confer resistance to Zn intoxication in Streptococcus, including some that have hitherto not been linked to metal ion homeostasis in any bacterial pathogen. Identification of a novel cross-system metal management mechanism exploited by Streptococcus to co-ordinate and achieve metal resistance enhances our understanding of metal ion homeostasis in bacteria and its effect on pathogenesis.
Collapse
|
22
|
Genomic Analyses Identify Manganese Homeostasis as a Driver of Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0098522. [PMID: 35658538 PMCID: PMC9239048 DOI: 10.1128/mbio.00985-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is associated with severe infections in utero and in newborn populations, including pneumonia, sepsis, and meningitis. GBS vaginal colonization of the pregnant mother is an important prerequisite for transmission to the newborn and the development of neonatal invasive disease; however, our understanding of the factors required for GBS persistence and ascension in the female reproductive tract (FRT) remains limited. Here, we utilized a GBS mariner transposon (Krmit) mutant library previously developed by our group and identified underrepresented mutations in 535 genes that contribute to survival within the vaginal lumen and colonization of vaginal, cervical, and uterine tissues. From these mutants, we identified 47 genes that were underrepresented in all samples collected, including mtsA, a component of the mtsABC locus, encoding a putative manganese (Mn2+)-dependent ATP-binding cassette transporter. RNA sequencing analysis of GBS recovered from the vaginal tract also revealed a robust increase of mtsA expression during vaginal colonization. We engineered an ΔmtsA mutant strain and found by using inductively coupled plasma mass spectrometry that it exhibited decreased concentrations of intracellular Mn2+, confirming its involvement in Mn2+ acquisition. The ΔmtsA mutant was significantly more susceptible to the metal chelator calprotectin and to oxidative stressors, including both H2O2 and paraquat, than wild-type (WT) GBS. We further observed that the ΔmtsA mutant strain exhibited a significant fitness defect in comparison to WT GBS in vivo by using a murine model of vaginal colonization. Taken together, these data suggest that Mn2+ homeostasis is an important process contributing to GBS survival in the FRT.
Collapse
|
23
|
Zheng C, Qiu J, Zhao X, Yu S, Wang H, Wan M, Wei M, Jiao X. The AdcR-regulated AdcA and AdcAII contribute additively to zinc acquisition and virulence in Streptococcus suis. Vet Microbiol 2022; 269:109418. [PMID: 35430524 DOI: 10.1016/j.vetmic.2022.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
Abstract
Metals are necessary elements for bacteria. Typically, vertebrate hosts restrict invading bacterial pathogens from accessing metals. Therefore, bacteria have evolved high-affinity metal importers to acquire metals. Streptococcus suis is a major swine pathogen and an emerging zoonotic agent that endangers the swine industry and human health worldwide. Herein, we aimed to identify the zinc acquisition systems in S. suis and evaluate their roles in bacterial virulence. Bioinformatic analyses revealed that S. suis encodes homologues of AdcA and AdcAII, two well-characterised Zn-binding lipoproteins in certain streptococci. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that the expressions of adcA and adcAII were significantly upregulated in response to Zn limitation, with a higher expression level of adcAII than adcA. Gene deletion mutants and complementation strains were constructed; their growth characteristics under Zn-deficient and Zn-replete conditions indicated that AdcA and AdcAII have overlapping functionality in Zn acquisition. A mouse infection model was used to evaluate the roles of AdcA and AdcAII in S. suis virulence. Mice infected with the double mutant ΔadcAΔadcAII exhibited a significantly higher survival rate, decreased bacterial burden, and lower production of inflammatory cytokines compared to those infected with the wild type (WT) strain. Furthermore, ΔadcAΔadcAII showed reduced competitiveness in infection establishment compared with the WT strain. RNA sequencing, qRT-PCR, and electrophoretic mobility shift assays revealed that AdcR negatively regulates the expressions of adcA and adcAII. Collectively, our results demonstrated that AdcA and AdcAII, which are negatively regulated by AdcR, contribute additively to zinc acquisition and virulence in S. suis.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Jun Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoxian Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Sijia Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Hong Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Mengyan Wan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Man Wei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Cho H, Masters T, Greenwood‐Quaintance KE, Johnson S, Jeraldo PR, Chia N, Pu M, Abdel MP, Patel R. Transcriptomic analysis of Streptococcus agalactiae periprosthetic joint infection. Microbiologyopen 2021; 10:e1256. [PMID: 34964296 PMCID: PMC8678771 DOI: 10.1002/mbo3.1256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Although Streptococcus agalactiae periprosthetic joint infection (PJI) is not as prevalent as staphylococcal PJI, invasive S. agalactiae infection is not uncommon. Here, RNA-seq was used to perform transcriptomic analysis of S. agalactiae PJI using fluid derived from sonication of explanted arthroplasties of subjects with S. agalactiae PJI, with results compared to those of S. agalactiae strain NEM316 grown in vitro. A total of 227 genes with outlier expression were found (164 upregulated and 63 downregulated) between PJI sonicate fluid and in vitro conditions. Functional enrichment analysis showed genes involved in mobilome and inorganic ion transport and metabolism to be most enriched. Genes involved in nickel, copper, and zinc transport, were upregulated. Among known virulence factors, cyl operon genes, encoding β-hemolysin/cytolysin, were consistently highly expressed in PJI versus in vitro. The data presented provide insight into S. agalactiae PJI pathogenesis and may be a resource for identification of novel PJI therapeutics or vaccines against invasive S. agalactiae infections.
Collapse
Affiliation(s)
- Hye‐Kyung Cho
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Thao Masters
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Stephen Johnson
- Department of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Patricio R. Jeraldo
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Nicholas Chia
- Center for Individualized MedicineMayo ClinicRochesterMinnesotaUSA
- Department of SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Meng Pu
- Department of Medicine, Division of Gastroenterology and HepatologyMayo ClinicRochesterMinnesotaUSA
| | - Matthew P. Abdel
- Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
- Division of Infectious Diseases, Department of MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
25
|
Pan Y, Chen Y, Chen J, Ma Q, Gong T, Yu S, Zhang Q, Zou J, Li Y. The Adc regulon mediates zinc homeostasis in Streptococcus mutans. Mol Oral Microbiol 2021; 36:278-290. [PMID: 34351080 DOI: 10.1111/omi.12350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
Zinc (Zn2+ ) is an essential divalent trace metal for living cells. Intracellular zinc homeostasis is critical to the survival and virulence of bacteria. Thus, the frequent fluctuations of salivary zinc, caused by the low physiological level and the frequent exogenous zinc introduction, present a serious challenge for bacteria colonizing the oral cavity. However, the regulation strategies to keep intracellular Zn2+ homeostasis in Streptococcus mutans, an important causative pathogen of dental caries, are unknown. Because zinc uptake is primarily mediated by an ATP-binding ABC transporter AdcABC in Streptococcus strains, we examined the function of AdcABC and transcription factor AdcR in S. mutans in this study. The results demonstrated that deletion of either adcA or adcCB gene impaired the growth but enhanced the extracellular polymeric matrix production in S. mutans, both of which could be relieved after excessive Zn2+ supplementation. Using RNA sequencing analysis, quantitative reverse transcription polymerase chain reaction examination, LacZ-reporter studies, and electrophoretic mobility shift assay, we showed that a MarR (multiple antibiotic resistance regulator) family transcription factor, AdcR, negatively regulates the expression of the genes adcR, adcC, adcB, and adcA by acting on the adcRCB and adcA promoters in response to Zn2+ concentration in their environmental niches. The deletion of adcR increases the sensitivity of S. mutans to excessive Zn2+ supply. Taken together, our findings suggest that Adc regulon, which consists of a Zn2+ uptake transporter AdcCBA and a Zn2+ -responsive repressor AdcR, plays a prominent role in the maintenance of intracellular zinc homeostasis of S. mutans.
Collapse
Affiliation(s)
- Yangyang Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Copper intoxication in group B Streptococcus triggers transcriptional activation of the cop operon that contributes to enhanced virulence during acute infection. J Bacteriol 2021; 203:e0031521. [PMID: 34251869 DOI: 10.1128/jb.00315-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can utilize Copper (Cu) as a trace element to support cellular processes; however, excess Cu can intoxicate bacteria. Here, we characterize the cop operon in group B streptococcus (GBS), and establish its role in evasion of Cu intoxication and the response to Cu stress on virulence. Growth of GBS mutants deficient in either the copA Cu exporter, or the copY repressor, were severely compromised in Cu-stress conditions. GBS survival of Cu stress reflected a mechanism of CopY de-repression of the CopA efflux system. However, neither mutant was attenuated for intracellular survival in macrophages. Analysis of global transcriptional responses to Cu by RNA-sequencing revealed a stress signature encompassing homeostasis of multiple metals. Genes induced by Cu stress included putative metal transporters for manganese import, whereas a system for iron export was repressed. In addition, copA promoted the ability of GBS to colonize the blood, liver and spleen of mice following disseminated infection. Together, these findings show that GBS copA mediates resistance to Cu intoxication, via regulation by the Cu-sensing transcriptional repressor, copY. Cu stress responses in GBS reflect a transcriptional signature that heightens virulence and represents an important part of the bacteria's ability to survive in different environments. Importance Understanding how bacteria manage cellular levels of metal ions, such as copper, helps to explain how microbial cells can survive in different stressful environments. We show how the opportunistic pathogen group B Streptococcus (GBS) achieves homeostasis of intracellular copper through the activities of the genes that comprise the cop operon, and describe how this helps GBS survive in stressful environments, including in the mammalian host during systemic disseminated infection.
Collapse
|
27
|
Bile salts regulate zinc uptake and capsule synthesis in a mastitis-associated extraintestinal pathogenic Escherichia coli strain. Infect Immun 2021; 89:e0035721. [PMID: 34228495 DOI: 10.1128/iai.00357-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are major causes of urinary and bloodstream infections. ExPEC reservoirs are not completely understood. Some mastitis-associated E. coli (MAEC) strains carry genes associated with ExPEC virulence, including metal scavenging, immune avoidance, and host attachment functions. In this study, we investigated the role of the high-affinity zinc uptake (znuABC) system in the MAEC strain M12. Elimination of znuABC moderately decreased fitness during mouse mammary gland infections. The ΔznuABC mutant strain exhibited an unexpected growth delay in the presence of bile salts, which was alleviated by the addition of excess zinc. We isolated ΔznuABC mutant suppressor mutants with improved growth of in bile salts, several of which no longer produced the K96 capsule made by strain M12. Addition of bile salts also reduced capsule production by strain M12 and ExPEC strain CP9, suggesting that capsule synthesis may be detrimental when bile salts are present. To better understand the role of the capsule, we compared the virulence of mastitis strain M12 with its unencapsulated ΔkpsCS mutant in two models of ExPEC disease. The wild type strain successfully colonized mouse bladders and kidneys and was highly virulent in intraperitoneal infections. Conversely, the ΔkpsCS mutant was unable to colonize kidneys and was unable to cause sepsis. These results demonstrate that some MAEC may be capable of causing human ExPEC illness. Virulence of strain M12 in these infections is dependent on its capsule. However, capsule may interfere with zinc homeostasis in the presence of bile salts while in the digestive tract.
Collapse
|
28
|
Yuan XY, Liu HZ, Liu JF, Sun Y, Song Y. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. Future Microbiol 2021; 16:671-685. [PMID: 34098731 DOI: 10.2217/fmb-2020-0189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group B Streptococcus (GBS) is the main pathogen of perinatal infection. It can lead to adverse pregnancy, maternal infection, premature delivery, abortion, stillbirth and a series of adverse maternal and infant outcomes such as neonatal sepsis, meningitis or pneumonia during delivery. In order to reduce the infection of perinatal pregnant and the adverse pregnancy outcome, more attention should be paid in the clinical practice, screening efforts, universal detection of GBS infection for pregnant women and preventive treatment for the possible mother infant infection. In this study, the biological characteristics, immunophenotype, major pathogenic mechanism, laboratory test methods and clinical significance of GBS are summarized.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Zhu Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Jia-Fei Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.,Department of Medical Laboratory Sciences, Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Yong Sun
- Department of Clinical Lab, Yantai Laiyang Central Hospital, Yantai, Shandong, 264200, PR China
| | - Yu Song
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
29
|
Potential factors involved in the early pathogenesis of Streptococcus uberis mastitis: a review. Folia Microbiol (Praha) 2021; 66:509-523. [PMID: 34085166 DOI: 10.1007/s12223-021-00879-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Bovine mastitis is an inflammation of the mammary gland, which could be the result of allergy, physical trauma, or invasion by pathogens as Streptococcus uberis. This pathogen is an environmental pathogen associated with subclinical and clinical intramammary infection (IMI) in both lactating and non-lactating cows, which can persist in the udder and cause a chronic infection in the mammary gland. In spite of the important economic losses and increased prevalence caused by S. uberis mastitis, virulence factors involved in bacterial colonization of mammary glands and the pathogenic mechanisms are not yet clear. In the last 30 years, several studies have defined adherence and internalization of S. uberis as the early stages in IMI. S. uberis adheres to and invades into mammary gland cells, and this ability has been observed in in vitro assays. Until now, these abilities have not been determined in vivo challenges since they have been difficult to study. Bacterial surface proteins are able to bind to extracellular matrix protein components such as fibronectin, collagen and laminin, as well as proteins in milk. These proteins play a role in adhesion to host cells and have been denominated microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). This article aims to summarize our current knowledge on the most relevant properties of the potential factors involved in the early pathogenesis of S. uberis mastitis.
Collapse
|
30
|
Ganguly T, Peterson AM, Kajfasz JK, Abranches J, Lemos JA. Zinc import mediated by AdcABC is critical for colonization of the dental biofilm by Streptococcus mutans in an animal model. Mol Oral Microbiol 2021; 36:214-224. [PMID: 33819383 PMCID: PMC9178666 DOI: 10.1111/omi.12337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Trace metals are essential to all domains of life but toxic when found at high concentrations. Although the importance of iron in host-pathogen interactions is firmly established, contemporary studies indicate that other trace metals, including manganese and zinc, are also critical to the infectious process. In this study, we sought to identify and characterize the zinc uptake system(s) of Streptococcus mutans, a keystone pathogen in dental caries and a causative agent of bacterial endocarditis. Different than other pathogenic bacteria, including several streptococci, that encode multiple zinc import systems, bioinformatic analysis indicated that the S. mutans core genome encodes a single, highly conserved, zinc importer commonly known as AdcABC. Inactivation of the genes coding for the metal-binding AdcA (ΔadcA) or both AdcC ATPase and AdcB permease (ΔadcCB) severely impaired the ability of S. mutans to grow under zinc-depleted conditions. Intracellular metal quantifications revealed that both mutants accumulated less zinc when grown in the presence of a subinhibitory concentration of a zinc-specific chelator. Notably, the ΔadcCB strain displayed a severe colonization defect in a rat oral infection model. Both Δadc strains were hypersensitive to high concentrations of manganese, showed reduced peroxide tolerance, and formed less biofilm in sucrose-containing media when cultivated in the presence of the lowest amount of zinc that support their growth, but not when zinc was supplied in excess. Collectively, this study identifies AdcABC as the major high affinity zinc importer of S. mutans and provides preliminary evidence that zinc is a growth-limiting factor within the dental biofilm.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alexandra M. Peterson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - José A. Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021; 203:4715-4726. [PMID: 34028569 PMCID: PMC8141825 DOI: 10.1007/s00203-021-02369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022]
Abstract
The eukaryotic-type serine/threonine kinase of Streptococcus suis serotype 2 (SS2) performs critical roles in bacterial pathogenesis. In this study, isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were used to analyze the protein profiles of wild type strain SS2-1 and its isogenic STK deletion mutant (Δstk). A total of 281 significant differential proteins, including 147 up-regulated and 134 down-regulated proteins, were found in Δstk. Moreover, 69 virulence factors (VFs) among these 281 proteins were predicted by the Virulence Factor Database (VFDB), including 38 downregulated and 31 up-regulated proteins in Δstk, among which 15 down regulated VFs were known VFs of SS2. Among the down-regulated proteins, high temperature requirement A (HtrA), glutamine synthase (GlnA), ferrichrome ABC transporter substrate-binding protein FepB, and Zinc-binding protein AdcA are known to be involved in bacterial survival and/or nutrient and energy acquisition under adverse host conditions. Overall, our results indicate that STK regulates the expression of proteins involved in virulence of SS2 and its adaption to stress environments.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| |
Collapse
|
32
|
Cellular Management of Zinc in Group B Streptococcus Supports Bacterial Resistance against Metal Intoxication and Promotes Disseminated Infection. mSphere 2021; 6:6/3/e00105-21. [PMID: 34011683 PMCID: PMC8265624 DOI: 10.1128/msphere.00105-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for normal bacterial physiology but, divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA sequencing and quantitative reverse transcription-PCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn management axis supported virulence in the blood, heart, liver, and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including, most notably, arcA for arginine deamination, also mediated resistance to Zn stress, representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection.IMPORTANCE Streptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable zinc detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic, and cellular assays, we show that this pathogen controls Zn export through CzcD to manage Zn stress and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiae in vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms operate in other bacteria as a way to sustain microbial survival under conditions of metal stress, including in host environments.
Collapse
|
33
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
34
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
35
|
Specificity of Interactions between Components of Two Zinc ABC Transporters in Paracoccus denitrificans. Int J Mol Sci 2020; 21:ijms21239098. [PMID: 33265916 PMCID: PMC7731109 DOI: 10.3390/ijms21239098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
Bacterial ATP binding cassette (ABC) transporters mediate the influx of numerous substrates. The cluster A-I ABC transporters are responsible for the specific uptake of the essential metals zinc, manganese or iron, making them necessary for survival in metal-limited environments, which for pathogens include the animal host. In Paracoccus denitrificans, there are two zinc ABC transporter systems: ZnuABC and AztABCD with apparently redundant functions under zinc-limited conditions. The unusual presence of two zinc ABC transporter systems in the same organism allowed for the investigation of specificity in the interaction between the solute binding protein (SBP) and its cognate permease. We also assessed the role of flexible loop features in the SBP in permease binding and zinc transport. The results indicate that the SBP–permease interaction is highly specific and does not require the flexible loop features of the SBP. We also present an expanded table of the properties of characterized cluster A-I SBPs and a multiple sequence alignment highlighting the conserved features. Through this analysis, an apparently new family of binding proteins associated with ABC transporters was identified. The presence of homologues in several human pathogens raises the possibility of using it as a target for the development of new antimicrobial therapies.
Collapse
|
36
|
Identification of Zinc-Dependent Mechanisms Used by Group B Streptococcus To Overcome Calprotectin-Mediated Stress. mBio 2020; 11:mBio.02302-20. [PMID: 33173000 PMCID: PMC7667036 DOI: 10.1128/mbio.02302-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease. Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.
Collapse
|
37
|
Hanachi M, Kiran A, Cornick J, Harigua-Souiai E, Everett D, Benkahla A, Souiai O. Genomic Characteristics of Invasive Streptococcus pneumoniae Serotype 1 in New Caledonia Prior to the Introduction of PCV13. Bioinform Biol Insights 2020; 14:1177932220962106. [PMID: 33088176 PMCID: PMC7545519 DOI: 10.1177/1177932220962106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae serotype 1 is a common cause of global invasive pneumococcal disease. In New Caledonia, serotype 1 is the most prevalent serotype and led to two major outbreaks reported in the 2000s. The pneumococcal conjugate vaccine 13 (PCV13) was introduced into the vaccination routine, intending to prevent the expansion of serotype 1 in New Caledonia. Aiming to provide a baseline for monitoring the post-PCV13 changes, we performed a whole-genome sequence analysis on 67 serotype 1 isolates collected prior to the PCV13 introduction. To highlight the S. pneumoniae serotype 1 population structure, we performed a multilocus sequence typing (MLST) analysis revealing that NC serotype 1 consisted of 2 sequence types: ST3717 and the highly dominant ST306. Both sequence types harbored the same resistance genes to beta-lactams, macrolide, streptogramin B, fluoroquinolone, and lincosamide antibiotics. We have also identified 36 virulence genes that were ubiquitous to all the isolates. Among these virulence genes, the pneumolysin sequence presented an allelic profile associated with disease outbreaks and reduced hemolytic activity. Moreover, recombination hotspots were identified in 4 virulence genes and more notably in the cps locus (cps2L), potentially leading to capsular switching, a major mechanism of the emergence of nonvaccine types. In summary, this study represents the first overview of the genomic characteristics of S. pneumoniae serotype 1 in New Caledonia prior to the introduction of PCV13. This preliminary description represents a baseline to assess the impact of PCV13 on serotype 1 population structure and genomic diversity.
Collapse
Affiliation(s)
- Mariem Hanachi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia.,Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Anmol Kiran
- Queens Research Institute, University of Edinburgh, Edinburgh, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Jennifer Cornick
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Departement of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology-LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics-LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis, Tunisia.,Institut Supérieur des Technologies Médicales de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
38
|
Makthal N, Do H, Wendel BM, Olsen RJ, Helmann JD, Musser JM, Kumaraswami M. Group A Streptococcus AdcR Regulon Participates in Bacterial Defense against Host-Mediated Zinc Sequestration and Contributes to Virulence. Infect Immun 2020; 88:e00097-20. [PMID: 32393509 PMCID: PMC7375770 DOI: 10.1128/iai.00097-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Colonization by pathogenic bacteria depends on their ability to overcome host nutritional defenses and acquire nutrients. The human pathogen group A streptococcus (GAS) encounters the host defense factor calprotectin (CP) during infection. CP inhibits GAS growth in vitro by imposing zinc (Zn) limitation. However, GAS counterstrategies to combat CP-mediated Zn limitation and the in vivo relevance of CP-GAS interactions to bacterial pathogenesis remain unknown. Here, we report that GAS upregulates the AdcR regulon in response to CP-mediated Zn limitation. The AdcR regulon includes genes encoding Zn import (adcABC), Zn sparing (rpsN.2), and Zn scavenging systems (adcAII, phtD, and phtY). Each gene in the AdcR regulon contributes to GAS Zn acquisition and CP resistance. The ΔadcC and ΔrpsN.2 mutant strains were the most susceptible to CP, whereas the ΔadcA, ΔadcAII, and ΔphtD mutant strains displayed less CP sensitivity during growth in vitro However, the ΔphtY mutant strain did not display an increased CP sensitivity. The varied sensitivity of the mutant strains to CP-mediated Zn limitation suggests distinct roles for individual AdcR regulon genes in GAS Zn acquisition. GAS upregulates the AdcR regulon during necrotizing fasciitis infection in WT mice but not in S100a9-/- mice lacking CP. This suggests that CP induces Zn deficiency in the host. Finally, consistent with the in vitro results, several of the AdcR regulon genes are critical for GAS virulence in WT mice, whereas they are dispensable for virulence in S100a9-/- mice, indicating the direct competition for Zn between CP and proteins encoded by the GAS AdcR regulon during infection.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Brian M Wendel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
39
|
Availability of Zinc Impacts Interactions between Streptococcus sanguinis and Pseudomonas aeruginosa in Coculture. J Bacteriol 2020; 202:JB.00618-19. [PMID: 31685535 DOI: 10.1128/jb.00618-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Airway infections associated with cystic fibrosis (CF) are polymicrobial. We reported previously that clinical isolates of Pseudomonas aeruginosa promote the growth of a variety of streptococcal species. To explore the mechanistic basis of this interaction, we performed a genetic screen to identify mutants of Streptococcus sanginuis SK36 whose growth was no longer enhanced by P. aeruginosa PAO1. Mutations in the zinc uptake systems of S. sanguinis SK36 reduced growth of these strains by 1 to 3 logs compared to that of wild-type S. sanguinis SK36 when grown in coculture with P. aeruginosa PAO1, and exogenous zinc (0.1 to 10 μM) rescued the coculture defect of zinc uptake mutants of S. sanguinis SK36. Zinc uptake mutants of S. sanguinis SK36 had no obvious growth defect in monoculture. Consistent with competition for zinc driving coculture dynamics, S. sanguinis SK36 grown in coculture with P. aeruginosa showed increased expression of zinc uptake genes compared to that of S. sanguinis grown alone. Strains of P. aeruginosa PAO1 defective in zinc transport also supported ∼2-fold more growth by S. sanguinis compared to that in coculture with wild-type P. aeruginosa PAO1. An analysis of 118 CF sputum samples revealed that total zinc levels varied from ∼5 to 145 μM. At relatively low zinc levels, Pseudomonas and Streptococcus spp. were found in approximately equal abundance; at higher zinc levels, we observed a decline in relative abundance of Streptococcus spp., perhaps as a result of increasing zinc toxicity. Together, our data indicate that the relative abundances of these microbes in the CF airway may be impacted by zinc levels.IMPORTANCE Polymicrobial infections in CF cases likely impact patient health, but the mechanism(s) underlying such interactions is poorly understood. Here, we show using an in vitro model system that interactions between Pseudomonas and Streptococcus are modulated by zinc availability, and clinical data are consistent with this model. Together with previous studies, our work supports a role for metal homeostasis as a key factor driving microbial interactions.
Collapse
|
40
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Dual and divergent transcriptional impact of IS1548 insertion upstream of the peptidoglycan biosynthesis gene murB of Streptococcus agalactiae. Gene 2019; 720:144094. [PMID: 31476407 DOI: 10.1016/j.gene.2019.144094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
Abstract
Fourteen different insertion sequences belonging to seven families were identified in the genome of Streptococcus agalactiae. Among them, IS1548, a mobile element of the ISAs1 family, was linked to clonal complex (CC) 19 strains associated with neonatal meningitis and endocarditis. IS1548 impacts S. agalactiae in two reported ways: i) inactivation of virulence genes by insertion in an open reading frame (e.g. hylB or cpsD), ii) positive modulation of the expression of a downstream gene by insertion in an intergenic region (e.g. lmb). We previously identified an unknown integration site of IS1548 in the intergenic region between the folK and the murB genes involved in folate and peptidoglycan biosynthesis, respectively. In this work, we analyzed the prevalence of IS1548 in a large collection of nine hundred and eleven S. agalactiae strains. IS1548 positive strains belong to twenty-nine different sequence types and to ten CCs. The majority of them were, however, clustered within sequence type 19 and sequence type 22, belonging to CC19 and CC22, respectively. In contrast, IS1548 targets the folK-murB intergenic region exclusively in CC19 strains. We evaluated the impact of the insertion of IS1548 on the expression of murB by locating transcriptional promoters influencing its expression in the presence or absence of IS1548 and by comparative β-galactosidase transcriptional fusion assays. We found that in the absence of IS1548, genes involved in folate biosynthesis are co-transcribed with murB. As it was postulated that a folic acid mediated reaction may be involved in cell wall synthesis, this co-transcription could be necessary to synchronize these two processes. The insertion of IS1548 in the folK-murB intergenic region disrupt this co-transcription. Interestingly, we located a promoter at the right end of IS1548 that is able to initiate additional transcripts of murB. The insertion of IS1548 in this region has thus a dual and divergent impact on the expression of murB. By comparative β-galactosidase transcriptional fusion assays, we showed that, consequently, the overall impact of the insertion of IS1548 results in a minor decrease of murB gene transcription. This study provides new insights into gene expression effects mediated by IS1548 in S. agalactiae.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France; Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Rim Al Safadi
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Dani Osman
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France.
| |
Collapse
|
41
|
Lonergan ZR, Skaar EP. Nutrient Zinc at the Host-Pathogen Interface. Trends Biochem Sci 2019; 44:1041-1056. [PMID: 31326221 PMCID: PMC6864270 DOI: 10.1016/j.tibs.2019.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential cofactor required for life and, as such, mechanisms exist for its homeostatic maintenance in biological systems. Despite the evolutionary distance between vertebrates and microbial life, there are parallel mechanisms to balance the essentiality of zinc with its inherent toxicity. Vertebrates regulate zinc homeostasis through a complex network of metal transporters and buffering systems that respond to changes in nutritional zinc availability or inflammation. Fine-tuning of this network becomes crucial during infections, where host nutritional immunity attempts to limit zinc availability to pathogens. However, accumulating evidence demonstrates that pathogens have evolved mechanisms to subvert host-mediated zinc withholding, and these metal homeostasis systems are important for survival within the host. We discuss here the mechanisms of vertebrate and bacterial zinc homeostasis and mobilization, as well as recent developments in our understanding of microbial zinc acquisition.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
42
|
Transcriptomic Analysis of Streptococcus pyogenes Colonizing the Vaginal Mucosa Identifies hupY, an MtsR-Regulated Adhesin Involved in Heme Utilization. mBio 2019; 10:mBio.00848-19. [PMID: 31239377 PMCID: PMC6593403 DOI: 10.1128/mbio.00848-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colonization of the host requires the ability to adapt to an environment that is often low in essential nutrients such as iron. Here we present data showing that the transcriptome of the important human pathogen Streptococcus pyogenes shows extensive remodeling during in vivo growth, resulting in, among many other differentially expressed genes and pathways, a significant increase in genes involved in acquiring iron from host heme. Data show that HupY, previously characterized as an adhesin in both S. pyogenes and the related pathogen Streptococcus agalactiae, binds heme and affects intracellular iron concentrations. HupY, a protein with no known heme binding domains, represents a novel heme binding protein playing an important role in bacterial iron homeostasis as well as vaginal colonization. Streptococcus pyogenes (group A streptococcus [GAS]) is a serious human pathogen with the ability to colonize mucosal surfaces such as the nasopharynx and vaginal tract, often leading to infections such as pharyngitis and vulvovaginitis. We present genome-wide transcriptome sequencing (RNASeq) data showing the transcriptomic changes GAS undergoes during vaginal colonization. These data reveal that the regulon controlled by MtsR, a master metal regulator, is activated during vaginal colonization. This regulon includes two genes highly expressed during vaginal colonization, hupYZ. Here we show that HupY binds heme in vitro, affects intracellular concentrations of iron, and is essential for proper growth of GAS using hemoglobin or serum as the sole iron source. HupY is also important for murine vaginal colonization of both GAS and the related vaginal colonizer and pathogen Streptococcus agalactiae (group B streptococcus [GBS]). These data provide essential information on the link between metal regulation and mucosal colonization in both GAS and GBS.
Collapse
|
43
|
Defining the Role of the Streptococcus agalactiae Sht-Family Proteins in Zinc Acquisition and Complement Evasion. J Bacteriol 2019; 201:JB.00757-18. [PMID: 30745371 DOI: 10.1128/jb.00757-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
Streptococcus agalactiae is not only part of the human intestinal and urogenital microbiota but is also a leading cause of septicemia and meningitis in neonates. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including the transition metal ion zinc. The primary zinc acquisition system of the pathogen is the Adc/Lmb ABC permease, which is essential for viability in zinc-restricted environments. Here, we show that in addition to the AdcCB transporter and the three zinc-binding proteins, Lmb, AdcA, and AdcAII, S. agalactiae zinc homeostasis also involves two streptococcal histidine triad (Sht) proteins. Sht and ShtII are required for zinc uptake via the Lmb and AdcAII proteins with apparent overlapping functionality and specificity. Both Sht-family proteins possess five-histidine triad motifs with similar hierarchies of importance for Zn homeostasis. Independent of its contribution to zinc homeostasis, Sht has previously been reported to bind factor H leading to predictions of a contribution to complement evasion. Here, we investigated ShtII to ascertain whether it had similar properties. Analysis of recombinant Sht and ShtII reveals that both proteins have similar affinities for factor H binding. However, neither protein aided in resistance to complement in human blood. These findings challenge prior inferences regarding the in vivo role of the Sht proteins in resisting complement-mediated clearance.IMPORTANCE This study examined the role of the two streptococcal histidine triad (Sht) proteins of Streptococcus agalactiae in zinc homeostasis and complement resistance. We showed that Sht and ShtII facilitate zinc homeostasis in conjunction with the metal-binding proteins Lmb and AdcAII. Here, we show that the Sht-family proteins are functionally redundant with overlapping roles in zinc uptake. Further, this work reveals that although the Sht-family proteins bind to factor H in vitro this did not influence survival in human blood.
Collapse
|
44
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|
45
|
Stable Expression of Modified Green Fluorescent Protein in Group B Streptococci To Enable Visualization in Experimental Systems. Appl Environ Microbiol 2018; 84:AEM.01262-18. [PMID: 30006391 DOI: 10.1128/aem.01262-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a Gram-positive bacterium associated with various diseases in humans and animals. Many studies have examined GBS physiology, virulence, and microbe-host interactions using diverse imaging approaches, including fluorescence microscopy. Strategies to label and visualize GBS using fluorescence biomarkers have been limited to antibody-based methods or nonspecific stains that bind DNA or protein; an effective plasmid-based system to label GBS with a fluorescence biomarker would represent a useful visualization tool. In this study, we developed and validated a green fluorescent protein (GFP)-variant-expressing plasmid, pGU2664, which can be applied as a marker to visualize GBS in experimental studies. The synthetic constitutively active CP25 promoter drives strong and stable expression of the GFPmut3 biomarker in GBS strains carrying pGU2664. GBS maintains GFPmut3 activity at different phases of growth. The application of fluorescence polarization enables easy discrimination of GBS GFPmut3 activity from the autofluorescence of culture media commonly used to grow GBS. Differential interference contrast microscopy, in combination with epifluorescence microscopy to detect GFPmut3 in GBS, enabled visualization of bacterial attachment to live human epithelial cells in real time. Plasmid pGU2664 was also used to visualize phenotypic differences in the adherence of wild-type GBS and an isogenic gene-deficient mutant strain lacking CovR (the control of virulence regulator) in adhesion assays. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications. We discuss the advantages and consider the limitations of this fluorescent biomarker system developed for GBS.IMPORTANCE Group B streptococcus (GBS) is a bacterium associated with various diseases in humans and animals. This study describes the development of a strategy to label and visualize GBS using a fluorescence biomarker, termed GFPmut3. We show that this biomarker can be successfully applied to track the growth of bacteria in liquid medium, and it enables the detailed visualization of GBS in the context of live human cells in real-time microscopic analysis. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications.
Collapse
|
46
|
Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P, Trieu-Cuot P, Kaminski PA, Firon A. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLoS Genet 2018; 14:e1007342. [PMID: 29659565 PMCID: PMC5919688 DOI: 10.1371/journal.pgen.1007342] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 03/28/2018] [Indexed: 02/03/2023] Open
Abstract
Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP) is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment. Nucleotide-based second messengers play central functions in bacterial physiology and host-pathogen interactions. Among these signalling nucleotides, cyclic-di-AMP (c-di-AMP) synthesis was originally assumed to be essential for bacterial growth. In this study, we confirmed that the only di-adenylate cyclase enzyme in the opportunistic pathogen Streptococcus agalactiae is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable by accumulating spontaneous mutations in genes involved in osmotic regulation. We identified that c-di-AMP binds directly to four proteins necessary to maintain osmotic homeostasis, including three osmolyte transporters and the BusR transcriptional factor. We demonstrated that BusR negatively controls the expression of the busAB operon and that it is the main component leading to growth inhibition in the absence of c-di-AMP synthesis if osmoprotectants are present in the environment. Overall, c-di-AMP is essential to maintain osmotic homeostasis by coordinating osmolyte uptake and thus bacteria have developed specific mechanisms to keep c-di-AMP as the central regulator of osmotic homeostasis.
Collapse
Affiliation(s)
- Laura Devaux
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dona Sleiman
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Myriam Gominet
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Philippe Lanotte
- Université de Tours, Infectiologie et Santé Publique, Bactéries et Risque Materno-Fœtal, INRA UMR1282, Tours France
- Hôpital Bretonneau, Centre Hospitalier Régional et Universitaire de Tours, Service de Bactériologie-Virologie, Tours France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Pierre-Alexandre Kaminski
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL 6002, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Sridharan U, Ragunathan P, Spellerberg B, Ponnuraj K. Molecular dynamics simulation of metal free structure of Lmb, a laminin-binding adhesin of Streptococcus agalactiae: metal removal and its structural implications. J Biomol Struct Dyn 2018; 37:714-725. [PMID: 29421962 DOI: 10.1080/07391102.2018.1438923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metal-binding receptors are one of the extracellular components of ATP-binding cassette transporters that are essential for regulation of metal homeostasis in bacteria. Laminin-binding adhesin (Lmb) of Streptococcus agalactiae falls under this class of solute binding proteins. It binds to zinc with a high affinity. Crystal structure of Lmb solved previously by our group reveals that the zinc is tetrahedrally coordinated by three histidines and a glutamate at the interdomain cleft. Lmb contains a long disordered loop close to the metal-binding site whose precise function is unknown. Several experimental attempts to produce apo-Lmb failed and this prompted us to carry out in silico studies to analyse the structural importance of the metal in Lmb. Here, we present the results of the molecular dynamics (MD) simulation studies of native, apo-(metal removed) and the long loop truncated Lmb models along with a homologous protein, TroA from Treponema pallidum that was taken up for validating the MD results of Lmb. Absence of a metal results in significant structural changes in Lmb, particularly at the metal-binding pocket and with the long loop, although the overall fold is retained. This study thus revealed that the Lmb can exist in different conformational states with subtle differences in the overall fold based on the presence or absence of the metal. This could be functionally important for a putative metal uptake and release and also for the adhesive function of Lmb in recognizing laminin, which contains a high number of zinc finger motifs.
Collapse
Affiliation(s)
- Upasana Sridharan
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai , India
| | - Preethi Ragunathan
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai , India
| | - Barbara Spellerberg
- b Institute for Medical Microbiology and Hygiene , University of Ulm , Ulm , Germany
| | - Karthe Ponnuraj
- a Centre of Advanced Study in Crystallography and Biophysics , University of Madras, Guindy Campus , Chennai , India
| |
Collapse
|
48
|
Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E, Lieberman J, Shirtliff ME, Tettelin H, El-Sayed NM, McIver KS. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 2017; 13:e1006584. [PMID: 28832676 PMCID: PMC5584981 DOI: 10.1371/journal.ppat.1006584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023] Open
Abstract
The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments. The WHO ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues. The genetic requirements for M1T1 GAS 5448 within this niche were interrogated by in vivo transposon sequencing (Tn-seq), identifying 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during GAS 5448 soft tissue infection and dissemination into the bloodstream. Thus, this study improves the functional annotation of the GAS genome, providing new insights into GAS pathophysiology and enhancing the development of novel GAS therapeutics.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey A. Freiberg
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ganesh S. Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Joshua Lieberman
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark E. Shirtliff
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| |
Collapse
|
49
|
Makthal N, Nguyen K, Do H, Gavagan M, Chandrangsu P, Helmann JD, Olsen RJ, Kumaraswami M. A Critical Role of Zinc Importer AdcABC in Group A Streptococcus-Host Interactions During Infection and Its Implications for Vaccine Development. EBioMedicine 2017; 21:131-141. [PMID: 28596134 PMCID: PMC5514391 DOI: 10.1016/j.ebiom.2017.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens. Host employs calprotectin to impose zinc (Zn) limitation on the human pathogen group A streptococcus (GAS) during infection. As a defense, GAS uses a sensor, AdcR, to monitor Zn availability, and a high-affinity transporter, AdcABC, to acquire Zn. Finally, we characterized the extracellular subunit of AdcA as a vaccine candidate to protect mice from GAS infections.
There is an urgent need for a human vaccine to protect against diseases caused by human pathogen, group A streptococcus (GAS). Herein, we identified the key molecular players involved in the battle between the host and invading bacteria for the critical nutrient zinc. The host recruits calprotectin at GAS infection sites to limit zinc availability to the pathogen. The pathogen senses the alterations in zinc availability using a sensor, AdcR, and outcompetes calprotectin by employing a high-affinity zinc uptake system, AdcABC. Using this knowledge, we developed a successful vaccination strategy by immunization with AdcA and demonstrated protection against GAS infections.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Kimberly Nguyen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Maire Gavagan
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, United States
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States.
| |
Collapse
|
50
|
Patron K, Gilot P, Rong V, Hiron A, Mereghetti L, Camiade E. Inductors and regulatory properties of the genomic island-associatedfru2metabolic operon ofStreptococcus agalactiae. Mol Microbiol 2016; 103:678-697. [DOI: 10.1111/mmi.13581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kévin Patron
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Philippe Gilot
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Vanessa Rong
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Aurélia Hiron
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| | - Laurent Mereghetti
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
- Service de Bactériologie-Virologie-Hygiène; Centre Hospitalier Universitaire de Tours; Tours F-37044 France
| | - Emilie Camiade
- Bactéries et Risque Materno-Foetal, UMR1282 Infectiologie et Santé Publique, Université François Rabelais, INRA; Tours F-37032 France
| |
Collapse
|